Geoscience Letters

Official Journal of the Asia Oceania Geosciences Society (AOGS)

Geoscience Letters Cover Image
Open Access

A new parameter of geomagnetic storms for the severity of space weather

Geoscience LettersOfficial Journal of the Asia Oceania Geosciences Society (AOGS)20163:3

https://doi.org/10.1186/s40562-016-0036-5

Received: 22 December 2015

Accepted: 1 February 2016

Published: 19 February 2016

Abstract

Using the continuous Dst data available since 1957 and H component data for the Carrington space weather event of 1859, the paper shows that the mean value of Dst during the main phase of geomagnetic storms, called mean DstMP, is a unique parameter that can indicate the severity of space weather. All storms having high mean DstMP (≤−250 nT), which corresponds to high amount of energy input in the magnetosphere–ionosphere system in short duration, are found associated with severe space weather events that caused all known electric power outages and telegraph system failures.

Background

Geomagnetic storms are disturbances in earth’s magnetic field produced by enhanced solar wind–magnetosphere coupling and ionosphere–magnetosphere plasma coupling (e.g., Svalgaard 1977; Gonzalez et al. 1994). Scientific analysis of geomagnetic storms lead to improved fundamental understanding of the earth’s surrounding space weather environment (e.g., Prölss 2004; Kamide and Balan 2015). Applied analysis of the storms enables the assessment and mitigation of space weather-related hazards, for example, on satellite systems and orbits, satellite communication and navigation, over-the-horizon radio communication, geophysical surveys, electric power grids, and oil and gas metal pipe lines (e.g., Daglis 2004). Of particular concern are the effects associated with rare but extremely intense geomagnetic storms (e.g., Hapgood 2011; Cannon et al. 2013; Cliver and Dietrich 2013). A Carrington type event of 1859 (e.g., Carrington 1859) at present times, for example, can cause very serious social and economic impacts in the High-Tech society (e.g., Baker et al. 2008). It is therefore important for scientific and technological reasons to search for some parameter(s) of space weather events that can indicate their severity.

The disturbance storm time (Dst) index (Sugiura 1964) represents geomagnetic storms. The intensity of the storms, which is the maximum negative value of Dst (or DstMin) during the storms, has conventionally been considered to represent the severity of space weather. However, recently by analyzing the Dst data since 1998, we (Balan et al. 2014) showed that DstMin is an insufficient indicator, and the mean value of Dst during the main phase (MP) of the storms (mean DstMP) can indicate the severity of space weather in causing damages to technological systems such as electric power grids and telegraph systems. In this paper, using all the Dst data available since 1957 and H component data during the Carrington event of 1859, we confirm that the mean DstMP is a unique parameter that can indicate the serenity of space weather.

Dst data and analysis

We use the hourly Dst data of 1 nT resolution for 58 years available at Kyoto WDC since 1957, with no data gaps and no erroneous values (http://swclob-kugi.kyoto-u.ac.jp). The Dst index is obtained from the horizontal H component measured at four low-latitude stations (3 in north and 1 in south) outside the equatorial electrojet belt (Sugiura 1964; Sugiura and Kamei 1991). A disturbance time series is estimated for each station by subtracting a non-storm quiet time baseline; and the Dst time series is obtained as an average of the individual disturbance time series from the four stations. For the Carrington storm of September 1859, we use the H range data measured at Mumbai and reported by Tsurutani et al. (2003). H range is similar to Dst but positive. For consistency, we take H range also as negative like Dst.

The Dst storms are identified by developing a computer program which minimizes non-storm like fluctuations and avoids human errors. Figure 1, for example, illustrates the procedure. The program first detects the negative slopes in the Dst variation (green dots, Fig. 1a) and identifies the preliminary main phase onsets (MPOs) when Dst starts decreasing (red starts) and DstMin when Dst reaches maximum negative values (black stars, Fig. 1b). The program then applies the selection criterion (1) DstMin ≤−50 nT and MP duration >2 h, and criterion (2) absolute value of MP range, that is, IDstMPO − DstMinI ≥50 nT. By applying criteria (1) and (2), many short-period, non-storm like negative fluctuations of Dst are eliminated (Fig. 1c). With a view to further avoid the short-period positive deflections during MP and identify clearly separated storms, the criterion (3), that is, separation between DstMin and next MPO >6 h, is applied. Further to avoid very slowly varying, non-storm like long duration decreases in Dst, the criterion (4), that is, rate of change of Dst during MP or (dDst/dt)MP <−5 nT/h, is applied, which results in the detection of the clear storm in Fig. 1d. By applying the procedure to the whole Dst data, the computer program identified 810 storms which include 365 intense storms (DstMin ≤−100 nT) and 39 super storms (DstMin ≤−250 nT).
Fig. 1

