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Abstract 

Landslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-
Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole 
Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic 
regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous stud‑
ies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors 
(LCFs) were derived for database generation, including annual rainfall, distance to drainage (Dsd) , distance to faults 
(Dsf ) , drainage density ( Dd) , elevation (Elev), fault density (Fd) , lithology, normalized difference vegetation index 
(NDVI), plan curvature (Plc) , profile curvature (Prc) , slope (S

◦

) , stream power index (SPI), and topographic wetness 
index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and 
predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and 
validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG 
results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors 
ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern 
and south-southeastern regions (< 32% of total area) were at a higher risk to landslide compared to the center, west, 
and northwest of the area (> 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF 
model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and bet‑
ter prone areas management in QTP can be achieved compared to previous results.
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Introduction
Landslide is a manifestation of the downslope move-
ment of rocks, debris, and soil materials under the 
action of gravity force (Varnes 1984), representing per-
vasive and frequent natural threats in mountainous 
regions worldwide. Landslides are responsible for fatal-
ities, significant damages to infrastructures, and eco-
nomic losses at global scales (Dai et  al. 2002; Jia et  al. 
2020). They are the products of complex synergetic 
interactions between various intrinsic, extrinsic and 
anthropogenic agents, known as landslide condition-
ing factors (Hutchinson 1995; Guzzetti et al. 1999). The 
combination of LCFs with human activities and climate 
change increases the frequencies and sizes of landslides 
worldwide. For instance, in China, various regions are 
suffering from landslide disasters, as such geologic haz-
ards after an earthquake are the second most destruc-
tive natural hazards, causing economic losses of over 
20 billion Yuan (CNY) every year (Hong et  al. 2016). 
Therefore, landslide hazards studies are critical for 
early landslide predictions to reduce landslide-related 
disasters.

In this context, landslide susceptibility prediction has 
proven to be a fundamental and effective tool for pre-
dicting the spatial occurrence of landslide hazards in 
a susceptible region (Chang et al. 2020). LSP estimates 
the degree of vulnerability of a specific region to land-
slides considering both intrinsic (geology, topography, 

geomorphology, etc.) and extrinsic (e.g., seismic activ-
ity, volcanos, and rainfall) factors (Guzzetti 2006; Wu 
et al. 2014). The performance of landslide susceptibility 
prediction is highly affected by the input reliability and 
implementation models (Tien Bui et al. 2016b).

To address this, various approaches with different 
sets of assumptions and procedures were developed 
to improve LSP accuracy, including heuristic, physi-
cally based, and traditional-statistical methods (Huang 
et  al. 2020). The ranking/rating-based heuristic meth-
ods include expert knowledge systems (Zhu et  al. 
2014) such as analytical hierarchy process (Pawluszek 
and Borkowski 2017), and the gray relational method 
(Huang et  al. 2019). Slope stability and mechanic laws 
are key concepts of physically based models that are 
not suitable for regional scales (Crosta et  al. 2003) 
because of costly and time-consuming issues. Tradi-
tional-statistical methods have received much atten-
tion especially for the landslide susceptibility studies at 
large scales. These methods mainly include information 
value (Pasang and Kubíček 2020), weights of evidence 
(Mersha and Meten, 2020), frequency ratio (Mersha 
and Meten 2020), fractal theory (Hu et al. 2020), Demp-
ster–Shafer (Tangestani 2009), and certainty factors 
( Wubalem and Meten 2020). Meanwhile, the reliabil-
ity and accuracy of these approaches cannot meet the 
practical needs enough due to their inability to appraise 
the complex non-linear inter-relationship between the 
factors (Tien Bui et al. 2016a).

Graphical Abstract
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Recently, the emergence of machine learning brought 
new insights into landslide modeling, such as logis-
tic regression (Yi et  al. 2020), random forest (Dou et al. 
2019), naïve bayes (Nhu et  al. 2020b), support vec-
tor machine (Huang et  al. 2020), maximum entropy 
(Kornejady et  al. 2017), boosted regression trees (Song 
et  al. 2020), artificial neural network (Sameen et  al., 
2020), deep neural network (Fang et  al. 2020), and 
some hybrid models (Wang et al. 2020a). Generally, any 
machine learning model has its specific assumptions and 
applicable conditions, and thus cannot meet the needs 
of LSP in all situations (Reichenbach et  al. 2018). Con-
sequently, evaluating the performance of different learn-
ing algorithms is essential to clarify their strengths and 
weaknesses, and ultimately to identify the most efficient 
model in a particular area, because LSP with higher spa-
tial accuracy (even 1% or 2%) has a great impact on iden-
tifying the spatial distribution of landslide-prone region 
(Jebur et al. 2014).

A review of the literature highlights the necessity 
of performance comparison of various models based 
on physiographic–topographic conditions of a certain 
region, to ascertain the most suitable model (Mahdadi 
et al. 2018; Xiao et al. 2018; Di Napoli et al. 2020; Yu and 
Chen 2020; Saha et  al. 2021; Youssef and Pourghasemi 
2021). As the probabilistic distribution functions in the 
models are different, their success and capabilities in pre-
diction are different. It reflects that each model has its 
flexibility and specially applicability because of uncertain-
ties of inputs and model selection. Therefore, the models 
should be tested and evaluated in the landslide-prone 
regions to acquire the most robust one for better man-
agement of these areas before landsliding in the future. In 
this context, Qinghai-Tibetan Plateau and its surround-
ing regions, especially Himalayas and its eastern areas, is 
highly affected by tectonic activities and faces numerous 
landslides and geo-hazards, mainly due to the presence 
of several active faults, geological structure, geomorpho-
logical evolution, and climatic effects (Deng et  al. 2017; 
Yao et al. 2019; Qi et al. 2021; Zhao et al. 2021). Although 
a few studies compared the performances of different ML 
models for landslide susceptibility prediction in different 
local areas of QTP (Kumar et al. 2017; Pham et al. 2017b; 
Du et  al. 2019; Peethambaran et  al. 2020), these studies 
cannot reflect the very complex topographic structure of 
the entire QTP area, which is still unclear for the entire 
region. In addition, the most recent landslide sensitiv-
ity prediction studies are limited to performance com-
parison of specific machine learning algorithms such as 
DNN, RF, and SVM with non-complex surface topogra-
phy compared to the entire QTP region (Al-Najjar and 
Pradhan 2021; Liu et al. 2021; Mandal et al. 2021; Wang 
et al. 2021; Youssef and Pourghasemi 2021). Therefore, a 

comprehensive performance comparison between vari-
ous advanced machine learning algorithms is essential 
to identify and illuminate the best learning algorithm 
for landslide susceptibility prediction and early landslide 
predictions across the entire QTP region, and to reduce 
the landslide-related disasters in the highly susceptible 
locations of the region.

To fill this gap, this study aims explicitly at perfor-
mance and robustness comparison of five advanced and 
sophisticated benchmarks machine learning algorithms 
including logistic regression, deep neural network, sup-
port vector machine, naïve Bayes, and deep neural net-
work for landslide susceptibility prediction, and to infer 
the most appropriate LSP model with highest predic-
tive power in the entire Qinghai-Tibetan Plateau region. 
Besides, we not only validate the landslide susceptibility 
prediction maps by some performance metrics, but also 
assess the performance of the ML models along with the 
previous models performed in the QTP and adjacent 
areas to understand the future of landsliding situations. 
The abbreviations and acronyms used in this paper are 
summarized in Table 1.

