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Abstract 

Heavy rainfall brought by typhoons has been recognised as a major trigger of landslides in Taiwan. On average, 3.75 
typhoons strike the island every year, and cause large amounts of shallow landslides and debris flow in mountainous region. 
Because landslide occurrence strongly corresponds to the storm dynamics, a reliable typhoon forecast is therefore essential 
to landslide hazard management in Taiwan. Given early warnings with sufficient lead time, rainfall-induced shallow landslide 
forecasting can help people prepare disaster prevention measures. To account for inherent weather uncertainties, this study 
adopted an ensemble forecasting model for executing precipitation forecasts, instead of using a single-model output. A 
shallow landslide prediction model based on the infinite slope model and TOPMODEL was developed. Considering the 
detailed topographic characteristics of a catchment, the proposed model can estimate the change in saturated water table 
during rainstorms and then link with the slope-instability analysis to clarify whether shallow landslides can occur in the 
catchment.

Two areas vulnerable to landslide in Taiwan were collected to test the applicability of the model for landslide prediction. 
Hydrological data and landslide records derived from 15 typhoons events were used to verify the applicability of the model. 
Three indices, namely the probability of detection (POD), false alarm ratio (FAR), and threat score (TS), were used to assess 
the performance of the model. The results indicated that for landslide prediction through the proposed model, the POD 
was higher than 0.73, FAR was lower than 0.33, and TS was higher than 0.53. The proposed model has potential for applica‑
tion in landslide early warning systems to reduce loss of life and property.
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Introduction
Taiwan is located on the primary path of typhoons that 
develop in the Northwest Pacific Basin. According to Tai-
wan’s Central Weather Bureau (CWB), Taiwan has expe-
rienced, on average, three to four typhoons annually in the 
past century. The steep topography and weak geological 
structures in mountainous areas in Taiwan have frequently 
been subjected to landslides and mudflows during typhoons 
accompanied by abundant rainfall. For example, Typhoon 

Soudelor that occurred in August 2015 induced seven land-
slide and mudflow incidents in the mountainous areas of 
Xindian and Wulai and resulted in road blockage and isola-
tion of the affected area. Therefore, using precipitation fore-
casts in mountainous areas to establish accurate landslide 
warning systems with timely alarms is imperative to miti-
gate loss of life and property.

To effectively mitigate losses engendered by typhoon- and 
rainstorm-induced landslides, adequate warning systems 
and contingency measures are required to supplement the 
necessary engineering methods so that updated informa-
tion about typhoons and rainstorms can be obtained before 
a disaster occurs (Guzzetti et  al. 2020). Therefore, precise 
quantitative precipitation forecasts and landslide simulation 
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capability are paramount to landslide warning systems and 
disaster prevention. Recently proposed forecasting technol-
ogies for typhoon-induced rainfall can be broadly divided 
into two types according to the underlying theoretical foun-
dation: physically based and statistically based forecasting 
models. Physically based forecasting models are based on 
aerodynamic theories, and they produce typhoon precipita-
tion forecasts through numerical computation. Therefore, 
such models can account for a more comprehensive physi-
cal framework to simulate and forecast typhoon-induced 
precipitation. The Taiwanese research community has 
employed the Fifth-Generation Mesoscale Meteorologi-
cal Model (MM5) codeveloped by Pennsylvania State Uni-
versity and the National Center for Atmospheric Research 
(NCAR) and a new-generation mesoscale weather research 
and forecasting (WRF) model developed by the NCAR to 
conduct ensemble simulations of approaching typhoons by 
using physical parameters. The results have demonstrated 
that selecting suitable physical parameters enables effec-
tively simulating typhoon paths and rainfall distributions. 
Because of the limitations of numerical weather forecasting 
models and the variability of the atmosphere, single-model 
forecasts involve uncertainties to a certain extent and can-
not attain completely accurate prediction of actual weather 
conditions. Therefore, systematic analyses and research 
involving optimal model combinations are required to 
develop ensemble forecasting techniques and mitigate the 
uncertainties associated with atmospheric forecasts. Major 
forecasting centres worldwide have actively developed 
both global and regional ensemble forecasting systems. For 
example, the European Centre for Medium-Range Weather 
Forecasts generates 15-day global forecasting products daily 
with 51 ensemble units, and the objective uncertainties of 
typhoon paths provided by these products play a crucial role 
in the CWB’s practical forecasting operations. In the United 
States, the National Centers for Environmental Prediction 
provide 16-day forecasts daily with 88 ensemble units. In 
Asia, the Japan Meteorological Agency employs a global 
medium-range ensemble prediction model with 51 units 
and 40 vertical levels, whereas the Korea Meteorological 
Administration uses a global ensemble forecasting model 
with 32 units and 40 vertical levels (Li and Hong 2011).