Example illustrating the identification of geomagnetic storms, see text

The estimation of the storm parameters are illustrated using Fig. 1d which also shows the storm phases. The impact at the Earth of a coronal mass ejection (CME) compresses the dayside magnetopause, intensifies its eastward directed current, and generates a positive perturbation in Dst, known as initial phase (IP) which usually lasts from tens of minutes to a few hours. It may be noted that IP is not well identifiable in all storms. This is followed by the main phase (MP) when the field decreases due to the enhancement of the westward ring current, which begins with the southward turning of IMF (interplanetary magnetic field) Bz and consequent solar wind–magnetosphere coupling and loading of solar wind energy into the ring current; it lasts for several hours to over ten hours when IMF Bz remains southward. When IMF Bz returns to zero or turns northward, the solar wind forcing diminishes, ring current intensity eventually dissipates, and Dst recovers back to its near-zero pre-storm level recovery phase (RP) usually taking tens of hours to several days.

The storms are analyzed for their important parameters. Main phase duration TMP is the time interval between MPO and DstMin which are defined above and identified in Fig. 1d; UT hours of MPO and DstMin are noted. ∫DstMP is the integral (or sum) of Dst during MP. For storms with positive initial phase, it is the negative of the sum of the magnitudes of Dst from MPO to DstMin. Mean DstMP = ∫DstMP/T MP is the new parameter which indicates the strength of geomagnetic storms while DstMin represents their intensity, discussed in "Results and discussion" section. (dDstMP/dt)max is the maximum rate of change of Dst during MP, which is the maximum successive difference of Dst during MP.

Results and discussion

Although over 800 storms are identified, we consider the 39 super storms (DstMin ≤−250 nT) and the Carrington storm because storms weaker than super storms are unlikely to be associated with system damages (e.g., Baker et al. 2008; Balan et al. 2014). The characteristics of the storms such as date of DstMin, value of DstMin, time of MPO, time of DstMin, MP duration, mean DstMP, and (dDstMP/dt)max are listed in Table 1. The solar activity index (F10.7) is also listed.
Table 1

Characteristics of geomagnetic storms (DstMin ≤−250 nT)

No

Date

DstMin (nT)

T1–T2 (UT h)

MPD (hr)

Mean DstMP (nT)

dDstMP/dt (nT/h)