Study area and materials
Study area
The study area is located in the transition between in 
China, and its surrounding region (Himalayan regions), 
with a total area of about 3,038,856.96 km2 (geographical 
coordination between 74° and 104° E, 25° and 40° N, see 
Fig. 1). The QTP is the highest (average altitude > 4000 m 
ASL) and largest plateau in the world, with unique topog-
raphy (Huang et al. 2008). The altitude range in the study 
area varies from 100 to 8086  m, which is characterized 
by plains, valleys, and mountains. The surface topogra-
phy changes from very gentle to highly steeped topog-
raphy (0–78°). From the geological point of view, QTP 
is the product of the collision of the Eurasian and Indian 
plates (Molnar and Tapponnier 1975; Aiken and Brierley 
2013). It is influenced by tectonic activity from the Hima-
layan region, resulting in the deformation and forma-
tion of complex structural features (Bartarya et al. 1996). 
Under the influence of major and minor thrust-faults, 
strike-faults, such as Himalayan main thrust fault (MF), 
Altyn-Tagh fault, Kunlun fault, Karakoram fault, Jiali 
fault, etc. (Taylor and Yin 2009; Elliott et al. 2010; Aiken 
and Brierley 2013; Zhang et al. 2020; Qi et al. 2021), the 
area is highly susceptible to significant geo-environmen-
tal hazards (landslide, earthquake, etc.). From the exist-
ing geological map of the study area, about 28 lithological 
structures were identified (see Fig. 2E). The most promi-
nent geological formation consists of Mesoproterozoic 
crystalline metamorphic rocks and Mesozoic sedimen-
tary rocks.



Page 4 of 25Sajadi et al. Geoscience Letters             (2022) 9:9 

Due to its structural complexity, the QTP is character-
ized by low temperatures ranging from − 15° to 10 °C and 
low precipitation, with cold and arid climatic conditions 

in winter controlled by Siberian high and Mongolian high 
semi-arid climate in summer controlled by the South 
Asian monsoon system (Du et al. 2004; You et al. 2013).

Table 1.  List of abbreviations and their meanings mentioned in this study.

Abbreviations Meaning Abbreviations Meaning

Acc Accuracy NB Naïve Bayes

ANN Artificial neural networks OOB Out-Of-Bag

AUC​ Area under curve Plc Plan curvature

Dd Drainage density Prc Profile curvature

DNN Deep neural network QTP Qinghai-Tibetan Plateau

Dsd Distance to drainage RBF Radial basis function

Dsf Distance to fault ReLU Rectified linear unit

Elev Elevation ROC Receiver operating curve

Fd Fault density S
◦ Slope

GPM global precipitation measurement SST Sensitivity

HS High susceptible SPF Specificity

LR logistic regression SGD Stochastic gradient descent

LSP Landslide susceptibility prediction SVM Support vector machine

NDVI Normalized difference vegetation index NPV Negative predictive value

LS Low susceptible TOL Tolerance

MCA multi-collinearity analysis TPI Topographic wetness index

MDA Mean decrease in accuracy VIF Variance inflation factor

MDG Mean decrease Gini VI Variable importance (VI)

ML Machine learning VLS Very-low susceptible

MS Moderate susceptible (MS)

Fig.1  Location of the study area: A landslide inventories and landslides distribution in study area, and B elevation distribution in QTP
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The vegetation cover in QTP mainly includes steppe, 
shrub, desert, meadow, forest, barren areas (bare soil), 
and water bodies (ice and glacier) (Gillespie et al. 2019). 

The QTP is the source of several major rivers, including 
the Yangtze River, the Yellow River, and the Ganges River, 
making it the “Water Tower of Asia” (Yao et  al. 2019). 

Fig.2  Landslide causative factors: elevation (Elev) (A), slope (S) (B), plan curvature (Plc) (C), profile curvature (Prc) (D), lithology (E; values in brackets 
refer to the order of each lithology class and frequency of landslide occurrence in each class, respectively), fault density (Fd) (F), distance to faults 
(Dsf ) (G), rainfall (H), distance to drainage (Dsd) I), drainage density (Dd) (J), stream power index (SPI) (K), topographic wetness index (TWI) (L), and 
NDVI (M). Individual LCFs were classified into different classes using the “Natural Break” method
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Furthermore, the study area covers a portion of Kosii, 
and Yarlung Tsangpo (Brahmaputra) transboundary riv-
ers draining from the northern Himalayan slope into the 
QTP (Mukherjee 2008; Huang et al. 2011).

Spatial database construction
The landslide inventory generation is an essential step in 
any landslide susceptibility prediction modeling (Guzzetti 
et al. 1999), as it provides valuable information on differ-
ent aspects of landslide events in the susceptible region 
(Rosi et  al. 2018). Landslide inventories are based on a 

key assumption that future landslides will occur under 
the same circumstances (same factors) that caused the 
previous landslides (Guzzetti et  al. 2005). In this study, 
the landslide inventory was obtained from NASA Global 
Landslide Catalog (GLC) with the best resolution at 0.2° 
(Kirschbaum et  al. 2010; Lin et  al. 2017). The NASA-
GLC contains information about landslide locations and 
characteristics with different triggering sources (chiefly 
rainfall, earthquake, downpour, snowfall-snow melt, 
etc.) from 2007 to 2016 (Stanley et  al. 2020) obtained 
from numerous datacentres, including the International 

Fig.2  continued
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Consortium on Landslides; International Landslide Cen-
tre, University of Durham; EM-DAT International Disas-
ter Database; International Federation of Red Cross and 
Red Crescent Societies field reports; Reliefweb; humani-
tarian disaster information run by the United Nations 
Office for the Coordination of Humanitarian Affairs; and 
other online regional and national newspaper articles and 
media sources. A total of 671 landslide events obtained 
from GLC were confirmed in the study area (landslide, 
mudslide, rockfalls, debris flows, etc.). Also, a total of 671 
non-landslide locations are randomly selected in non-
landslide areas with an equal number of landslide events 
(Costanzo et al. 2014; Lin et al. 2017). The datasets were 
then randomly divided into two parts: 70% of the dataset 
was used for training, and the remaining 30% were used 
for test.

Landslide conditioning factors
The selection of influential landslide conditioning factors 
is vital for LSP modeling because the nature and evolu-
tion of landslide events are complex and require prior 
knowledge of significant LCFs in a particular region 
(Guzzetti et al. 1999; Chen et al. 2017; Wang et al. 2020a). 
Based on the study of landslide mechanisms, existing 
LSP-related literature, and data availability (Lin et  al. 
2017; Reichenbach et al. 2018; Abbaszadeh Shahri et  al. 
2019), 13 landslide conditioning factors were selected in 
this study and were classified into four main categories: 
surface topography, geologic, hydrologic, and landcover 
factors.

