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Abstract 

Water quality is the restrictive factor for both ecosystem health and social development in the Chinese Loess Plateau, 
a unique area with most severe soil erosion, fragile ecology, and water shortage. Understanding the characteristics 
of the pollutant loads is of vital importance for the sustainability of eco-environment in the Loess Plateau. This study 
investigated the spatiotemporal changes of chemical oxygen demand (COD), total nitrogen (TN), and total phos-
phorus (TP) loads by combining the Soil and Water Assessment Tool (SWAT) and regression model Load Estimator 
(LOADEST) in a typical loess hilly and gully watershed—the Yan River Basin (YanRB). Results showed that the model 
simulations of monthly streamflow and pollutant loads were in good agreement with those derived from the in situ 
observations. The temporal variation analysis suggested that the pollutant loads were generally rising in the study 
period (2001–2018) at four of the five stations and reached the maximum in 2014, and the multi-year (i.e., 2001–2018 
with 2013 being excluded due to extreme rainfall) average loads of COD, TN, and TP at the Tanjiahe station, which is 
close to the outlet of the basin, were 15,021 kg/day, 3835 kg/day, and 168 kg/day, respectively. The spatial distribution 
of the TN and TP loads along the river seemed to be quite unique because the TP level were obviously higher at the 
midstream (e.g., Zhujiagou and Ganguyi) than the downstream (e.g., Tanjiahe), and the TN level decreased when the 
river flowed from Zhujiagou to Ganguyi. Further, the seasonal analysis indicated that the nutrient loads were the high-
est in summer, followed by autumn, and the loads in these two seasons contributed the most of the annual pollution 
loads—about 76% and 84% for TN and TP, respectively, indicating the higher flow, the higher pollution load, a similar 
point based on the inter-annual analysis. In addition, the contribution analysis of point source and non-point source 
pollutions demonstrated that NPS led to most of the pollutant loads at the whole watershed—70%, 67%, and 71% of 
the COD, TN, and TP loads, respectively. Overall, this study provided spatiotemporal distributions of the key pollutant 
loads in the YanRB and can be valuable for water quality protection and pollution control in this area.
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Introduction
Pollutant discharge causes widespread organic pollution 
and eutrophication, along with severe ecological destruc-
tion, and further threats human health and agricultural 
production (Wang and Yang 2016; Dai et al. 2017; Lang 
et  al. 2013; Schwarzenbach et  al. 2010). The Chinese 
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government has realized the importance of controlling 
water pollution, and published Action Plan for Preven-
tion and Control of Water Pollution to protect the surface 
water and groundwater in April 2015 (Shi et  al. 2015). 
However, making efficient water quality management 
measures is difficult because of multiple anthropogenic 
and natural influencing factors. According to the statisti-
cal data, the increase rate of wastewater and sewage dis-
charge is 1.8 billion m3 per year, and the daily discharge 
of industrial and domestic wastewater in China is about 
164 million m3 (Zhou and Li 2018). Besides, Zou et  al. 
(2020) used an inventory analysis to estimate the agricul-
tural non-point source (NPS) pollution loads from 1978 
to 2017 in China, and found that the pollution loads of 
chemical oxygen demand (COD), total nitrogen (TN) and 
total phosphorus (TP) increased by 91.0%, 196.2%, and 
244.1%, respectively. Therefore, identifying the current 
pollution situation and understanding its relationships 
with human activities are important for water resources 
protection and pollution control.

Hydrometeorological factors (e.g., precipitation, run-
off, and temperature), anthropogenic factors (e.g., land 
use, agricultural practices), and geographical factors (e.g., 
soil, vegetation, slope gradient) can largely affect the for-
mation and transformation of pollutants. There were a 
number of studies assessing the water quality issues in 
recent years, especially about nutrients (e.g., TN, TP) 
and sediment loads, urbanization, and reservoir opera-
tion (Xia et al. 2020; Oelsner and Stets 2019; Tong et al. 
2015). Numerical water quality models are useful tools 
for evaluating pollution loads at the watershed scale, and 
these models can be divided into classical empirical mod-
els (e.g., RUSLE, SEDD, and PLOAD), statistical models 
(e.g., SPARROW, WRTDS, and GAMMKS), physically 
based models (e.g., SWAT, ANSWERS, and AnnAGNPS), 
and intelligent data analysis methods such as Hybrid 
Double Feedforward Neural Network and Fuzzy Binary 
Comparison methods (Lin et  al. 2016, 2018; Zou et  al. 
2020). The Soil and Water Assessment Tool (SWAT) 
model has been widely used to simulate the sediment and 
nutrient load transport through surface runoff, lateral 
flow, and groundwater flow (Chen et al. 2012). However, 
the applications of SWAT in some regions are often disa-
bled due to the data shortage. Jiang et al. (2019) proposed 
the Hydro-Informatic Modelling System-pollution load 
(HIMS-PL) model to simulate the processes of pollutant 
generation and transport, and quantified the pollution 
load in semiarid and semi-humid areas. However, this 
model needs intensive input data including the spatial 
attribute information of study area, meteorology, stream-
flow, point source (PS) pollutant loads, and cross-section 
pollutant concentrations. The Load Estimator (LOAD-
EST) model, which has been widely used for quantitative 

assessment of pollution loads in those ungauged water-
sheds or those with limited gaging watershed, has been 
proven to be an efficient tool in water quality assessment 
(Duan et al. 2013; Chen et al. 2015a, 2017).