Daily 10.7

1

1859-09-01

−1710

05-07

2

−700

1390

2

1989-03-13

−589

14-02

12

−357

111

253

3

1958-02-11

−426

04-12

8

−275

103

224

4

2001-11-06

−292

02-07

5

−259

168

233

5

2003-10-30

−383

18-23

5

−258

98

268

6

1957-09-05

−324

14-04

14

−239

90

241

7

2001-03-31

−387

04-09

5

−238

148

245

8

1981-04-13

−311

00-07

7

−235

75

255

9

1967-05-26

−387

17-05

12

−230

106

219

10

2004-11-10

−263

02-11

9

−229

43

103

11

1989-10-21

−268

06-17

11

−220

61

206

12

1960-04-01

−327

10-19

9

−217

56

201

13

1957-09-13

−427

02-11

9

−216

122

272

14

2004-11-08

−374

20-07

11

−209

96

122

15

2003-11-20

−422

09-21

12

−204

100

171

16

1959-07-15

−429

09-20

11

−204

92

253

17

1958-09-04

−302

14-23

9

−201

55

261

18

1991-10-29

−254

23-08

9

−188

29

269

19

1991-11-09

−354

14-02

12

−187

63

194

20

1960-04-30

−325

13-19

6

−184

151

164

21

2000-04-06

−288

17-01

8

−183

74

178

22

2003-10-29

−353

07-01

18

−179

95

275

23

1989-11-17

−266

10-23

13

−179

52

215

24

1982-09-06

−289

00-12

12

−175

44

172

25

2000-07-15

−301

16-01

9

−172

137

220

26

1958-07-08

−330

10-23

13

−170

92

240

27

1982-07-14

−325

17-02

9

−163

110

269

28

1991-03-25

−298

15-01

10

−157

63

235

29

1970-03-08

−284

15-23

8

−156

90

173

30

1961-10-28

−272

10-19

9

−154

62

86

31

2001-04-11

−271

16-24

8

−145

58

160

32

1960-11-13

−339

17-10

17

−142

81

178

33

1957-09-23

−303

11-07

45

−138

65

297

34

1990-04-10

−281

23-19

20

−133

45

149

35

1960-10-07

−287

21-01

28

−120

45

145

36

1957-01-21

−250

14-23

9

−116

80

219

37

1992-05-10

−288

21-15

18

−111

62

127

38

1989-09-19

−255

15-05

14

−106

40

197

39

1986-02-08

−307

04-01

45

−105

72

94

40

1957-03-02

−255

21-08

11

−83

100

180

Date is of DstMin. T1 and T2 are times of MPO and DstMin. MPD is MP duration. F10.7 is on the day of DstMin

Figure 2 displays the characteristics of all 40 super storms arranged in the order of decreasing mean DstMP. For clarity, the scales of mean DstMP, (dDstMP/dt)max, and DstMin are limited. Purple color represents the storms associated with severe space weather (SvSW) events that caused electric power outages and/or telegraph system failures; and blue color corresponds to normal space weather (NSW) events that did not cause such damages, discussed below. The unique parameter that distinguishes SvSW and NSW events is the mean DstMP (panel a). All five storms associated with SvSW events (purple color) have mean DstMP ≤−258 nT and all remaining 35 storms associated with NSW events have mean DstMP ≥−238 nT. Also, 20 of the storms associated with NSW events have lower DstMin (as low as −429 nT) than the highest DstMin corresponding to SvSW events (panel c). Although (dDstMP/dt)max (panel b) is high (>95 nT/h) for SvSW events, it does not distinguish SvSW and NSW events because 8 NSW events have higher value for the parameter than the lowest value associates with SvSW events. While all 5 super storms associated with SvSW events occurred under high solar activity (F10.7 >225), the storms in general are independent of solar activity (panel d). Mean DstMP (≤−250 nT) therefore is a unique parameter of geomagnetic storms that can indicate the severity of space weather while the conventional parameter DstMin is insufficient.
Fig. 2

Parameters of super storms (mean DstMP, (dDstMP/dt)max, and DstMin) and solar activity index F10.7 arranged in the order of decreasing mean DstMP

The most famous severe space weather event (Carrington 1859) caused telegraph system failures (event 1, Fig. 2) and produced the most extreme geomagnetic storm in known history (Tsurutani et al. 2003) with highest values of mean DstMP (−700 nT) and DstMin (−1710 nT) though Akasofu and Kamide (2005) commented that such extremely high value of Dst is unrealistic. The famous electric power outage in Quebec on March 13, 1989 (e.g., Medford et al. 1989) is associated with an extreme storm (event 2) of mean DstMP <−350 nT. The SvSW event on February 11, 1958 (event 3), which caused fire and severe damages in the telegraph systems in Sweden (e.g., Wik et al. 2009), also produced an extreme storm (mean DstMP = −275 nT). The SvSW events on Nov 06, 2001 and Oct 30, 2003 (events 4 and 5) caused power outages in New Zealand (Marshall et al. 2012) and Sweden (e.g., Wik et al. 2009) and produced extreme storms (mean DstMP < −255 nT).

High value of the unique parameter mean DstMP corresponds to high∫Dst occurring in short duration MP. For example, the most famous SvSW event has the highest∫Dst (or ∫H) occurring in the shortest MP of duration only about 2 h. Such storms are produced by CMEs having high front velocity ΔV (sudden increase over the background) and sufficiently large IMF Bz southward at the front (Balan et al. 2014). The physics of high mean DstMP therefore seems high amount of energy input into the magnetosphere–ionosphere system in short duration probably through continuous and rapid magnetic reconnection (e.g., Borovsky et al. 2008), so that the system responds impulsively. The impulsive response causes strong electric currents in the ionosphere especially at high latitudes, which, in turn, leads to technological system damages through secondary electrical induction on ground systems.