Surface topography factors include elevation (m) 
(Fig.  2A), slope 

(
degree

)
 (Fig.  2B), plan curvature 

(Fig.  2C), and profile curvature (Fig.  2D). They were 
derived from SRTM-DEM (90 m) (considering the scale 
of the analysis) available in the Google Earth Engine plat-
form (CGIAR/SRTM90_V4). The elevation (m) is very 
sensitive to several geomorphological and geological pro-
cesses that cause slope instability (Hu et al. 2020). Slope 
(degree) plays an indirect role in slope instability (Peeth-
ambaran et  al. 2020) and has been used in many land-
slide studies (Aghdam et  al. 2017; Pandey et  al. 2019). 
Curvature is influenced by a change in altitude as the 
index of basin relief (Sajadi et al. 2021). The values of Plc 
and Prc represent concavity (negative values) /convexity 
(positive values) and flow velocity, respectively (Bordoni 
et  al. 2020). Profile curvature and plan curvature with 
values close to 0 in both cases indicate a flat topography 
(Kornejady et al. 2017).

Geological factors include lithology (Fig. 2E), fault den-
sity ( m/m2) (Fig.  2F), and distance to fault (m) (Fig.  2G). 
Lithology is an important factor and provides valuable 
information on the degree of hardness, mineral composi-
tion, and associated bedrock structure (Ercanoglu 2005). 

It has been widely used in various landslide hazard stud-
ies (Abbaszadeh Shahri et al. 2019; Arabameri et al. 2020; 
Peethambaran et al. 2020). The lithology map was extracted 
from the geologic map at a scale of 1:5,000,000 (Steinshouer 
et al. 1999). Structural lineaments, especially fault lines, are 
a type of discontinuity in the slope that increases the prob-
ability of slope failure and affects the magnitude and dis-
tribution of landslide events (Dou et al. 2015; Pham et al. 
2016a). Fd , and Dsf maps were generated by the Euclidean 
distance analysis and line density methods (Süzen 2002; 
Bordoni et al. 2020; Sajadi et al. 2020).

Annual mean rainfall ( mm/year) (Fig.  2H), distance to 
drainage (m) (Fig.  2I), drainage density (m/m2) (Fig.  2J), 
stream power index (SPI) (Fig. 2K), and topographic wet-
ness index (Fig.  2L) were considered as the hydrological 
factors. Rainfall is an essential factor inducing slope failure 
in a particular area that does not have a uniform distribu-
tion in the region (Hu et al. 2020). The infiltration and liq-
uefaction from rainfall reduce the suction rate of materials, 
lose the shear strength between soil material, and increase 
landslides probability (Pham et al. 2017a). The annual pre-
cipitation data from the gauged-adjusted version of the 
Integrated Multi-Satellite Retrievals for Global Precipita-
tion Measurement product was used to produce the rainfall 
map of the study area. As one of the most recent precipita-
tion datasets, this dataset provides precipitation data with 
high spatiotemporal resolution (30  min|0.1°) worldwide. 
Previous studies revealed the considerable potential of 
GPM precipitation in landslides studies (Kirschbaum and 
Stanley 2018; Thakur et al. 2020). Dsd is another key factor 
describing the hydrological conditions of a given area that 
affect slope stability (Huang et al. 2020). The Dsd map was 
produced using the Euclidean distance analysis method. 
The Dd was generated from the line density method to 
illustrate the spatial distribution of the drainage network in 
the study area (Sajadi et al. 2020). SPI has been widely used 
as a decisive hydrological factor in LSP studies because the 
erosive power of runoff directly affects slope toe erosion 
(Jebur et al. 2014). TWI measures the role of topography 
on the flow direction, indicating the slope condition, and 
determines the hydrological processes involved in surface 
runoff generation (Jebur et  al. 2014; Sameen et  al. 2020). 
SPI and TWI were derived from the specific catchment 
area ( As ) in meter by the slope ( tanβ ) as in the following 
equations:

NDVI as an index of vegetation distribution, plays a 
significant role in slope stability (Borga 2019) and depicts 

(1)TWI = ln

(
As

tanβ

)
,

(2)SPI = ln(As ∗ tanβ).
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the relationship between landslide events and vegetation 
cover (Choi et al. 2012). The annual average NDVI map 
was calculated from cloud-free Landsat OLI imagery 
using the GEE platform (LANDSAT/LC08/C01/T1_SR) 
(Fig.  2M). Since different landslide conditioning fac-
tors are produced in different scales and sizes, they were 
resampled into the corresponding original SRTM-DEM 
pixel grid (90*90 m) using nearest-neighbor interpolation 
techniques as a standard method to preserve the original 
characteristics of the dataset (Jamal and Mandal 2016).

Methodology
The methodological hierarchy in this study is based on four 
major steps: (1) spatial database construction as explained 
in “Spatial database construction” Section and “Landslide 
conditioning factors” Section; (2) data pre-processing (data 
normalization, and MCA); (3) landslide prediction modeling 
using five state-of-the-art machine learning algorithms, and 
LSP maps generation; and (4) model validation, performance 
comparison, and identification of the best model perfor-
mance. The flowchart of the developed methodology is illus-
trated in Fig. 3. More details are explained bellow.

Data pre‑processing
Before implementing machine learning algorithms, it is 
necessary to normalize (scale) all landslide conditioning 
factors to reduce the data dispersion and inconsistency 
(Ercanoglu 2005; Wang et  al. 2020b). Because different 
variables (LCFs) have different ranges and types, it is nec-
essary to scale all variables into a similar range to avoid any 
inconsistency among the variables. The normalization of 

all variables was conducted considering the nature of the 
input variable using the following equation:

where ZLCF is the normalized value of LCF, LCFi is the 
original variable and LCFmax and LCFmin is the minimum 
and maximum value of LCFi , respectively (Pradhan and 
Lee 2010; Zare et al. 2013). In the next step, a multi-col-
linearity analysis (MCA) was performed to evaluate the 
collinearity rate among variables and avoid bias in the 
spatial differences between models (Arora et  al. 2019). 
Variance inflation factor (VIF) and tolerance (TOL) are 
two important collinearity criteria. In general, TOL < 0.1 
and VIF > 10 indicate high collinearity issues in the data-
set (Dormann et al. 2013). In this study, MCA was per-
formed using the “imcdiag” function available in the R 
package “mctest” (Ullah et al. 2019).

Finally, the capability of the five learning algorithms 
to predict the landslide susceptibility in the study area 
was evaluated according to their different principles and 
structures under similar condition (all LCFs are included 
in the modeling).

Landslide susceptibility prediction modeling and LSP maps 
generation
Deep neural network (structure, loss function, optimization 
and model implementation)
In essence, artificial neural networks are generic non-
linear functions that resemble the human brain neural 

(3)ZLCF =

(
LCFi − LCFmin

LCFmax − LCFmin

)
,

Fig. 3  Flowchart of the adopted methodology in the study
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system (Zhu et  al. 2018). The main advantage of ANN 
is the ability to handle all types of input data includ-
ing binary, categorical, and continuous, which does not 
depend on the normal distribution of the input dataset 
(Kavzoglu and Mather 2003). A typical and widespread 
example of the ANN is the multi-layer feedforward neu-
ral network, which consists of an input layer, a hidden 
(learning phase), and an output layer (prediction) (Bishop 
1995).