Pollutants can be classified as PS and NPS pollution. PS 
pollution is relatively easy to manage and control because 
it is easy to be monitored, but it is quite difficult to quan-
tify NPS pollution load and determine its pollutions 
sources because NPS is inseparable from precipitation, 
snowmelt, runoff, and soil erosion processes. Some stud-
ies have proposed methods for estimating NPS pollution 
loads (Li 2000; Hao et al. 2006), mainly including multi-
variate statistical analysis, dual stable isotopes, hydro-
logical and water quality watershed models, geographical 
information systems (GIS) technology, and hydro-chem-
ical characteristic analysis (Wei et  al. 2020). In these 
methods, the statistical method has been widely used to 
analyze the relationships between flow and concentration 
(Wang et al. 2015; Li et al. 2011).

The organic pollution, excessive nutrients (e.g., nitro-
gen and phosphorus), and heavy metal pollution are 
important components of water pollution (Zeng et  al. 
2021). In particular, the rapid economic development 
in Northwest China has led to substantial imbalances 
between the natural environment and industrial devel-
opment. The Loess Plateau, mainly located in the mid-
dle reach of the Yellow River, is considered as one of the 
regions with the most severely eroded areas in the world, 
and the soil loss has significantly impacted nutrient losses 
(Zhao et  al. 2020a). Further, the Yellow River is facing 
the problem of water quality deterioration with the rapid 
development of the social economy. It was reported that 
the water quality in almost 34.8% of main tributaries (e.g., 
the Qingjian, the Fen, the Shiwang, and the Yan Rivers) 
were generally below Class III standard (GB3838-2002), 
and the main pollutants were COD, ammonia nitrogen, 
and TP. Zhao et  al. (2020b) pointed that the most pol-
luted areas were concentrated in the midstream of the 
Yellow River, and there will be a long-term and arduous 
task to control the pollution of river. The Yan River, a typ-
ical tributary of the Yellow River, is located in the Loess 
Plateau. The ecological environment of the watershed is 
very vulnerable, and in particular, the water quality has 
deteriorated dramatically (Yang et  al. 2019; Chen et  al. 
2020). One reason for the water quality degradation is 
the substantial reduction of streamflow and the resulting 
decreased self-purification capacity of the river (Pei et al. 
2019; Junfu et al. 2016). Another reason is the increased 
discharge of wastewater to the Yan River.

Although there were some references about water 
pollution of the Yan River (Pei et  al. 2019; Wu et  al. 
2017; Wu et al. 2019; Junfu et al. 2016; Deng et al. 2018), 
few studies focused on pollutant flux analysis under 
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the combined effects of natural and human activities. 
Besides, the field experimental studies could not meet 
the requirements of long-term and large-scale water 
quality analysis due to its difficulty and cost. Therefore, 
it is promising to use mathematical models to investi-
gate the spatiotemporal patterns of pollutant loads for 
supporting effective water quality management. How-
ever, some models are difficult to analyze water pollu-
tion problems with insufficient data, so we combined 
the advantages of the SWAT and LOADEST model to 
increase the data and evaluate the pollutant loads in the 
Yan River Basin (YanRB). Furthermore, in order to fur-
ther clarify the characteristics of pollutant emissions, 
we used statistical method to quantify PS and NPS load 
when data were scarce. Based on these methods, the 
specific objectives of this study were to: (1) estimate the 
loads of the key pollutants (COD, TN and TP) at the 
main cross-sections of the river; (2) quantify the contri-
butions of PS and NPS pollution to the total pollution 
load; (3) investigate the transport of pollutants along 
river under different hydrological conditions.

Materials and methods
Study area
The Yan River originates from Baiyu Mountain and 
flows from northwest to southeast through Zhidan, 
Ansai, Yan’an, and Yanchang counties before entering 
the Yellow River. The length of the river is 286.9  km, 
and the drainage area  is  7725 km2 (Wu et  al. 2020) 
(Fig. 1). The annual average air temperature of the basin 
ranged from 7.9  °C in the west to 10.6  °C in the east. 
The annual average precipitation is between 340 and 
660 mm across the basin. The primary soil type is loes-
sial soil, accounting for 85% (Lian et al. 2021). Besides, 
the short-duration and high-intensity precipitation led 
to about 60.5% of the runoff occurring in the wet sea-
son, especially in July through September, and caused 
intensive soil erosion (Miao 2018). In the YanRB, there 
are three dominate land use types—grassland, crop-
land, and woodland, accounting for 55.1%, 17.64%, and 
26.16% of the basin, respectively.