For landslide warning, conventional methods pre-
dominately entail using historical rainfall data and docu-
menting landslide incidents to statistically calculate the 
threshold rainfall amount for landslide warning tasks. 
For example, Caine (1980) and Hong et  al. (2006) have 
collected high-intensity and long-duration rainfall data 
in slopes worldwide and determined the critical relation-
ship between the lower boundary of these data points 
and landslide occurrence through statistical regressions. 
Cannon and Ellen (1985) and Wieczorek (1987) have 
employed the same method to investigate the relationship 

between landslides and rainfall by using data for multiple 
landslides in the San Francisco Bay Region and a landslide 
incident in La Honda, California, respectively. Subse-
quently, Keefer et al. (1987) adopted the data collected by 
the two aforementioned studies as well as those collected 
by Caine (1980) to construct the critical rainfall condi-
tions associated with landslides by using the relationship 
between rainfall intensity and duration. Lee et  al. (2008) 
used multivariate statistical methods to solve a regional 
landslide susceptibility model; they trained the proposed 
model using data for Typhoon Toraji in 2001 and then 
validated the model using data for Typhoon Mindulle in 
2004. The analysis results revealed that the maximum 
rainfall intensity was the triggering factor in the proposed 
model and yielded favourable landslide predictions in 
Central Taiwan. Silalahi et  al. (2019) used the GIS map-
ping and analysis a Frequency Ratio Model to assess the 
contribution of conditioning factors to landslides, and 
to produce a landslide susceptibility map in Bogor, West 
Java, Indonesia. However, statistically based landslide 
warning systems have limitations because regional differ-
ences in sediment, catchment area slope grade, geological 
conditions, landform types, and climatic conditions may 
lead to varying rainfall conditions triggering landslides.

Physically based models for evaluating slope stability in 
catchment areas typically apply the infinite slope model 
(Skempton and DeLory 1957). This model applies the ratio 
of the sediment resistance force τr to the sediment driving 
force τd to calculate the factor of safety (FS = τr/ τd), which 
is then used to evaluate whether a landslide will occur. For 
example, Iverson (2000) used simplified forms of Richards 
equation to calculate saturated and unsaturated rain infil-
tration without considering the effect of excess rainfall. In 
addition, Iverson used the infinite slope stability analysis to 
simulate slope destructions caused by increased saturated 
water levels. Casadei et  al. (2003) combined the infinite 
slope model with a hydrological model to simulate the time 
and location of shallow landslides in catchment areas in 
San Mateo County, California, by using daily precipitation 
data from 1950 to 1998. The development of geographic 
information systems in recent years has enabled the incor-
poration of high-resolution spatial information—such as 
physiographic, hydrological, and land-use data—into topo-
graphic hydrological models based on the infinite slope 
model and thus facilitated landslide hazard simulations (Lee 
and Ho 2009; Ho and Lee 2017).

The current study employed a quantitative ensemble 
forecasting model to compensate for the limitations of 
single-model forecasts. The proposed model comprises 
multiple ensemble units and is expected to account for and 
quantify the uncertainties associated with single-model 
forecasts to provide precipitation forecasts. In addition, the 
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proposed model incorporates a physically based hydrologi-
cal model and a digital elevation model (DEM) to account 
for catchment situations, thereby establishing a landslide 
warning system for catchment areas. The landslide warn-
ing system reflects the precipitation, topography, and water 
flow in catchment areas and analyses changes in saturated 
water levels and slope FS to calculate the potential location 
and time of landslides. The proposed model can expedite 
landslide analysis before future slope disasters occur to 
ensure that the time and range of potential disasters can 
be understood. Moreover, the proposed model can serve 
as a reference for relevant departments in implementing 
disaster response strategies to ensure the safety of life and 
properties.

Methodology
This study adopted the Shallow landslide prediction based 
on Infinite slope Model and TOPMODEL (SIMTOP) devel-
oped by Ho and Lee (2017) to simulate shallow landslides. 
This enabled constructing a topographic hydrological model 
and a slope stability model to simulate changes in the satu-
rated water level on the surface soil of a catchment area and 
the FS of slope during rainfall periods. The simulated data 
can be used to predict the time and location of a landslide 
in the catchment area. To increase the disaster lead time, 
this study combined SIMTOP with the TAiwan coopera-
tive Precipitation Ensemble forecast eXperiment (TAPEX) 
to construct a comprehensive real-time shallow landslide 
warning system for catchment areas. In addition, this study 
employed three evaluation indices to analyse the perfor-
mance of the proposed model. The related research meth-
ods are described as follows.