A neural network with a considerable number of hid-
den layers (depths) is known as deep learning (Nhu et al. 
2020a). The number of neurons in the input and output 
layer is based on the application, while hidden layer neu-
rons are often determined by trial and error (Peetham-
baran et al. 2020). Because rectified linear unit [Eq.  (3)] 
benefits from the gradient descent algorithm for error 
(loss function) minimization, it can eliminate gradient 
vanishing phenomena and simplify the learning process 
(Singaravel et al. 2018; Nhu et al. 2020a). Hence, it is cho-
sen as the activation function in the hidden layers of the 
proposed DNN for mapping the non-linear relationship 
between input and output.

where E is the input variables (LCFs).
The sigmoid function is another popular activation 

function used as the transfer function to map the non-
linear relationship in the output layer neurons for binary 
prediction (Bui et  al. 2020). The network performance 
and convergence achievement were assessed using Log 
Loss for the landslide classification problem. In this 
study, Log Loss can be expressed as:

where N  is the number of samples, Li is the actual out-
put of sample i (landslide, non-landslide; 0, 1), L̂i is the 
predicted probability of sample i, L and L̂ is the vector of 
actual and predicted probabilities. The stochastic gradi-
ent descent optimization algorithm with optimal learning 
rate was used for weight adjustments in the hidden layer 
and to minimize the loss function (Nhu et al. 2020a).

In this study, 13 hidden neurons were found as optimal 
numbers based on several iterations (trial and error). A 
lower learning rate may increase the number of training 
epochs, and a higher learning rate is helpful to avoid local 
minimum. Because the mean and variance may change 
during the training and learning phase, the batch normal-
ization and dropout models were configured to the DNN 

(4)RELU(E) = max(E , 0),

(5)

Log
Loss

(
L,L̂

)
=

−

∑N
i=1

(
log(L̂i)

Li
+ log(1− L̂i)

(1−Li)
)

N
,

structure to normalize data adaptively. This helps in reg-
ularization and improves the generalization capacity of 
the model to reduce the overfitting problem and acceler-
ate the learning phase (Ioffe and Szegedy 2015; Carranza-
García et al. 2019). A schematic of the proposed structure 
DNN development in this study is illustrated in Fig.  4. 
“Keras package” (https://​keras.​rstud​io.​com) was used to 
construct densely (deeply) connected neural networks 
(DNN) algorithm for LSP model in QTP region.

Logistic regression
A multivariate statistical model (generalized linear 
regression) based on non-linear function has been widely 
used for landslide susceptibility prediction in different 
regions (Park et  al. 2013; Costanzo et  al. 2014; Budimir 
et  al. 2015). In contrast to typical linear regression, the 
dependent variables (prediction classes) can take cat-
egorical variables (landslide or non-landslide; 1, 0), the 
independent variables can be categorical, continuous, 
and binary (Atkinson and Massari 2011).

Besides, the model does not require the normal distri-
bution assumption of independent variables (Wubalem 
2020). The primary objective of LR is to model the lin-
ear relationship between the log odds (logit) of depend-
ent variables and independent variables. For a binary 
response variable (landslide or non-landslide; 1, 0), this 
linear relationship can be shown as:

where L is the dependent variable (landslide) and α0 is the 
intercept, α1, ..αn are regression coefficients, x1, . . . xn are 
the independent variables and e is error term. To convert 
the logit(L) into probability ( P ) the following equation is 
used:

where PLR(X) signifies the landslide probability for each 
input variable (X) between [0, 1]. Higher values of PLR(X) 
(PLR(X)> 0.5) indicate a higher chance of slope failure, 
and lower values of PLR ( PLR< 0.5) refer to higher slope 
stability (Zhao et al., 2019a, b). Logistic regression model 
was implemented using “glm” function in R-statistical 
software.

Naïve Bayes
NB is a classifier based on Bayesian law and maximum 
posterior hypothesis for statistical analysis based on the 
conditional independence assumption of variables (Tsan-
garatos and Ilia 2016).

(6)logit(L) = α0 + α1x1 + α2x2 + · · · + αnxn + e,

(7)

PLR(X) =
exp(α0 + α1x1 + α2x2 + · · · + αnxn + ε)

1+ exp(α0 + α1x1 + α2x2 + · · · + αnxn + ε)
,

https://keras.rstudio.com
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Because NB benefits from its simplicity, i.e., involves 
no complex iteration parameters during the model build-
ing (Wu et  al. 2008), it becomes a widespread method 
for landslide studies (Tien Bui et al. 2012). In this study, 
consider X = xi(i=1,2,...,13) as the landslide 13 condition-
ing factors and Lj(j=0(Landslide,Non),1(Landslide)) as the pre-
diction class. The prediction class Lj using NB can be 
defined as:

where P(Lj) is the prior probability of Ljclass , that 
is calculated from the ratio of the observed cases with 
actual class Lj in the training dataset. P

(
xi|Lj

)
 is the con-

ditional probability:

where µ and δ are mean and standard deviation of xi . 
“naivebayes” package (Majka 2019) was used to perform 
NB classification in this study.

Random forest
RF is an ensemble learning method of individual binary 
decision trees to produce higher predictions with broad 

(8)Lj = argmax{P(Lj)

13∏

i=1

P
(
xi|Lj

)
},

(9)P
(
xi|Lj

)
=

1
√

2πδ
e
−(xi−µ)2

2δ2
,

applications in regression, classification, and feature 
selection (Cutler et al. 2007). The basic principle behind 
random forest is to produce multiple uncorrelated deci-
sion trees (h(X , θk;K : 1, 2, 3 . . . n)) to generate training 
subsets through the bootstrap aggregation model (Tib-
shirani 1996; Breiman 2001). Each decision tree predicts 
the sample classification individually, and the final result 
is decided based on the output of the individual tree (Sun 
et al. 2020). Not all training samples are included in the 
bagging process so that about two-thirds of the data are 
considered in-bag samples used for training the model. 
The remaining one-third of the samples are known as 
out-of-bag observations (OOBs), which evaluate the 
model’s overall performance (accuracy) (Breiman 2001; 
Rodriguez-Galiano et  al. 2012; Belgiu and Drăgu 2016). 
The predicted class or final RF result is determined by a 
majority votes or average of prediction derived from the 
growing trees (Breiman 2001; Cutler et al. 2007). RF also 
provides proximity index, and relative variable impor-
tance (VI) measures throughout the classification model 
building (Rodriguez-Galiano et  al. 2012). VI measure is 
valuable for selecting the most influential features in a 
multidimensional dataset (Ghimire et  al. 2010; Rodri-
guez-Galiano et al. 2012). The VI can be calculated using 
the mean decrease in Gini or the mean decrease in accu-
racy (Breiman 2001). In this study, the RF classification 
was performed through “randomforest” package (Liaw 
and Wiener 2002) available in R-statistical software. 