Energy (e.g., oil and coal) is the dominant industry of 
the YanRB and has exerted a profound influence on the 
economic development. Major agricultural products in 
this area include apple, greenhouse vegetables, Oryza 
sativa, and strawberries (Su et al. 2011), and the fertiliza-
tion is quite intensive, leading to relatively higher nutri-
ent loss to the river. We chose five cross-sections—Ansai 
in the upstream, Shiyaocun, Zhujiagou, and Ganguyi 
in the middle stream, and Tanjiahe in the downstream 
(Fig. 1)—to analyze the features of pollutant loads along 
the main river.

Model description
SWAT​
The Soil and Water Assessment Tool (SWAT) model, 
developed by the Agricultural Research Service of the 
United States Department of Agriculture (USDA-ARS), 
is a comprehensive hydrological and water quality 
model (Arnold et al. 1998; Neitsch et al. 2011). SWAT 
takes spatially variable soil and land cover conditions 
into consideration to delineate the watershed. The 
Hydrological Response Units (HRUs) are the basic and 
least computing units that possess unique land use, soil 
property, and slope. The main outputs of SWAT are 
surface runoff, lateral flow, baseflow, evapotranspira-
tion, water yield, sediment load, nutrient loads, etc.

The SWAT model was designed for long-term contin-
uous simulations at daily time step for watershed man-
agement decisions (Sudheer et  al. 2007). In this study, 
we used the Sequential Uncertainty Fitting version 2 
(SUFI-2) algorithm to optimize the parameters, and 
the calibrated/validated SWAT was used to obtain the 
long-term streamflow, which were then used for sub-
sequent pollutant load estimation with LOADEST (see 
the following section). Based on the sensitivity analysis, 
we identified eight parameters and derived the optimal 
values using SUFI2 (Table1).

LOADEST
The Load Estimator (LOADEST) is an empirical statis-
tical model, developed by the United States Geological 
Survey (USGS) and can estimate the long-term pollut-
ant loads using the streamflow and pollutant concen-
tration regression relationships (Sharifi et  al. 2017). 
The setting of the model requires at least 12 continuous 
flows and concentration data (Park and Engel 2016). 
Considering the different diffusion modes of pollutants 
and the adaptability of pollutant loads to river dynam-
ics, 11 regression equations are available to users in the 
LOADEST. The model uses Tobit regression to process 
the discrete water quality and streamflow data at the 
monitoring point and automatically selects the pre-
defined model through the lowest Akaike information 
criterion (AIC) and the Schwarz posterior probability 
criterion (SPPC) (Runkel et al. 2004).

The model parameter estimation is established based 
on three statistical algorithms, including the adjusted 
maximum likelihood estimation (AMLE), the minimum 
variance unbiased estimate (MVUE), and the least 
absolute deviation (LAD) method. This study selected 
the AMLE estimation method, which can eliminate 
the influence of censored data as much as possible and 
has been proven to have a high simulation accuracy 
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Fig. 1  Location, elevation, and land use of the Yan River Basin (YanRB)

Table 1  Sensitive parameters and optimized values of SWAT using SUFI-2

*Means the relative change to the default values

Parameter Description Range Optimized value

CN2 SCS runoff curve number − 10–10% 3.8%*

ALPHA_BF Base flow alpha factor (day) 0–0.5 0.37

SOL_K Saturated hydraulic conductivity (mm/h) 0–5 3.76

SOL_AWC​ Available water capacity of the soil layer (mm) − 30–30% 25%*

SLSUBBSN Average slope length (m) 0–55 51.28

ESCO Soil evaporation compensation factor 0–1 0.82

CH_K2 Effective hydraulic conductivity in the main channel (mm/h) 0–50 43

GWQMN Threshold depth of water in the shallow aquifer required for return flow to 
occur (mm)

100–1000 567.7
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(Aulenbach 2013; Duan et al. 2014). The specific prin-
ciple of the AMLE is described as follows (Cohn et al. 
1992):

where ̂LAMLE is the AMLE estimate of instantaneous 
load, a and b are functions of the explanatory variables, 
κ and α are parameters of the gamma distribution, s2 is 
the residual variance, a0 and aj are maximum likelihood 
estimates corrected for first-order bias, the bias correc-
tion factor [H (a, b, s2, α, κ)] is an approximation of the 
infinite series.