Ensemble precipitation forecasts
Because weather forecasts have regional characteristics 
and uncertainties and because overseas research outcomes 
cannot be directly adapted to domestic situations, exten-
sive analysis and research procedures are required to sum-
marise the optimal model and settings most suitable for the 
complex terrain features in Taiwan. As presented in Fig. 1, 
the objective of the TAPEX, which has been conducted by 
the Taiwan Typhoon and Flood Research Institute (TTFRI) 
since 2010, is to research and develop quantitative ensem-
ble forecasting technologies and provide a reference for dis-
aster prevention agencies in coordinating response tasks, 
thereby enhancing effectiveness of disaster rescue opera-
tions. This experiment combines the research capacity of 
academia National Taiwan University (NTU), National 
Central University (NCU), National Taiwan Normal Uni-
versity (NTNU), and Chinese Culture University (CCU)) 
and a meteorological agency (CWB), as well as the com-
puting resource of the National Center for High-perfor-
mance Computing (NCHC) and practical experience of 
the National Science and Technology Center for Disaster 
Reduction (NCDR). During typhoon seasons in Taiwan, the 
TAPEX generates real-time weather forecasts and analyses 
typhoon paths and rainfall distributions through ensemble 
statistical methods and probabilistic forecasting concepts 
to determine the probability of disaster-triggering rain-
fall (Hsiao et al. 2013). The TAPEX expanded the roster of 
ensemble units to 27, comprising 21 WRF models, 2 MM5 
models, 2 Cloud Resolving Storm Simulator models, and 
2 hurricane weather research and forecasting models. The 
present study adopted the TAPEX results and combined 
real-time data observed by various rainfall stations to derive 
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Fig. 1  Display of TAPEX-SIMTOP model’s platform
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hourly rolling updates that serve as the input to the real-
time shallow landslide warning system for catchment areas.

SIMTOP model
SIMTOP model (Ho and Lee 2017) applies the infinite slope 
stability theory of Mohr–Coulomb failure law to estimate 
the susceptibility of a landslide. This analysis involves using 
the factor of safety (FS) as expressed by the ratio of resist-
ance force ( τr ) to driving force ( τd ) on a failure plane paral-
lel to the ground surface. The dimensionless factor of safety 
can be expressed as follows:

where φ is the friction angle; β is the inclination of the 
hillslope; c is the effective cohesion (N/m2); ρs is the 
soil bulk density (kg/m3); g is the gravity acceleration 
(= 9.81  m/s2); D is the thickness of soil (m); ρw is the 
water density (kg/m3); Dw(t) is the saturated water level at 
the time t (m). When FS = 1 (i.e. τr = τd), the slope soil is 
in a critical state. When FS < 1 (i.e. τd > τr), the slope soil is 
in an instable state, implying that it is prone to sliding or 
collapsing. Conversely, when FS > 1 (i.e. τr > τd), the slope 
soil is in a stable state. Equation (1) has been extensively 
used for evaluating slope stability (Montgomery and 
Dietrich 1994; Wu and Sidle 1995; Casadei et  al. 2003; 
Apip et al. 2010; Zizioli et al. 2013).

Equation (1) indicates that the FS changes with the satu-
rated water level, and this equation can be used to analyse 
the slope stability of catchment areas by simulating hw(t) in 
a topographic hydrological model. This study selected the 
topographic and semi-distributed TOPMODEL (TOPog-
raphy-based hydrological model) developed by Beven and 
Kirkby (1979) for rainfall–runoff simulations in a catchment 
area. When the accumulated rainfall exceeds the infiltration 

(1)

FS =
τr

τd
=

tan φ

tan β
+

c

ρsgD sin β cosβ
+

−ρwDw(t) tan φ

ρsD tan β
,

capacity, the saturated water level gradually increases. 
Therefore, the distance between the ground surface and a 
saturated aquifer can be estimated by considering the topo-
graphic and soil conditions of the catchment area. The topo-
graphic index model divides the runoff storage reservoir 
into a root zone, unsaturated zone, and saturated zone and 
defines the distance between the ground surface and satu-
rated aquifer as the saturated water level zj . Therefore, the 
saturated water level above the sliding surface ( hwj ) can be 
expressed as follows:

where hwj (t) is the saturated water level on grid j at time 
t; Dj is the soil thickness on grid j; z(t) is the mean sat-
urated water level at time t; m is the model coefficient 
obtained using water recession records; a and tan β are 
the area and surface slope of unit width flow on j , respec-
tively; ln(a/ tan β)j is the topographic index on j (Kirkby 
1975); and � is the mean topographic index of the catch-
ment area. The mean saturated water depth at time t + 1 
can be expressed as follows:

where z(t) is the mean saturated water depth at time t, 
Qb(t) is the outflow from the saturated zone in the catch-
ment outlet at time t, and Qv(t) is the mean replenish-
ment of the saturated zone at time t.