Fig.4  Schematic of deep neural network (DNN) structure (1-3-1) designed for landslide prediction in QTP using 13 input factors, ReLU (activation 
function), and Sigmoid (transfer function)
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There are two user-defined parameters for random forest 
implementation, including the number of growing trees 
(ntree) to grow in the model and the number of vari-
ables (mtry) to split at each node (Sahin et al. 2020; Wang 
et  al. 2020b). It is found that the RF model is suscepti-
ble to mtry parameter compared to the Ntree parameter 
(Ghosh et al. 2014; Belgiu and Drăgu 2016).

Support vector machines
SVM is a supervised learning algorithm based on statis-
tical learning theory to delimit a hyperplane boundary 
that optimally classifies in multidimensional space (Cor-
tes and Vapnik 1995; Kavzoglu and Colkesen 2009). As a 
powerful generalization and optimization model, SVM 
can transform the dataset into a high-dimensional space 
and preserve convergence. Consider a matrix of condi-
tioning factors ( LCFs : X = Xi(i=1,2,3,..13)) and a vector of 
landslide classes (landslide, non-landslide; Lj = {1,−1} ). 
The optimal hyperplane can be derived as follow:

where f (x) is the SVM regression function, ai is the posi-
tive real constant, m is total number of LCFs, b is the 
bias, and K (X ,Xi) is Kernel function that can be sigmoid, 
polynomial, linear, or radial basis function (Pham et  al. 
2016b). In a binary classification, the above equation 
(Eq. 10) can be solved as:

 where ϕ(Xi) is non-linear function that transforms the 
input space into high-dimensional space, and ω is weight 
vector. The classification and accuracy of SVM depend on 
the kernel function (Damaševičius 2010). The RBF kernel 
is the most potent and effective Kernel because of fewer 
parameters and excellent ability to reflect the non-linear 
relationship with high interpolation ability (Marjanović 
et al. 2011). The overall performance of the SVM model 
depends on the kernel parameters, such as the regulari-
zation parameter (C) and the kernel width (γ ) . In this 
study, we used the RBF with Gaussian kernel (Marjanović 
et  al. 2011) to classify the non-linear characteristics of 
the landslide problem. The “e1071” package (Meyer et al. 
2019) was used for LSP modeling using SVM. The SVM 
implementation includes a tuneSVM function that auto-
matically selects the optimal regularization parameter (C) 
and kernel width (γ ) . Also, we used the “tuneSVM” func-
tion available in R to select the optimal kernel parameters 
( γ = 0.5, C=10).

(10)f (x) = sign

[
m∑

i=1

aiLjK (X ,Xi)+ b

]
,

(11)Lj

[
ωTϕ(Xi)+ b

]
≥ 1,

Once the models were trained and validated, they were 
used to estimate the LSP for every pixel in the study 
area. The landslide susceptibility prediction models were 
then classified into five classes: very-low susceptible 
(VLS), low susceptible (LS), moderate susceptible (MS), 
high susceptible (HS), and very-high susceptible (VHS) 
regions using “equal interval” method, as a standard clas-
sification method for LSP modeling (Chen et al. 2018).

Models validation and performance evaluation
Performance evaluation is essential to evaluate the reli-
ability and effectiveness of LSP models (Saha and Saha 
2021) and to infer the most suitable model in the QTP 
region. The predictive capability of five LSP models 
was estimated using a confusion matrix (Youssef and 
Pourghasemi 2021). The confusion matrix provides the 
following four parameters: the true-positive (TP) and 
true-negative (TN), referring to the numbers of pixels 
correctly classified (landslide, non-landslide), and the 
false-positive (FP) and false-negative (FN), indicating 
the numbers of pixels classified incorrectly (Pham et al. 
2020). Based on these derived parameters, three per-
formance metrics including accuracy, sensitivity (SST), 
specificity (SPF), were calculated to compare the per-
formance of the models and highlight the most suitable 
ML model for landslide susceptibility perdition for the 
entire QTP region (Table  2) (Pham et  al. 2020; Wang 
et al. 2020a).

Besides, the receiver operating characteristic curve 
(ROC) and the area under ROC curve (AUC), widely 
used performance metrics, were also computed to com-
pare the performance of the five models (Chen et  al. 
2020; Steger et  al. 2021). In this study, ROC and AUC 
were calculated using “pROC” package (Robin et  al. 
2011) in R software.

Results and analysis
Suitability assessment of the factors for model training 
by MCA technique
The MCA analysis confirmed the suitability of all 
these factors (Table  3) for the ML modeling train-
ing. Although two factors of elevation and rainfall 

Table 2.  Statistical indexes used for evaluation of model 
performance and comparison.

No. Metric Equation

1 Accuracy (Acc) ACC =
TP+TN

TP+FP+TN+FN

2 Sensitivity (SST) SST =
TP

TP+FN

3 Specificity (SPF) SPF =
TN

TN+FP
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showed relatively higher VIF and lower TOL values 
(VIFElev. = 3.180, VIFrainfall = 3.098, andTOLElev. = 0.335,

TOLrainfall = 0.316) than other factors, they did not 
exceed the critical threshold (VIF > 10, andTOL < 0.1) 
and thus can also be used for the model training.

The most important factors in modeling process
The relative importance of the landslide conditioning fac-
tors was assessed by MDG and MDA metrics obtained 
from the random forest model (Sahin et  al. 2020). The 
mean decrease accuracy is measured from OOB error, 
and the mean decrease Gini indicates the role of indi-
vidual variables in preserving uniformity of nodes and 
leaves throughout the model building (Ghosh et al. 2014; 
Belgiu and Drăgu 2016). Higher values in both crite-
ria indicate a higher role of the LCF in the LSP analysis 
(Williams 2011). The results in Fig. 5A, B concluded that 
rainfall with MDG (151.87) and MDA (0.143) was the 
most critical factor with a significant role in the distri-
bution of landslides in the study area, followed by eleva-
tion (MDG = 112.696 and MDA = 0.117), and lithology 
(MDG = 89.140 and MDA = 0.078). Other factors includ-
ing NDVI, distance to drainage, profile curvature, fault 
density, drainage density, distance to faults, plan cur-
vature, SPI, TWI, and slope were ranked in consequent 
positions.

Application of machine learning models in landslide 
susceptibility prediction mapping
The five ML models were generated from training 
(LCFs:70%) and test datasets (LCFs:30%) based on the 
relationship between the LCFs and landslide probability 

conditions to visualize the model’s prediction capability 
in the study area. The susceptibility values are classified 
using equal interval methods of classifications, including 
very-low susceptible, low susceptible, moderate suscepti-
ble, high susceptible, and very-high susceptible. Results 
and outcomes from the five machine learning models are 
reported below.