Data
The main input data for SWAT include digital elevation 
model (DEM), soil, land use, and meteorological data. 
The DEM data with a 30-m resolution was obtained from 
the National Geomatics Center (http://​www.​ngcc.​cn/​
ngcc/). Land use data in 2010 with 30 m resolution were 
provided by the Institute of Remote Sensing and Digi-
tal Earth, Chinese Academy of Sciences. Meteorological 
data (1951–2018) were collected from the Data Center 
of the China Meteorological Administration (http://​data.​
cma.​cn/), including precipitation, relative humidity, wind 
speed, maximum, and minimum air temperature. The 
solar radiation was estimated based on sunshine duration 
data, and the calculation details are available in our previ-
ous study (Zhang et al. 2019). The observed monthly run-
off data (2001–2008) at the Ganguyi flow gaging station, 
with a drainage area of 5891 km2, were obtained from the 
Yellow River Water Resources Commission.

In this study, the in situ observed runoff data were only 
available for Ansai, Yan’an, Ganguyi flow gaging stations, 
covering the period of 2015–2018, and the runoff data for 
the other periods (2001–2014) were from SWAT simula-
tions. Water quality data (2017–2018) including chemi-
cal demand oxygen (COD), total nitrogen (TN), and total 
phosphorus (TP) concentration at five monitoring sta-
tions were obtained from the water quality monitoring 
station, with TN missing from January through June in 
2017.

Model setup and verification
The ArcSWAT (version 2012) was used to prepare the 
model input for driving SWAT to simulate the stream-
flow of the YanRB. Based on the combination of land 
use, soil, and slope, the YanRB was discretized into 99 
sub-basins and 686 HRUs. We used the SWAT-CUP 
(SWAT Calibration and Uncertainty Programs) pro-
gram to optimize the model parameters. The correla-
tion coefficient (R2), Nash efficiency coefficient (NSE), 

L̂AMLE = exp



a0 +

M
�

j=1

ajXj



H(a, b, s2,α, κ),

and percent bias (PBIAS) were selected to quantify 
the fitness between the measurements and simula-
tions. Theoretically, model simulation is rated satisfac-
tory when R2 ≥ 0.5, NSE ≥ 0.5, −  25% ≤ PBIAS ≤ 25% 
according to Moriasi et al. (2007) (see “Appendix”).

In this study, we used flow and water quality data (i.e., 
COD, TN, and TP) as input for the LOADEST model. 
Then, we set up a few key variables of interest (e.g., 
observed date, time, streamflow, and concentration) 
for LOADEST to generate the long-term series of each 
key variable based on the optimal equations. Finally, 
the fitness of the best candidate equation was validated 
by comparing observed and simulated loads. A few sta-
tistical terms, including R2, NSE, PBIAS, and the prob-
ability plot correlation coefficient (PPCC), were used 
to evaluate the model performance when selecting the 
final equation for estimating constituent loads.

Quantification of PS and NPS pollutant loads
As a statistical method, the characteristic load method 
has received much attention, especially in areas where 
there is no continuous monitoring data (Zhu et  al. 
2012). This method is based on the assumptions that 
the pollutant load in the dry season is predominantly 
contributed by the PS, and NPS pollution load mainly 
comes from the rainfall-runoff process. Therefore, the 
adoption of this method assumed that the discharge 
of PS pollution load remains stable in a year, and the 
monthly PS load of a certain pollutant can be estimated 
based on pollutant concentration and streamflow dur-
ing the dry season (December–March). The annual PS 
load can be calculated with the following equation (Zhu 
et al. 2018):

where the annual PS pollution load Lppy can be deter-
mined by the minimum value of the pollutant concen-
tration Cpi multiplied by the average flow Qpi in the dry 
season.

where Lty is the total pollution load of a specific pollut-
ant (e.g., TN) in the river channel, Ci is observed pollut-
ant concentration in the ith month, and Qi is the average 
streamflow in the ith month.

The annual NPS pollution load Lnppy equals the total 
pollution load minus the point source pollution load.

(1)Lppy = 12 ∗Min
(

Cpi ∗ Qpi

)

,

(2)Lty =

12
∑

i=1

Ci ∗ Qi,

(3)Lnppy = Lty − Lppy.

http://www.ngcc.cn/ngcc/
http://www.ngcc.cn/ngcc/
http://data.cma.cn/
http://data.cma.cn/
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Results
Model performance evaluation
Hydrological modeling
Figure  2 shows the visual comparison of simulated 
monthly streamflow against the observations at the Gan-
guyi flow gaging station. Although there was an under-
estimation of streamflow during the wet season, the 
overall performance was satisfactory during both calibra-
tion (2001–2004) and validation (2005–2008) periods, 
with R2 and NSE ranging from 0.50 to 0.67 and PBIAS 
being less than 15%. According to the evaluation stand-
ard by Moriasi et  al. (2007), the model performance in 
streamflow simulation can be rated as satisfactory.