The infinite slope model executes grid computing and 
determines grid stability through the FS. However, in prac-
tice, neighbouring grids may mutually affect each other 
(e.g., unstable grids may be affected by adjacent stable grids 
and thus display a stable state). To mitigate the interaction 
between grids, this study applied the mean FS of the catch-
ment area to determine the occurrence of shallow land-
slides, and Eq. (1) can be rewritten as follows (Ho and Lee 
2017):
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where FS(t) is the mean FS of the catchment area at time 
t and N is the number of grids in the catchment area. 
When FS(t) < 1 , the overall soil driving force exceeds the 
resistance force at time t, indicating an unstable state of 
the slope soil in the catchment area, which might lead to 
shallow landslides. Conversely, when FS(t) > 1 , the over-
all soil driving force is lower than the resistance force at 
time t, indicating a stable state of the slope soil.

TAPEX–SIMTOP integration
This study adopted the 20 sets of rainfall forecasts gener-
ated by the TTFRI and NCDR combined real-time rainfall 
data observed by rainfall stations to derive rolling updates 
of rainfall forecasts with a 6-h lead time (as shown in Fig. 1). 
Moreover, this study derived the mean FS of all ensemble 
units for the upcoming 1–6 h in the catchment area through 
real-time SIMTOP computation. The mean FS can be 
expressed as follows:

where mi is the ith ensemble unit (i = 1 ~ 20). In addi-
tion, to determine whether the rainfall forecast by each 
ensemble unit would lead to shallow landslides, a unit 
step function was used as follows:

If the mean FS derived for an ensemble unit for the 
upcoming 6  h is < 1 ( mi

[

FST=t+1∼6h

]

< 1 ), the unit step 
function can be set as 1 ( Ii = 1 ). Consequently, the rainfall 
forecast by this ensemble unit for the upcoming 6 h would 
cause the slope driving force to exceed the resistance force; 
this would thus result in an unstable state of the soil and 
thereby predict a shallow landslide in the catchment area. 
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.

Conversely, if the FS derived for an ensemble unit for the 
upcoming 6  h is ≥ 1 ( mi

[

FST=t+1∼6h

]

≥ 1 ), the unit step 
function can be set as 0 ( In = 0 ). Consequently, the rainfall 
forecast by this member (mi) for the upcoming 6 h would 
cause the driving force to be lower than the resistance; this 
would result in a stable state of the slope soil in the catch-
ment area. In addition, this study incorporated probabilistic 
forecasting into the analysis and summarised the outcomes 
of all ensemble units to calculate the probability of shallow 
landslides as follows:

where Pt=1−6h is the probability of shallow landslides 
(ranging between 0 and 1) for the upcoming 6 h. In the 
proposed system, a threshold of 0.5 is set for the prob-
ability of shallow landslides: when PT=t+1∼6h ≥ 0.5 , the 
system determines that shallow landslides will occur (i.e. 
the majority of the ensemble units determine a landslide 
hazard); conversely, when PT=t+1∼6h < 0.5, the system 
determines that the catchment area is in a stable state.

Evaluation indices
To evaluate the performance of each model in shallow 
landslide prediction, the forecast results obtained from 
the models were compared with actual observation data, 
and an error matrix was constructed to determine the 
accuracy of each model. The error matrix comprised four 
categories (Table 1): hits (successful landslide prediction), 
misses (failure to predict a landslide), false alarms (pre-
dicted landslide while no actual landslide occurred), and 
no events (no landslide prediction and no actual land-
slide). Therefore, the error matrix results were used to cal-
culate three evaluation indices, namely the probability of 
detection (POD), false alarm ratio (FAR), and threat score 
(TS), to verify the applicability of SIMTOP. These indices 
can be derived as follows (Wilks 2005; Schaefer 1990):

(7)PT=t+1∼6h =
1

n

[

I1,T=t+1∼6h + I2,T=t+1∼6h + ...+ In,T=t+1∼6h

]

,

(8)POD =
hits

hits + misses
.