Landslide susceptibility prediction by DNN
The DNN model, trained by the SGD and Log-Loss algo-
rithms and hyperparameters, encompasses an input layer, 
three hidden layers, and an output layer (1-3-1 structure). 
A summary of the model structure and its hyperparame-
ters is represented in Table 4. Figure 6 consists of the two 
basic metrics including loss function error (Loss) curve 
and accuracy curve (Acc) (ranging from 0 to 1, refer-
ring to non-landslide and landslide probabilities, respec-
tively) from the training and validation phases which 
demonstrates the performance of the model over 300 
epochs. Increasing in accuracy curve and decreasing the 
loss curve indicates that the learning speed of the model 
rapidly improves in both training and validation phase, 
implying that its ability to predict the landslides from the 
causative factors (input factors) improves over successive 
epochs. Throughout the 300 epochs, the minimum loss 
and maximum accuracy were 0.247 and 0.909 for train-
ing, and 0.255 and 0.895 for validation phases, respec-
tively. The observed fluctuations in the loss and accuracy 
curves may be attributed to the effect of the dropout 
layer, which has been configured into the model to avoid 
overfitting (Sameen et al. 2020). In addition, this fluctua-
tion can be related to the effect of the SGD algorithm, 
which causes additional fluctuations to the loss function 
(Nhu et  al. 2020a). Overall, the model shows a reason-
able range of learning during the training and validation 
phases.

The predicted landslide probabilities from the DNN 
model were used to produce the LSP map for the study 
area. The landslide susceptibility values (probabilities) 
obtained from the DNN ranged from 0.000 to 0.998 and 
were divided into five classes (Fig. 8A). The area percent-
age of each susceptible level is calculated and presented 
in Fig.  9. From a qualitative perspective, it is observed 
that most landslide events occurred in high-susceptible 
and very-high susceptible regions, which occupy about 
30.83% of the total area. The highest area of the suscep-
tible region belongs to the very-low susceptible region, 
which covers 36.23% of the total area, and very-high 
susceptible covers the minimum area with 14.90% (see 
Fig. 9).

Table 3  MCA of landslide conditioning factors (LCFs) using VIF 
and TOL

LCFs Multicollinearity index

VIF TOL

Prc 1.227 0.814

Plc 1.592 0.628

Elev 3.180 0.335

Dsf 2.243 0.445

Fd 2.280 0.438

NDVI 2.300 0.434

Rainfall 3.098 0.316

Dsd 1.324 0.754

Dd 1.109 0.901

Slope 1.214 0.823

SPI 1.179 0.848

TWI 1.076 0.929

Lithology 1.597 0.626
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Fig. 5  RF model: variable importance (VI) highlighting the importance of individual landslide conditioning factors using mean decrease Gini (MDG, 
A), and mean decrease accuracy (MDA, B)



Page 14 of 25Sajadi et al. Geoscience Letters             (2022) 9:9 

Landslide susceptibility prediction by LR
The spatial relationship between the conditioning factors 
and landslide events was calculated using the LR model, 

and the regression coefficients and related statistics are 
provided in Table 5. The final LR model is determined as:

The estimated coefficients were used to predict the 
landslide probability map of the study area (Table 5). The 
high level of statistical significance of p-value (p > 0.1 ) 
for Dsf  , Dd , Plc , Prc , SPI, and TWI, indicates that these 
variables had no statistically significant effects on land-
slide occurrence in the study area. In contrast, elevation, 
rainfall, Dsd , lithology, NDVI, Fd , and slope statistically 
significantly (p < 0.01) affect landslide susceptibility 
in the study area. The susceptibility index values from 
the LR model ranged from 0.000 to 0.999 and were 

(12)

LR =0.076+ (0.016 ∗ Plc)+ (0.143 ∗ Prc)

− (2.045 ∗ elev)+ (0.134 ∗ Dsf)

− (0.550 ∗ Fd)− (0.575 ∗NDVI)

+ (0.989 ∗ Rainfall)− (0.553 ∗ Dsd)

+ (0.114 ∗ Dd)+ (0.231 ∗ Slope)

+ (0.025 ∗ SPI)− (0.197 ∗ TWI)+
(
0.778 ∗ Lithology

)
.

Table 4  Summary of model structure and hyper-parameter 
used for building a deeply connected neural network

Hyperparameters Setting values

Number of inputs parameters 13

Number of densely connected units 13

Activation function ReLU

Layer dropout rate 0.4,0.3,0.2

Transfer function Sigmoid

Loss function Log Loss

Optimizer SGD

Learning rate 0.001

Metrics Accuracy

Epoch 300

Batch size 32

Validation split 0.2

Fig. 6  Performance of the DNN model in terms of loss and accuracy. A shows the rate of loss (error) of the learning algorithm in the training and 
validation phases during 300 epochs; B shows the rate of Accuracy of the learning algorithm in the training and validation phases during 300 
epochs
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also classified into five classes (Fig. 8B). The area cover-
age of individual classes was 46.25, 14.32, 18.51, 12.04, 
and 8.87% for VLS, LS, MS, HS, and VHS, respectively 
(Fig. 9). The results showed that the highest percentage of 
the study area belonged to very-low susceptible and low 
susceptible regions (60.58%), whereas very-high suscepti-
ble regions occupied the minimum total area (8.87%).

Landslide susceptibility prediction by NB
Using the training dataset, kernel density estimation 
(KDE), and additive smoothing (Laplace smoothing, 
Laplace = 1), the NB model was constructed to predict 
the landslides in the study area. The susceptibility index 
values obtained from the NB model varied from 0.000 to 
0.999, which is divided into VLS, LS, MS, HS, and VHS 
regions (Fig. 8C). The area coverage of each class is esti-
mated at 42.18, 12.80, 21.50, 13.64, and 9.88%, respec-
tively. The high and very-high susceptible regions cover 
a lower percentage than DNN, RF, and SVM models but 
are higher than the LR model. The moderate suscepti-
ble region in NB covers the highest percentage (21.50%) 
among all five models. A total percentage of 54.98% of 
the study area belongs to very-low susceptible and low 
susceptible regions (Fig. 9).

Landslide susceptibility prediction by RF
The Ntree and mtry were optimized (300 and 7, respec-
tively) according to the out-of-bag observations error rate 
(Fig. 7). The OOB error analysis as a function of the num-
ber of trees (500 trees) illustrates that OOB decreases as 
the number of trees grow (see Fig.  7). This decreasing 
trend continues up to the value of 250 trees but becomes 
stable afterward. We used 300 trees as the optimal num-
ber of growing trees for the model implementation. 
Eventually, the RF model implemented from the train-
ing dataset (13 LCFs), with 300 trees and mtry parameter 

Table 5  Regression coefficients for the 13 landslide conditioning 
factors (LCFs) derived from the LR model

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1; β denotes the regression 
coefficient, and S.E. means standard error, β denotes the regression coefficient, 
and S.E. means standard error

LCFs β S.E z value Pr( >|z|)

(Intercept) 0.076 0.137 0.552 0.580

Plc 0.016 0.153 0.103 0.9200

Prc 0.143 0.128 1.115 0.265

Elev − 2.045 0.248 − 8.25  < 2e−16***

Dsf 0.134 0.199 0.675 0.500

Fd − 0.550 0.254 − 2.161 0.031*

NDVI − 0.575 0.177 − 3.236 0.001**

Rainfall 0.989 0.229 4.327 0.000***

Dsd − 0.553 0.147 − 3.772 0.000***

Dd 0.114 0.144 0.793 0.4290

Lithology 0.778 0.147 5.302 0.0000***

Slope 0.231 0.133 1.732 0.083

SPI 0.025 0.150 0.168 0.867

TWI − 0.197 0.174 − 1.136 0.256

Fig. 7  The OOB error plot form RF model; Y axis represents the OOB error, 0 denotes the non-landslide and 1 indicates the landslide
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of 7 (number of variables to split at each node), reached 
an OOB error of 7.28%, signifying that the algorithm 
attained the high capability to predict the landslide event 
from the input data. The LSP values predicted by the RF 
model for the entire region ranged from 0 to 1 (Fig. 8D) 
and were divided into five landslide-prone regions cov-
ering 33.84, 14.88, 19.83, 18.99, and 12.47% for VLS, LS, 

MS, HS, and VHS, respectively (see Fig.  9). Overlaying 
of landslide locations on the LSP map confirmed the 
rationality of the produced map, showing a considerable 
match between the susceptible regions and landslide dis-
tribution in the study area. The minimum area covered 
belonged to the very-high susceptible class with only 
12.47%.