Water quality model evaluation
The LOADEST simulated and observed COD, TN, and 
TP loads with the 95% confidence interval at Ganguyi 
water quality monitoring station during 2017–2018 are 
shown in Fig. 3a, c, and e. Although the model underesti-
mated the peak values in July, it can still capture the tem-
poral patterns of the three pollutants. To further evaluate 
the model performance, the scatter plots (Fig. 3b, d, and 
f ) showed that the R2 was above 0.69, NSE was above 
0.56, and |PBIAS| was lower than 25% for the COD, TN 
and TP loads. Besides, we found that the estimation of 
TN and TP loads had a better performance than COD. 
For five water quality monitoring stations, the statisti-
cal evaluation terms showed that the modeling loads of 
COD, TN, and TP had good performances, with the R2 
ranging from 0.52 to 0.94, the NSE ranging from 0.49 to 

0.90, the PBIAS ranging from − 6.9 to − 24.1%, and the 
PPCC ranging from 0.88 to 0.99 (Table2). Overall, the 
model can accurately simulate the pollutant loads in the 
YanRB.

Spatiotemporal distribution of pollutant loads
Annual pollution loads in the YanRB
Figure  4 demonstrates the monthly average loads of 
COD, TN, and TP at five stations from 2001 to 2018, 
excluding 2013. The pollutant loads fluctuated greatly 
within a year because precipitation dominated the pol-
lutant delivery. For example, the COD load on January 
2018 was 5,241 kg/day and 27,336 kg/day for July in 2018. 
We also found both TN and TP load at Ganguyi, a sta-
tion in the middle reach, exceeded the final cross-section 
(i.e., Tanjiahe) during 2017–2018. From Additional file 1: 
Fig. S1, we found that the annual average loads of COD, 
TN and TP were relatively stable before 2009, and there 
was a slight upward trend for COD and TP loads at four 
of the five stations (i.e., Ansai, Shiyaocun, Ganguyi, and 
Tanjiahe) during the 17-year study period, though the 
trend was not statistically significant. Further, there was a 
decreasing trend in annual average pollutant loads at the 
Zhujiagou station. Specifically, the annual average COD 
load changed from 9815  kg/day in 2001 to 5213  kg/day 
in 2018 (about 47% decrease), annual average TN load 
decreased from 3002  kg/day in 2001 to 1852  kg/day in 
2018 (about 38% decrease), and annual average TP load 
declined from 88  kg/day in 2001 to 50  kg/day in 2018 
(about 43% decrease). In addition, the temporal variation 

Fig. 2  Evaluation of the model performance in streamflow simulation at the Ganguyi gaging station during the 4-year (2001–2004) calibration and 
4-year (2005–2008) validation periods



Page 7 of 14Song et al. Geoscience Letters            (2022) 9:10 	

Fig. 3  Comparison of the simulated versus the observed COD (a and b), TN (c and d), and TP (e and f) loads. The scatterplots on the right panel 
represent comparisons between observed and simulated loads

Table 2  Evaluation of LOADEST performance in simulating COD, 
TN, and TP loads

*PPCC: probability plot correlation coefficient

Monitoring water 
quality stations

Pollutants R2 NSE PBIAS (%) PPCC*

Ansai COD 0.94 0.90 − 15.1 0.88

TN 0.78 0.64 − 18.9 0.95

TP 0.78 0.62 − 24.1 0.98

Shiyaocun COD 0.76 0.71 − 17.7 0.99

TN 0.67 0.60 − 15.3 0.96

TP 0.72 0.70 − 14.7 0.99

Zhujiagou COD 0.84 0.80 − 16.4 0.98

TN 0.58 0.54 − 17.3 0.97

TP 0.52 0.51 − 6.9 0.97

Ganguyi COD 0.69 0.56 − 23.2 0.95

TN 0.71 0.59 − 20.4 0.98

TP 0.81 0.70 − 22.4 0.97

Tanjiahe COD 0.73 0.6 − 14 0.99

TN 0.58 0.49 − 13 0.98

TP 0.58 0.53 − 14.6 0.98 Fig. 4  Estimated monthly average loads of COD, TN, and TP at five 
stations along the mainstream of the Yan River
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showed that the pollutant loads were generally rising and 
reached the maximum in 2014, and the trend was statis-
tically significant at four of the five stations (i.e., Ansai, 
Shiyaocun, Ganguyi, and Tanjiahe station).