Table 1  Error matrix

Landslide occurrence (Predicted) Non-landslide 
occurrence (Predicted)

Landslide occurrence (Observed) hits misses

Non-landslide occurrence (Observed) false alarms no events
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The POD, as presented in Eq.  (8), ranges between 0 
and 1 and represents the proportion of successful predic-
tions of shallow landslide events. A POD value closer to 
1 indicates higher model prediction performance. How-
ever, because the POD is derived by considering only hits 
while ignoring false alarms, a smaller sample size may 
generate an overstated POD value. Therefore, the FAR is 
typically included in performance assessments. The FAR, 
as presented in Eq. (9), represents the proportion of false 
alarms for an event under evaluation. An FAR value closer 
to 0 indicates higher model prediction performance. 
Finally, the TS, as presented in Eq.  (10), ranges between 
0 and 1 and is evaluated by considering both false alarms 
and misses; this index can be considered as representing 
the model prediction accuracy. The TS value closer to 1 
indicates higher model prediction performance; the TS 
value is equal to 0 when the model exhibits no predictive 
capability.

Description of study areas
To demonstrate the capability of the proposed SIMTOP 
with TAPEX model, hydrological records and geomorpho-
logical factor from two landslide-prone areas in Taiwan 

(9)FAR =
false alarms

hits + false alarms
,

(10)TS =
hits

hits + false alarms + misses
.

were collected to conduct the slope-instability analysis and 
their prediction. The Chung-Chih (C1) and Dong-Yen (C2) 
villages are selected as the study areas for testing the appli-
cability of the proposed model in this study.

Chung‑Chih village catchment (C1)
The rainstorm engendered by Typhoon Soudelor (2015) 
caused considerable damage in Wu-Lai District of New 
Taipei City in northern Taiwan. Specifically, severe 
shallow landslides and mudflows occurred along the 
9.8–10.2 km marks of Provincial Highway 9A in Chung-
Chih village and disrupted the road transportation of the 
mountainous area, thus isolating Wu-Lai District and 
endangering local residents’ safety and properties. There-
fore, Chung-Chih Village of Wu-Lai District was selected 
as the study area. Chung-Chih Village (C1) is located in 
the Nan-Shi River watershed (Fig.  2). The Nanshi River 
watershed has an average elevation of approximately 
870  m (maximum elevation = 2210  m) and an average 
slope of approximately 0.562. The entire region is covered 
by Tertiary metamorphic rocks, and the geological forma-
tions include the Tatungshan Formation (argillite mixed 
with argillaceous sandstones), Kangkou Formation (argil-
lite mixed with sandstones with varying thickness), Lat-
eritic Terrace Deposits Formation (laterite, gravel, sand, 
and clay), Fangjiao section of Aoti Formation, Hsitsun 
Formation, and Baling Formation. To determine the appli-
cability and parameters of the proposed model, this study 

Fig. 2  Location map of Shang-Gui-Shan Bridge watershed and Chung-Chih village catchment (C1)
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selected the Shang-Gui-Shan Bridge watershed area in the 
downstream of the Nan-Shi River as the sample catch-
ment area. Rainfall and flow discharge data were used to 
verify the hydrological parameters of SIMTOP model. 
The study area is 0.59 km2 and average slope is 0.724. This 
area was subjected to multiple typhoons and rainstorms 
between 2010 and 2016, including three severe shallow 
landslides caused by Typhoon Soudelor (2015), Typhoon 
Dujuan (2016), and Typhoon Megi (2016).

Dong‑Yen village catchment (C2)
Figure 3 illustrates the Dong-Yen village catchment, which 
is located in southern Taiwan and was selected as one 
of model test regions. During 27–28 September 2016, 

Typhoon Megi caused a shallow landslide in the Dong-Yen 
village resulting three people deaths. The shallow landslide 
occurred at about 7 p.m. as 521.5 mm fell in single day and 
maximum hourly rainfall intensity up to 74.5  mm/hr. The 
landslide scale is about 145  m in length, 30  m in width, 
2 m in depth, and the landslide volume is about 8700  m3. 
The lithology is characterised by mudstone and sand-
stone. Dong-Yen Village is located close to the Yen-Feng 
bridge watershed (Fig.  3). The Yen-Feng bridge watershed 
is 17 km2. The detail rainfall and flow discharge data of the 
Yeng-Feng Bridge watershed were also used to verify the 
hydrological parameters of SIMTOP model. The study area 
is 0.58  km2 and average slope is 0.574. This area was sub-
jected to multiple typhoons and rainstorms between 2010 

Fig. 3  Location map of Yeng-Feng Bridge watershed and Dong-Yen village catchment (C2)

Table 2  Rainstorm events for runoff simulation in the study area

Study watershed Storm event Peak rainfall 
depth (mm/h)

Cumulated rainfall 
depth (mm)

Duration (h) Peak flow 
discharge (m3/s)