Conclusions

High value of mean Dst during the main phase of geomagnetic storms (DstMP ≤−250 nT), which represents high amount of energy input in the magnetosphere–ionosphere system in short duration, corresponds to the severe space weather events that caused all known electric power outages and telegraph system damages. The information can help identify the characteristic parameter of SvSW in other geophysical data and in the design of technological systems.

Declarations

Acknowledgements

We thank the Kyoto WDC for the Dst data (http://wdc.kugi.kyoto-u.ac.jp/dstdir/). N Balan thanks CNPq of Brazil for an Invitation Fellowship.

Competing interests

The authors declare that they have no competing interests.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Instituto Nacional de Pesquisas Espaciais
(2)
Indian Institute of Geomagnetism
(3)
National Cheng Kung University

References

  1. Akasofu SI, Kamide Y (2005) Comments on the extreme magnetic storm of 1-2 September 182 1859 by B. T. Tsurutani, W. D. Gonzalesz, G. S. Lakhina and S. Alex. J Geophys Res 110, A09226, doi:10.1029/2005JA011005
  2. Baker DN et al (2008) Severe space weather events—understanding societal and economic impacts. The National Academy Press, Washington DC, pp 1–144Google Scholar
  3. Balan N, Skoug R, Tulasi Ram S, Rajesh PK, Shiokawa K, Otsuka Y, Batista IS, Ebihara Y, Nakamura T (2014) CME front and severe space weather. J Geophys Res Space Phys. doi:10.1002/2014JA020151 Google Scholar
  4. Borovsky JE, Hesse M, Birn J, Kuzentsova MM (2008) What determines the reconnection rate at the dayside magnetosphere? J Geophys Res 113:A07210. doi:10.1029/2007JA012645 Google Scholar
  5. Cannon P et al (2013) Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering, London, pp 1–68Google Scholar
  6. Carrington RC (1859) Description of a singular appearance seen in the Sun on, 1859. Mon Not R Astron Soc 20:13–15View ArticleGoogle Scholar
  7. Cliver EW, Dietrich WF (2013) The 1859 space weather event revisited: limits of extreme activity. J Space Weather Space Clim 3:A31. doi:10.1051/swsc/2013053 View ArticleGoogle Scholar
  8. Daglis IA (ed) (2004) Effects of space weather on technology infrastructure. Kluwer Academic, Dordrecht, pp 1–334Google Scholar
  9. Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is a geomagnetic storm? J Geophys Res 99:5771View ArticleGoogle Scholar
  10. Hapgood MA (2011) Towards a scientific understanding of the risk from extreme space weather. Adv Space Res 47:2059–2072View ArticleGoogle Scholar
  11. Kamide Y, Balan N (2015) The importance of ground magnetic data in specifying the state of magnetosphere–ionosphere coupling: an historical account. Geosci lettGoogle Scholar
  12. Marshall RA, Dalzell M, Waters CL, Goldthorpe P, Smith EA (2012) Geomagnetically induced currents in the New Zealand power network. Sp Weather 10:S08003. doi:10.1029/2012SW000806 Google Scholar
  13. Medford et al (1989) Transatlantic earth potential variations during the March 1989 magnetic storms. Geophys Res Lett 16(10):1145View ArticleGoogle Scholar
  14. Prölss GW (2004) Physics of the earth’s space environment. Springer, Berlin, pp 1–513View ArticleGoogle Scholar
  15. Sugiura M (1964) Hourly values of equatorial Dst for the IGY. Ann Int Geophys Yr 35:9–45Google Scholar
  16. Sugiura M, Kamei T (1991) Equatorial Dst index 1957–1986, IAGA Bull. vol 40. ISGI Pub Office, Saint-Maur-des-FossessGoogle Scholar
  17. Svalgaard L (1977) Geomagnetic activity: dependence on solar wind parameters. In: Zirker JB (ed) Coronal holes and high speed wind streams. Colorado Association University Press, Boulder, pp 371–441Google Scholar
  18. Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S (2003) The extreme magnetic storm of 1859. J Geophys Res 108:1268–1275View ArticleGoogle Scholar
  19. Wik M, Pirjola R, Lundstedt H, Viljanen A, Wintoft P, Pulkkinen A (2009) Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann Geophys 27:1775–1787View ArticleGoogle Scholar

Copyright

© Balan et al. 2016