Monthly pollution loads in the YanRB
Figure 5 shows the multi-year average loads of COD, TN, 
and TP in each calendar month at five stations from 2001 
to 2018, excluding 2013. It can be seen that the monthly 
distribution of pollutant loads is very uneven, and the 
maximum value occurred in July. The spatial distribu-
tion of the COD loads increased from upstream to down-
stream of the river, reflecting that the transportation and 
confluence of COD pollutant with streamflow. The TN 
loads decreased when river flowed from Zhujiagou to 
Ganguyi station, and this was mainly caused by relatively 
more intensive agricultural practices such as fertiliza-
tion and flooding irrigation. The spatial feature of the TP 
loads along the river seemed to be quite unique because 
the TP level was obviously higher at the Zhujiagou and 
Ganguyi station in the midstream than that at the Tan-
jiahe in the downstream.

Seasonal pollution loads in the YanRB
Estimated seasonal loads of TN and TP at five water qual-
ity monitoring stations were highly variable in the YanRB. 
The result showed that the greatest loads occurred in 

summer due to high streamflow, followed by autumn, 
and the loads in these two seasons contributed the most 
of the annual pollution load—about 76% and 84% for TN 
and TP, respectively, reflecting the effect of seasonal run-
off patterns and agricultural practices on pollution loads 
(Fig.  6). The multi-year average proportion of TP loads 
in summer was 52%, a little higher than that of TN loads 
(49%). Compared to Ganguyi, the proportion of the TN 
loads in summer at Zhujiagou were significantly higher, 
which might be attributed to relatively larger farmland 
areas around Zhujiagou (see Fig. 1). Therefore, it should 
be noted that the YanRB might face the challenge of 
eutrophication in summer and the nutrient losses due to 
the intensive agricultural practices in autumn.

Contributions of PS and NPS pollution loads
The different water quality data sources, and hydrologi-
cal separation methods caused largely uncertainty for 
the investigation of NPS pathways (Zhu et al. 2019). Fig-
ure  7 shows the contributions of NPS pollution load to 
the total pollution loads. Our spatial analysis showed 

Fig. 5  Estimated multi-year average loads of COD, TN, and TP in each 
calendar month at five stations in the Yan River Basin

Fig. 6  The multi-year average proportions of TN and TP loads in 
each season at five water quality monitoring stations. The big pie 
charts represent the multi-year average proportions of TN and TP, 
respectively
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that the COD pollution load increased from upstream to 
downstream in 2017–2018, and the annual COD load of 
Tanjiahe station was 3552t, which was mainly contrib-
uted by NPS pollution. Compared with other stations, 
the PS of Ansai and Zhujiagou contributed more to the 
total COD load, reaching 48% and 46%, respectively. The 
TN pollution load was dominated by NPS, but the PS TN 
pollution of Shiyaocun in 2017 was 52%, and the PS TN 
pollution of Zhujiagou and Ganguyi in 2018 accounted 
for 52% and 44%, respectively. Therefore, although NPS 
pollution dominated the overall TN load, PS manage-
ment should not be ignored. Based on the estimated TP 
pollution load, the percentage of NPS was 54–88%, while 
PS was 12–46% of the total load, indicating that the con-
tribution of NPS to TP was relatively higher.

Discussion
Water pollution features
In the YanRB, the PS pollution mainly comes from 
industrial and domestic wastewater, whereas NPS pol-
lution mainly comes from agriculture, livestock, and 
poultry breeding, and large-scale oil and coal mining. 
From Fig.  4, we found that this watershed was more 
seriously polluted by the organic pollutants, which 
probably mainly come from oil and coal mining, live-
stock, and poultry breeding. The spatial distribution of 
TP loads along the river showed that the maximum was 
at Ganguyi, a station in the middle reach, followed by a 
sharp decrease at Tanjiahe (a station closes to the estu-
ary). One reason is that the slope of the river channel in 
the downstream area (after Ganguyi) became less, and 
the river velocity became lower with reduced hydraulic 
condition, causing the deposition of phosphorus with 
sediment. Another reason can be the check dams in 
gullies/channels and few tributaries in the downstream, 
leading to the intercept and adsorption of phosphorus 
during its transport in channels (Sun et  al. 2019; Guo 
et al. 2016). Overall, the spatial distribution of nutrients 
exhibited a non-linear change from upstream to down-
stream, and this phenomenon can be attributed to vari-
ous cumulative effects (USEPA 2015) such as different 
hydrodynamic conditions, population density, topog-
raphy, and the intensive cultivation in some specific 
areas. Moreover, the meteorological, hydrological, and 
underlying surface conditions are also important influ-
encing factors in the spatiotemporal characteristics of 
pollution in the loess hilly and gully. Wu et  al. (2016) 
found that the distributions of NPS pollution load and 
sediment yield are closely related to land use types and 
soil erosion of the Majiagou watershed, one sub-basin 
of the YanRB. In our study area, the farming practices 
such as fertilization and tillage exerted great influences 
on TN and TP loads in middle areas.