Calibration/
verification

Shang-Gui-Shan Bridge 1996/07/30 43.94 603.99 51 2320 Calibration

1997/08/28 37.64 481.94 42 1550 Verification

1998/10/04 25.88 399.01 81 708 Verification

2000/08/22 25.47 315.44 41 788 Verification

Yan-Feng Bridge 2012/08/07 64.50 128.00 26 131.75 Calibration

2013/08/29 76.50 495.50 144 155.85 Verification

2015/08/08 38.00 323.50 72 109.84 Verification

2016/09/14 34.50 280.00 71 99.04 Verification
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and 2016, including two severe shallow landslides caused by 
Typhoon Fanapi (2010) and Typhoon Megi (2016).

Model application
Model application
Table 2 shows the details of storm events that occurred in 
two study watersheds; these details were used for hydro-
logical model’s parameters calibration and model verifica-
tion. The performance of the TOPMODEL was evaluated 
in terms of the runoff simulation results derived for the 
Shang-Gui-Shan Bridge (Fig.  2) and Yeng-Feng Bridge 
(Fig.  3) flow-gauging station. Four evaluation indices, 
namely error of peak discharge (EQp), error of time to peak 
discharge (ETp), coefficient of efficiency (CE), and correla-
tion coefficient (CC) were used to verify the applicability 

of the TOPMODEL for simulation rainfall–runoff and 
parameter calibration of SIMTOP. Simulation of an exam-
ple rainstorm of the Shang-Gui-Shan Bridge watershed in 
1996/07/30 is shown in Fig. 4. The simulated and observed 
hydrographs are in relatively good agreement in the both 
study watersheds. As shown in Table 3, the results showed 
that EQp is less than 15.9% in Yeng-Feng Bridge and 15.16% 
in Shang-Gui-Shan Bridge, ETp is less than 1 h in the both 
study watersheds. CE is greater than 0.81, and CC is greater 
than 0.92. The analysis results revealed that the recession 
parameter m of the sample catchment area was 0.06  m; 
the hydraulic conductivity K0 of the saturated soil was 
5 × 10–3  m/s2; and the maximum storage in the root zone 
SRZmax was 0.02 m.

Fig. 4  Hydrograph simulation of the Shang-Gui-Shan Bridge watershed in 1996/07/30

Table 3  Runoff simulation results derived in the both study watersheds

Study watershed Event date EQp(%) ETp(%) CE CC

Shang-Gui-Shan 
Bridge

1996/07/30 15.9 1 0.88 0.98

1997/08/28 6.1 −1 0.92 0.97

1998/10/04 10.4 0 0.86 0.97

2000/08/22 1.1 −1 0.81 0.97

Yan-Feng Bridge 2012/08/07 1.99 0 0.70 0.92

2013/08/29 4.19 −1 0.91 0.96

2015/08/08 14.41 −1 0.86 0.94

2016/09/14 15.16 0 0.89 0.95
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Because SIMTOP developed in this study combines the 
infinite slope stability model and the topographic hydro-
logical model, detailed physiographic data of the catchment 
area were required for model calculations. Accordingly, this 
study adopted data from the 5 m × 5-m grid resolution to 
obtaining the required geomorphological factors by using 
the digital elevation model. This study verified the predictive 
ability of SIMTOP regarding shallow landslides. The param-
eters for the infinite slope stability analysis were determined 
through on-site sampling experiments and previous reports. 
They were set 30° for internal friction angle, 2.0 kPa for soil 
cohesive force, and 2000  kg/m3 for soil bulk density. This 
set of model parameters was used for the simulation of the 
storm events during 2010–2017 in C1. Furthermore, the 

internal friction angle (30°), soil cohesive force (1.0 kPa), and 
soil bulk soil density (2000 kg/m3) were used in the post hoc 
analysis in C2, and this parameter set was used in the 2009–
2017 simulation.

Figure 5 illustrates the stability analysis of the C1. The 
blue histogram represents the hourly rainfall data, and red 
lines, respectively, indicate the variation of the mean FS 
( FS ). The data show the mean FS ( FS ) changing with rain-
fall intensity; when the rainfall increases, more water infil-
trated into soil and gradually raises the saturated water 
level to reduce the resistance force and the the mean FS 
( FS ), thus increasing the likelihood of shallow landslides. 
As shown in Fig. 5, between January 1, 2010 and October 

20172016201520142013201220112010

Soudelor Dujuan MegiSaola
Fig. 5  Temporal variation of mean FS ( FS ) in C1 from 2010 to 2017