Fig.8  Landslide susceptibility mapping in QTP derived from five ML models; A DNN, B LR, C NB, D RF, and E SVM
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Landslide susceptibility prediction by SVM
The SVM model was constructed for landslide predic-
tion in the study area using the optimal hyperparam-
eters and training dataset. We obtained the optimal 
kernel hyperparameters including γ and C equal to 0.5 
and 10, respectively, by the “tune SVM” function. The 
predicted values from the SVM model ranged from 
0.000 to 0.999. The calculated LSP values were divided 
into five landslide susceptibility classes (Fig.  8E). The 
LSP map obtained from the SVM model showed simi-
lar trends to the RF and DNN in landslide distribution, 
but with some differences. For example, SVM identified 
most of the total area as very-low and low susceptible 
regions, similar to predictions of DNN and RF models 
(about 51.47%). However, very-high susceptible loca-
tions in the SVM are relatively higher than the two 
models (15.30%) (see Fig. 9).

Performance comparison and validation
Model validation
The evaluation of the prediction capability of the mod-
els is critical for LSP modeling. As mentioned earlier, 
to assess the predictive capability of the five models, 
several performance criteria were applied using the 
test dataset, and the results are given in Table  6 and 
Fig. 10. The results showed relatively high variability in 
the performance of the five models across different cri-
teria. The first measurement is accuracy (0 < Acc < 1) , 
which indicates how the model accurately predicts 
landslides from input data in the training and test 
phases. The accuracy analysis revealed that RF had 
the highest accuracy (Acc = 0.9239), followed by DNN 
(Acc = 0.9086). The lowest accuracy was obtained in 
the NB (Acc = 0.8731). LR and SVM are considered 
the third and fourth accurate models with Acc values 
of 0.906 and 0.873. The second most important meas-
ure of the model capability is the sensitivity (SST), 
which indicates the number of landslide locations cor-
rectly classified as landslide (Shahabi et al. 2021). The 
SST analysis pointed to the higher performance of 
the RF model compared to the other four models. In 
terms of precision (specificity), three models includ-
ing RF, DNN, and LR, showed a high value of precision 
(SPF = 0.919), while NB had the minimum precision 
(SPF = 0.909).

In addition, the overall performance of the five mod-
els was quantified using ROC-AUC analysis as a funda-
mental measure of model performance (Pham et al. 2019; 
Zhao et al. 2019a, b).
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Fig. 9  Landslide susceptibility classes, area percentage (%) of the whole QTP for individual ML models; DNN, LR, NB, SVM, and RF

Table 6  Prediction performance comparison of five models 
using three criteria (test dataset)

Metrics DNN LR Naïve Bayes RF SVM

TP 177 170 179 183 174

TN 181 181 165 181 180

FP 16 16 32 16 17

FN 20 27 18 14 23

Accuracy (Acc) 0.909 0.891 0.871 0.924 0.898

Sensitivity (SST) 0.898 0.863 0.838 0.929 0.883

Specificity (SPF) 0.919 0.919 0.909 0.919 0.914
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Validation and comparison of the LSP maps
We graphically evaluated the performances of the five 
models in preparing LSP maps by ROC curve and 
AUC based on the test dataset (Fig.  11). Although it 
shows that all the five ML models had a high predic-
tive power (AUC > 0.930) (Yilmaz 2009), the RF model 
was highlighted as the most accurate and robust model 
(AUC = 0.980). The AUC values ranged from 0.930 (NB) 
to 0.980 (RF). The difference between the maximum and 
minimum AUC was only 4.99%. In terms of predictability, 
the RF model achieves an outstanding AUC value (nearly 
perfect performance), designating the highest level of 
agreement between predicted and observed landslide 

events, followed by the DNN model (AUC = 0.9556) (see 
Fig. 11). It implies that RF and DNN have a high capabil-
ity to predict possible future landslides in the study area. 
The AUC values for SVM, LR, and NB are 0.947, 0.947, 
and 0.930. NB showed the minimum AUC referring to 
the lowest model performance.

Discussion
Key factors controlling the landslide occurrence in QTP
The results presented the different performances of the 
five models in the QTP region, and it is well known that 
different causative factors have different contributions to 
the development of landslide events (Huang et al. 2020). 
Therefore, identifying variables that have an enormous 
impact on landslide occurrence is a high mandate for 
landslide susceptibility prediction, especially in the QTP 
region. Because the random forest model shows bet-
ter performance than other models, the variable impor-
tance obtained from the RF model was used to highlight 
the most critical factors (see Fig.  5). The MDA and 
MDG considered the rainfall and elevation as the lead-
ing major conditioning factors followed by lithology, Dsd, 
and Fd. The high association of landslides with eleva-
tion and rainfall has been investigated in previous stud-
ies (Sun et  al. 2020, 2021). The high inter-relationship 
between elevation and landslide becomes more tangi-
ble at the middle altitude regions (2000-3000  m) (see 
Fig. 2A), where the probability of slope failure decreases 
by elevation, as more resistant lithology is mainly formed 
at higher altitudes (Mohammady et  al. 2012). The sig-
nificant role of rainfall in the analysis can be attributed 
to the fact that rainfall events trigger most landslides in 

Fig. 10  Performance analysis of different ML models using three performance criteria

Fig. 11  Performance comparison of the five ML models (DNN, LR, 
NB, RF, and SVM) using ROC curve and AUC values
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the region. The analysis shows that the north-northwest 
and south-southeastern parts of the study area, which 
receive the most rainfall (> 1000 mm) (see Fig. 2G), have 
the highest concentration of landslides. Lithology is the 
third factor that played a significant role in the landslide 
events throughout the analysis (MDA = 0.078). Because 
different lithologic structures have different degrees of 
hardness, the permeability of bedrock and soil material 
(Ayalew and Yamagishi 2005) show different resistance 
rates to the landslide occurrence. The spatial distribu-
tion of landslides in the study area indicates that most 
landslides are concentrated in Precambrian-Phanerozoic 
(sedimentary rocks) and crystalline metamorphic rocks 
(Precambrian–Phanerozoic) (see Fig. 2E). The crystalline 
metamorphic and sedimentary rocks provide a highly 
propitious condition for the formation of joints, cracks, 
and faults, reducing the shear strength of the bedrock 
lithology, increasing the probability of slope failure (Yu 
and Chen 2020).