With respect to management of this region, our 
results showed that the three stations (i.e., Shiyaocun, 
Zhujiagou, and Ganguyi) locating in the Baota district 
contributed most to the pollutant loads, which was in 
agreement with the study by Wu et  al. (2015). There-
fore, it is significant to pay much attention to this area 
for pollution control. In addition, we found that the 
pollutant loads at Ganguyi were the highest (i.e., higher 
than that of Tanjiahe which was close to the estuary), 
and thus the area around Ganguyi has become a highly 
polluted area in recent years. Therefore, application of 
potential measures (e.g., riparian filter zone, drip irriga-
tion technology, hyperaccumulator plants in farmland 
zone) in this area would be cost-effective. Furthermore, 
effective treatment technologies and management of 
industrial and municipal wastewater are also important 

Fig. 7  The contributions of PS and NPS pollutant loads at five water 
quality monitoring stations
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to alleviate the deterioration of the river water quality 
(Wu and Chen 2013).

Implications of the flood–pollution loads relationship
In previous studies on pollution of the Yan River, experi-
mental approaches were used to investigate sediment and 
nutrient losses due to erosion at the slope scale, and lit-
tle attention was paid to the changes of COD, TN, and 
TP under different hydrological conditions, though these 
pollutants caused adverse effects on the aquatic ecosys-
tem. During our study period, an extremely heavy rain-
storm occurred in 2013, which caused a rapid surface 
flow, creating and reshaping the dispersal pollutant pat-
terns in a river system (Grygar et al. 2014). It is noted that 
an extreme rainfall event can affect the statistical trend 
analysis of the pollution load at the annual or monthly 
scale. Therefore, we excluded an extremely high water 
year (2013) when investigating annual/seasonal aver-
age characteristics of pollutant loads, as shown in “Spa-
tiotemporal distribution of pollutant loads” section. To 

illustrate the difference of the pollutant loads in extreme 
and normal hydrological condition, Fig.  8 compares the 
pollutant loads during 2013 and averaged loads across 
other years (i.e., 2001–2012 and 2014–2018) at four sta-
tions (i.e., Shiyaocun, Zhujiagou, Ganguyi, and Tanji-
ahe). The spatial analysis indicated that the impact of the 
high-intensive rainfall on the downstream (from Gan-
guyi to Tanjiahe) was great due to the confluence of the 
river tributaries in 2013, suggesting the severe threat of 
flooding events to the aquatic environment. It has been 
recognized that pollutant fluxes were very large dur-
ing an extreme year because the pollutants temporarily 
stored in channels or slope lands are quickly entrained 
and transferred during floods (Chen et  al. 2015b). For 
example, the average value of COD was 155,683  kg/day 
at Ganguyi during 2013, which is nearly 9 times the aver-
age load (18,211  kg/day) across other years. Our study 
demonstrated that more attention should be paid to the 
impacts of the extreme hydrological year on water quality 
for developing cost-effective prevention and controlling 

Fig. 8  Boxplots of COD, TN, and TP loads during flood and non-flood periods at four water quality monitoring stations: a Shiyaocun, b Zhujiagou, 
c Ganguyi, and d Tanjiahe. The horizontal lines represent (from the top) the maximum, the third quartile, the median, the first quartile and the 
minimum. The red circles represent average values, and the blue squares represent outliers
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measures. This also tells that a finer scale (e.g., day and 
hour) study of pollutant changes in an extreme hydro-
logical event (i.e., before and after the flooding) deserves 
further investigation.

Uncertainty analysis of the LOADEST modeling
The performance of the load estimation method (LOAD-
EST) is dependent on many factors including constitu-
ent type, streamflow characteristics, sampling frequency, 
and water-quality record consistency (Lee et  al. 2016). 
In terms of regression models, the uncertainty may be 
higher because the LOADEST model assumes that all 
explanatory variables have zero error (Pellerin et  al. 
2014). In this study, the uncertainty of the LOADEST 
modeling deserves attention because the discrete and 
low sampling frequency of TN could affect the simulation 
accuracy, and the hydrological change could cause poor 
relations between constituent concentration and dis-
charge. Further, the streamflow fluctuated greatly, result-
ing in greater residual errors at high streamflow, mainly 
because the regression model assumed a stationary con-
centration–flow relationship. For example, positive hys-
teresis occurs when constituent concentrations on the 
rising limb of a storm hydrograph are higher than those 
measured at equivalent flows on the falling limb (Amir-
reza et  al. 2017). Therefore, it would be significant but 
challenging to improve the accuracy of load estimation 
methods. In addition, topography plays an important 
role in pollutant diffuse, and the combination of statisti-
cal models and watershed delineation would help identify 
contaminated areas and achieve load reduction targets 
based on water environmental capacity (Park et al. 2015). 
In the future study, the uncertainties in land surface con-
ditions, hydrological processes and extreme hydrological 
events deserve to be investigated for better estimation of 
pollutant fluxes.