Fig. 6  Temporal variation of mean FS ( FS ) in C1 during Typhoon Soudelor
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30, 2017, the mean FS ( FS ) of C1 exceeded 1 at most of 
time, indicating stable states throughout the study period. 
However, the mean FS value was less 1 when Typhoon 

Saola (2012), Typhoon Soudelor (2015), Typhoon Dujuan 
(2015), and Typhoon Megi (2016) struck Taiwan. These 
findings reveal that C1 experienced unstable states during 

Fig. 7  Spatial distributions of the FS in C1 during Typhoon Soudelor

Fig. 8  Temporal variation of mean FS ( FS ) in C2 from 2009 to 2017
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the aforementioned typhoon events. The C1 matched 
the timing of documented shallow landslides occurrence. 
Figure 6 shows an example (Typhoon Soudelor, 2015) of 
the temporal variations of the mean FS ( FS ) in C1. Fig-
ure 7 also presents the spatial distributions of the factor 
of safety (FS) generated from the SIMTOP model at C1 
occurrence at (a) 12:00, Aug. 5 (initial); (b) 07:00, Aug. 8 
(rainfall peak); and (c) 12:00 Aug. 10 (recession) during 
Typhoon Soudelor (2015). The results indicate the tempo-
ral variations of the mean FS ( FS ) mainly follow the shape 
of the rainfall hyetograph because high rainfall intensity 
provides more water to infiltrate into soil to raise the 
groundwater table. Therefore, the shallow landslide tim-
ing predicted by the proposed model was determined to 
be consistent with the historical records.

During January 1, 2010 and October 30, 2017, C2 was also 
affected by two severe typhoons and resulted in landslides 
which were Typhoon Fanapi (2010) and Typhoon Megi 
(2015). As shown in Fig. 8, the SIMTOP model accurately 

predicted all the shallow landslide events generated by the 
Typhoon Fanapi (2010) and Typhoon Megi (2015) at C2.

TAPEX–SIMTOP integrated prediction and discussion
Fifteen typhoon events from 2014 to 2021 were selected for 
testing the applicability of the TAPEX–SIMTOP integrated 
prediction. This study applied the aforementioned data, as 
well as the timing of sea warnings corresponding to these 
15 typhoons, to analyse and verify the performance of the 
ensemble rainfall forecasting model and the shallow land-
slide warning system. This study used the rainfall forecasts 
with a 6-h lead time at each time step (1 h). Moreover, this 
study used the real-time SIMTOP to calculate the mean FS 
of all ensemble units for the upcoming 1–6 h in C1 and C2. 
Consequently, this study adopted Eqs. 6 and 7 to determine 
the study area occur shallow landslide or not for the upcom-
ing 6 h. As shown in Table 4, a comparison of the forecasts 
provided using the proposed model. For three typhoons 

Table 4  Analysis results in C1 provided by the proposed model

“–” denotes unavailability of POD and TS because the typhoon did not cause any landslides

