Skip to main content

Official Journal of the Asia Oceania Geosciences Society (AOGS)

Table 1 The dispersion relations and group speeds for a variety of barotropic and baroclinic waves

From: An evaluation of the performance of vertical mixing parameterizations for tidal mixing in the Regional Ocean Modeling System (ROMS)

Wave type

Dispersion

Horizontal group speed

Two-layer interfacial wave: over

\(\omega = \sqrt {\frac{{(\mathop \rho \nolimits_{2} - \mathop \rho \nolimits_{1} )}}{{(\mathop \rho \nolimits_{1} + \mathop \rho \nolimits_{2} )}}gk}\)

\(\mathop c\nolimits_{\text{g}} = \frac{1}{2}\sqrt {\frac{{(\mathop \rho \nolimits_{2} - \mathop \rho \nolimits_{1} )}}{{(\mathop \rho \nolimits_{1} + \mathop \rho \nolimits_{2} )}}\frac{g}{k}}\)

Two-layer interfacial wave: finite over : barotropic

\(\omega = \sqrt {gk}\)

\(\mathop c\nolimits_{\text{g}} = \frac{1}{2}\sqrt {\frac{g}{k}}\)

Two-layer interfacial wave: finite over : baroclinic shallow water

\(\omega = \sqrt {g^{\prime}H} k\)

\(g^{\prime} = g\left( {\frac{{\mathop \rho \nolimits_{2} - \mathop \rho \nolimits_{1} }}{{\mathop \rho \nolimits_{2} }}} \right)\)

\(\mathop c\nolimits_{\text{g}} = \sqrt {g^{\prime}H}\)

Continuous stratification without rotation

\(\omega = N\sqrt {\frac{{\mathop k\nolimits^{2} + \mathop l\nolimits^{2} }}{{\mathop k\nolimits^{2} + \mathop l\nolimits^{2} + \mathop m\nolimits^{2} }}} = N\cos \theta\)

\(\mathop c\nolimits_{{{\text{g}}x}} = N\mathop m\nolimits^{2} \mathop {\left( {\mathop k\nolimits^{2} + \mathop m\nolimits^{2} } \right)}\nolimits^{ - 3/2}\)

Continuous stratification with rotation

\(\mathop {\mathop \omega \nolimits_{j} }\nolimits^{2} = \frac{{\mathop f\nolimits^{2} \mathop {\mathop m\nolimits_{j} }\nolimits^{2} + \mathop N\nolimits_{{}}^{2} \mathop k\nolimits^{2} }}{{\mathop {\mathop k\nolimits^{2} + m}\nolimits_{j}^{2} }}\)

\(\mathop c\nolimits_{{{\text{g}}j}} = \frac{{\mathop {\mathop k\nolimits_{{}} \mathop m\nolimits_{j}^{2} \left( {\mathop N\nolimits^{2} - \mathop f\nolimits^{2} } \right)}\nolimits^{{}} }}{{\mathop {\left( {\mathop f\nolimits^{2} \mathop m\nolimits_{j}^{2} + \mathop N\nolimits^{2} \mathop k\nolimits_{{}}^{2} } \right)}\nolimits^{1/2} \mathop {\left( {\mathop k\nolimits_{{}}^{2} + \mathop m\nolimits_{j}^{2} } \right)}\nolimits^{3/2} }}\)

Barotropic Kelvin wave

\(\omega = \sqrt {gH} k\)

\(\mathop c\nolimits_{{{\text{g}}x}} = \sqrt {gH}\)

Baroclinic Kelvin wave

\(\omega = \sqrt {g^{\prime}H} k\)

\(\mathop c\nolimits_{{{\text{g}}x}} = \sqrt {g^{\prime}H}\)

Barotropic Poincaré wave

\(\omega = \sqrt {\mathop f\nolimits^{2} + gH\left( {\mathop k\nolimits^{2} + \mathop l\nolimits^{2} } \right)}\)

\(\mathop c\nolimits_{{{\text{g}}x}} = \frac{gHk}{{\sqrt {\mathop f\nolimits^{2} + gH\mathop k\nolimits^{2} } }}\)

Baroclinic Poincaré wave

\(\omega = \sqrt {\mathop f\nolimits^{2} + \mathop c\nolimits^{2} \left( {\mathop k\nolimits^{2} + \mathop l\nolimits^{2} } \right)}\)

\(c = \sqrt {g^{\prime}H}\) or \(c = {\raise0.7ex\hbox{$N$} \!\mathord{\left/ {\vphantom {N m}}\right.\kern-0pt} \!\lower0.7ex\hbox{$m$}} = {\raise0.7ex\hbox{${NH}$} \!\mathord{\left/ {\vphantom {{NH} {j\pi }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${j\pi }$}}\)

\(\mathop c\nolimits_{{{\text{g}}x}} = \frac{{\mathop c\nolimits^{2} k}}{{\sqrt {\mathop f\nolimits^{2} + \mathop c\nolimits^{2} \mathop k\nolimits^{2} } }}\)

Shallow water surface gravity wave

\(\omega = \sqrt {gH} k\)

\(\mathop c\nolimits_{{{\text{g}}x}} = \sqrt {gH}\)

Deep water surface gravity wave

\(\omega = \sqrt {gk}\)

\(\mathop c\nolimits_{\text{g}} = \frac{1}{2}\sqrt {\frac{g}{k}}\)

  1. ω is the frequency, k and l are the horizontal wavenumbers (l = 0, wave propagation aligned in x-direction), m is the vertical wave number, and cg the horizontal group speed. The water depth is H and the upper layer thickness is HU. Gravity is g and the reduced gravity is gʹ. ρ1 and ρ2 are the densities of the upper and lower layers, respectively. N is the BruntVäisäla frequency and f is the inertial frequency for the latitude. The mode number is represented by j. The equations were taken from Kundu et al. (2015)