Limitations
We acknowledged that there are still a couple of limita-
tions in terms of the method and data used. First, the 
PS load in each month was estimated using the prod-
uct of the minimum concentration and the correspond-
ing streamflow in the dry season (see “Quantification 
of PS and NPS pollutant loads” section). Although this 
approach was widely applied (Zhu et al. 2012, 2018; Ong-
ley et al. 2010), it ignores the variation of PS load and thus 
may bring bias and uncertainties. Second, observations 
for the three water quality variables (i.e., COD, TN, and 
TP) from five monitoring stations are quite limited (once 
a month) and thus may not be sufficient to represent the 
real situation. It is of significance to improve the quantity 
and quality of the measurement in a future study.

Conclusions
In this study, we investigated the spatiotemporal changes 
of pollutant loads by combining the hydrological model 
SWAT and the statistical water quality model LOADEST 
in the YanRB. We also quantified PS and NPS load using 
the characteristic load method. The temporal analysis 
indicated that the pollutant loads showed a slight upward 
trend at four of five stations (i.e., Ansai, Shiyaocun, Gan-
guyi, Tanjiahe), and reached the maximum in 2014 due 
to the high precipitation under the normal water year 
conditions. The seasonal proportions of TN and TP loads 
indicated that there was a relatively higher level of pol-
lutant loads in summer, followed by autumn, due to the 
high flow and frequent agricultural practices in these 
two seasons. Therefore, the summer is the most impor-
tant period for targeting riverine nutrient loads reduction 
for the NPS pollution dominated watershed. Further, we 
found that the pollutant loads were concentrated in July, 
with relatively higher rainfall, suggesting much attention 
should be given to this month and extreme rainfall. Our 
spatial result showed that the most polluted area was in 
the midstream area (around Ganguyi) where more atten-
tion and measures should be considered. The high-water 
year was 2013, and the loads in this typical year were 
almost 9 times that of other years, indicating the poten-
tial risk in wet years. In addition, we found that NPS pol-
lution contributed substantially to loads of COD, TN, and 
TP. This study can provide a good reference to decision-
makers for sustainable water resources management of 
the Yan River Basin. However, addressing the limitations 
and determining the water environment capacity through 
integration of statistical and process models with inten-
sive verification would be a good subject for future study.

Appendix
In order to assess model performance compared to 
observations, the following popular criteria were used in 
this study:

(I) The percentage bias (PBIAS) measures the aver-
age difference of the observed and simulated value. The 
optimal value of PBIAS is 0.0, with low-magnitude values 
indicating accurate model simulation, while positive or 
negative values indicate overestimation or underestima-
tion bias, respectively (Yapo et al. 1996):

(II) The Nash–Sutcliffe efficiency (NSE) (Nash and 
Sutcliffe 1970) is a normalized statistic that measures 
the goodness of fit. If the efficiency becomes negative, 

(4)PBIAS =
1

n

n
∑

i=1

(

Yi,sim − Yi,obs

Yi,obs
× 100

)

.
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model predictions are worse than a prediction per-
formed using the average of all observations. While 
the efficiency is closer to 1, corresponding to a perfect 
match of modeled to the observed data:

(III) The R2 reveals the strength and direction of a lin-
ear relationship between the simulated and observed 
value. The difference between the NSE and the R2 is 
that the NSE can interpret model performance in rep-
licating individually observed values, while the R2 does 
not (Green and van Griensven 2008):

(IV) The PPCC test by using the correlation coef-
ficient r between the ordered observation Xi and the 
corresponding fitted quantiles Mi was provided by Fil-
liben (1975) for normality test. The corresponding fit-
ted quantiles of this test are determined by plotting 
position for each observation. It is assumed that the 
observations could have been drawn from the fitted 
distribution if the value of r is close to 1.0:

X and M denote the mean values of the observations 
Xi and the fitted quantiles Mi, respectively, and n is the 
sample size. The estimate of the order statistic median 
for Mi is shown as follows:

Φ−1 is the inverse of cumulative distribution function.

(5)NSE = 1−

n
∑

i=1

(

Yi,sim − Yi,obs
)2

n
∑

i=1

(

Yi,obs − Y obs

)2
.

(6)R2
=

(

n
∑

i=1

(

Yi,obs − Y obs

)(

Yi,sim − Y sim

)

)2

n
∑

i=1

(

Yi,obs − Y obs

)2
n
∑

i=1

(

Yi,sim − Y sim

)2
.

(7)r =

∑n
i=1

(

Xi − X
)(

Mi −M
)

√

∑n
i=1

(

Xi − X
)2∑n

i=1

(

Mi −M
)2

.

(8)Mi = �−1(Pi),

(9)Pi = 1− (0.5)
1
n , i = 1,

(10)Pi =
i − 0.3175

n+ 0.365
, i = 2, 3 . . . n− 1,

(11)Pi = (0.5)
1
n , i = n.
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