Typhoon event Warning period Landslide 
occurrence

Times Error matrix Evaluation index

Hits False alarms Misses No events POD FAR TS

Chanthu 2021-09-10 05:30
2021-09-13 02:30

No 69 0 0 0 69 – 0.00 –

Hagupit 2020-08-10 10:30
2020-08-11 14:30

No 28 0 0 0 28 – 0.00 –

Lekima 2019-08-07 17:30
2019-08-10 08:30

No 63 0 0 0 63 – 0.00 –

Maria 2018-07-09 14:30
2018-07-11 14:30

No 48 0 0 0 48 – 0.00 –

Nesat 2017-07-28 08:30
2017-07-30 14:30

No 34 0 0 0 34 – 0.00 –

Megi 2016-09-25 23:30
2016-09-28 17:30

Yes 66 9 3 2 55 0.75 0.18 0.64

Malakas 2016-09-15 23:30
2016-09-18 08:30

No 57 0 0 0 37 – 0.00 –

Meranti 2016-09-12 23:30
2016-09-15 11:30

No 36 0 0 0 72 – 0.00 –

Nepartak 2016-07-06 14:30
2016-07-09 14:30

No 72 0 0 0 72 – 0.00 –

Dujuan 2015-09-27 08:30
2015-09-29 17:30

Yes 57 7 2 3 47 0.78 0.30 0.59

Soudelor 2015-08-06 11:30
2015-08-09 08:30

Yes 71 8 3 4 57 0.73 0.33 0.53

Chan-Hom 2015-07-09 05:30
2015-07-11 11:30

No 54 0 0 0 54 – 0.00 –

Linfa 2015-07-06 08:30
2015-07-09 05:30

No 69 0 0 0 69 – 0.00 –

Matmo 2014-07-21 17:30
2014-07-23 23:30

No 54 0 0 0 54 – 0.00 –

Fung-Wong 2014-09-19 08:30
2014-09-22 08:30

No 72 0 0 0 72 – 0.00 –
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(Megi, Dujuan, and Soudelor) that induced landslides in 
C1, the following performance scores were obtained for 
the joint forecasts provided by the integrated model: mini-
mum POD = 0.75; maximum FAR = 0.30; and minimum 
TS = 0.53. In addition, the joint forecasts precisely revealed 
that no landslide would occur during 12 other typhoons (i.e. 
no overestimation was observed). Therefore, the integrated 
model exhibited excellent performance in forecasting the 
time of shallow landslide occurrence in C1.

As shown in Table 5, only typhoon Megi induced the shal-
low landslide in C2 from 2014 to 2021, the following perfor-
mance scores were obtained for the joint forecasts provided 
by the integrated model: POD = 0.85; FAR = 0.14; and 
TS = 0.67. In addition, the joint forecasts precisely revealed 
that no landslide would occur during 14 other typhoons. 
Therefore, the integrated model also exhibited excellent per-
formance in forecasting the time of shallow landslide occur-
rence in C2.

Conclusion
The physically based SIMTOP developed in this study 
utilises high-resolution DEM data to construct a topo-
graphic hydrological model and a slope stability model. 
These two models simulate changes in saturated water 
levels in the soil and the FS of slopes in a catchment area 
during rainfall to predict the time and location of land-
slides in the catchment area. The proposed model consid-
ers not only the physiographic features of the catchment 
area, but also the effect of rainfall intensity on changes 
in saturated water levels to calculate the FS of the catch-
ment area. The results of this study reveal excellent pre-
dictive performance in terms of the time of occurrence 
landslides in both study areas. Furthermore, to increase 
the disaster lead time, this study applied an ensemble 
rainfall forecasting model to predict precipitation in 
the catchment area with a 6-h lead time; this study inte-
grated this model with SIMTOP to facilitate shallow 

Table 5  Analysis results in C2 provided by the proposed model

“–” denotes unavailability of POD and TS because the typhoon did not cause any landslides

Typhoon event Warning period Landslide 
occurrence

Times Error matrix Evaluation index

Hits False alarms Misses No events POD FAR TS

Chanthu 2021-09-10 05:30
2021-09-13 02:30

No 69 0 0 0 69 – 0.00 –

Hagupit 2020-08-10 10:30
2020-08-11 14:30

No 28 0 0 0 28 – 0.00 –

Lekima 2019-08-07 17:30
2019-08-10 08:30

No 63 0 0 0 63 – 0.00 –

Maria 2018-07-09 14:30
2018-07-11 14:30

No 48 0 0 0 48 – 0.00 –

Nesat 2017-07-28 08:30
2017-07-30 14:30

No 34 0 0 0 34 – 0.00 –

Megi 2016-09-25 23:30
2016-09-28 17:30

Yes 66 6 1 2 57 0.85 0.14 0.67

Malakas 2016-09-15 23:30
2016-09-18 08:30

No 57 0 0 0 37 – 0.00 –

Meranti 2016-09-12 23:30
2016-09-15 11:30

No 36 0 0 0 72 – 0.00 –

Nepartak 2016-07-06 14:30
2016-07-09 14:30

No 72 0 0 0 72 – 0.00 –

Dujuan 2015-09-27 08:30
2015-09-29 17:30

No 57 0 0 0 57 – 0.00 –

Soudelor 2015-08-06 11:30
2015-08-09 08:30

No 71 0 0 0 71 – 0.00 –

Chan-Hom 2015-07-09 05:30
2015-07-11 11:30

No 54 0 0 0 54 – 0.00 –

Linfa 2015-07-06 08:30
2015-07-09 05:30

No 69 0 0 0 69 – 0.00 –

Matmo 2014-07-21 17:30
2014-07-23 23:30

No 54 0 0 0 54 – 0.00 –

Fung-Wong 2014-09-19 08:30
2014-09-22 08:30

No 72 0 0 0 72 – 0.00 –
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landslide forecasts, thereby yielding a comprehensive 
real-time landslide warning system for the catchment 
area. The following scores were obtained for simulations 
of 15 typhoon events in C1: POD ≥ 0.73; FAR ≤ 0.33; and 
TS ≥ 0.53; C2: POD = 0.85; FAR = 0.14; and TS = 0.67. 
Therefore, the proposed model may be applied to predict 
the occurrence time of potential disasters and extend the 
time available for disaster response, thereby mitigating 
loss of life and property.
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