The role of Dsd can be attributed to the fact that a 
closer distance to the drainage network increases the 
slope cut by the drainage and reduces the shear strength 
of slope material and soil mass, which ultimately leads 
to slope failure (Yu and Chen 2020). The Fd, due to the 
presence of major, minor faults along the study area such 
as Himalayan main thrust fault (MF), Altyn-Tagh fault, 
Kunlun fault, Karakoram fault, Jiali fault, etc., showed 
a significant role in landslide development in the QTP 
region (Taylor and Yin 2009; Elliott et  al. 2010; Aiken 
and Brierley 2013; Zhang et al. 2020; Qi et al. 2021). The 
role of faultiness (lineaments) has also been investigated 
in previous landslide studies, especially in different areas 
of QTP (Guo et al. 2015; Pham et al. 2017b; Zhao et al. 
2019a; Qi et  al. 2021). Overall, the significant roles of 
rainfall, elevation, lithology, and fault density in this study 
satisfy the two basic assumptions in landslide LSP mod-
eling, which state: (1) landslides are a factor of surface 
topography (elevation, slope, geology, etc.), and (2) future 
landslides will occur under the impact of the same factors 
that caused the previous landslides (Guzzetti 2006).

Different performances of the five machine learning 
models
This study analyzed the performance and robustness of 
the five well-known machine learning models for land-
slide susceptibility prediction in QTP. The results showed 
that the landslide events are mainly distributed in high 
susceptible and very-high susceptible regions for all 
models, proving the reliability of the produced LSP maps 
(see Fig.  8A–E). The very-low susceptible and low sus-
ceptible locations have the maximum percentage of the 
total area (AVLS > 30%) , whereas the very-high suscep-
tible parts share the least percentage in every LSP map 

produced by the five models (AVHS < 15%) (see Fig.  9). 
In addition, a similar trend of the area covered in each 
class was observed among all models, namely the area 
percentage decreases from very-low susceptible to low 
susceptible and then increases in moderate susceptible, 
and finally reaches the minimum percentage in the very-
high susceptible region. From this similar pattern of LSP 
distribution, it is observed that the north-northwest and 
south-southeast direction of the QTP region, with hills 
and mountains, are the areas with high and very-high 
landslide-prone locations (see Fig. 8A–E), known as the 
frequent landslide sites reported in previous studies (Guo 
et al. 2015; Zhao et al. 2019b; Qi et al. 2021). Conversely, 
the central and eastern regions are considered low sus-
ceptible and very-low susceptible regions for landslide 
disasters, covering more than 45% of the total area in all 
studied models.

To highlight the differences between models’ perfor-
mance, a quantitative approach using several model val-
idation criteria, including ACC, SST, and SPF was used 
in the test dataset (30% of the dataset). The performance 
metrics (see Fig. 10 and Table 6) showed that all models 
had reasonable goodness in their predictive performance 
with slight variations. In general, ML models delivered a 
high accuracy rate for landslide prediction because they 
are designed to obtain the optimal non-linear relation-
ship between LCFs automatically (Achour and Pourgha-
semi 2020). However, the outperformance of a model 
can be quantified and identified when a model shows 
higher values in accuracy, sensitivity, and specificity com-
pared to the other models (Nhu et al. 2020c). The analy-
sis recorded the highest SST and SPF among five models 
for the RF model with 0.929 and 0.919, respectively. It 
indicates that 92.9% of the total landslide locations were 
correctly identified as landside, and 91.9% of non-land-
slide locations were correctly identified as non-landslide 
(Nhu et al. 2020d). The classification performance of the 
DNN model in identifying landslide and non-landslide 
locations (SST, SPF) was highly comparable with the RF 
model with only 0.031 differences in SST, hence, the RF 
model slightly outperforms the DNN model. The lowest 
prediction capability in terms of SST and SPF belonged 
to the NB model with 0.838 and 0.909, respectively. 
Finally, SVM and LR model were showed a reasonable 
range of SST and SPF.

The ROC-AUC of the five models was also used to 
validate their reliability and compare their overall per-
formance. The results were promising as the difference 
between the maximum and the minimum AUC was only 
4.99%. However, even a tiny difference in AUC value may 
significantly impact landslide prediction in a particu-
lar area (Beguería 2006). Because landslide hazard maps 
with undesirable reliability and accuracy may lead to 



Page 20 of 25Sajadi et al. Geoscience Letters             (2022) 9:9 

severe consequences and socio-economic disasters (Thi 
Ngo et  al. 2021), it is necessary to select models with a 
higher degree of reliability.

The analysis of ROC-AUC (see Fig. 11) indicated that 
the RF model (AUC = 0.9798) is the most reliable and 
accurate compared to the other models, being consistent 
with finding in other related machine learning algorithm 
comparative studies (Goetz et al. 2015; de Oliveira et al. 
2019; Achour and Pourghasemi 2020; Akinci et al. 2020). 
On the other hand, the DNN model showed a compa-
rable result to the RF model, with a slight difference in 
AUC (AUCRF − AUCDNN = 0.028) , ranking as the sec-
ond in performance in this study. The best performance 
of the random forest model in many applications com-
pared to the other classifiers was explained in the litera-
ture (Cutler et al. 2007; Sun et al. 2021). It also benefits 
from the OBB algorithm to optimize the membership 
probability and improve the model’s overall performance 
(Breiman 2001; Rodriguez-Galiano et al. 2012). Concern-
ing DNN, a major constraint in building it is finding the 
optimal parameter (hidden layers, neurons, etc.) to tune 
the structure of the model, which is a highly computa-
tional task and may affect the model performance (Bui 
et  al. 2020). However, integrating random forest into 
deep neural network can significantly improve the model 
performance (Abbas 2018). Furthermore, the variable 
importance analysis by RF can select the most significant 
factors to reduce the dimensionality of the dataset and 
ultimately improve the model’s performance (Sameen 
et al. 2020).

The analysis also revealed that the SVM model out-
performed and outclassed the LR and NB models and 
ranked third among the five models. This finding was 
consistent with the previous studies that highlighted the 
superior performance of SVM compared to LR and NB 
models (Yao et  al. 2008; Marjanović et  al. 2011; Balla-
bio and Sterlacchini 2012; Tien Bui et al. 2012; Hu et al. 
2020). The lower performance of LR and NB models can 
be attributed to their conceptual constraint, based on the 
independence assumption of variables that may be vio-
lated in different cases, reducing the models’ predictive 
ability (Ballabio and Sterlacchini 2012).

Furthermore, the lower performance of SVM, LR, and 
NB compared to DNN and RF could be related to their 
lower generalization capability from the training dataset 
and increased error for actual data. This may be attrib-
uted to the overfitting issue as a common problem in 
landslide susceptibility mapping using machine learning 
models (Park and Kim 2019), especially at regional scale 
analysis. Data scarcity is a well-known constraint for LSP 
mapping at a regional scale (County and Bostjanˇ 2021) 
regarding landslide inventory and conditioning factors 
data. Due to the scale of the analysis, despite applying 

feature selection techniques, some noise may have been 
retained in the dataset and introduced to the model 
structures, which eventually reduced the model perfor-
mance. In addition, because the landslide locations in the 
QTP regions occupy a significantly smaller portion than 
non-landslide regions, these models may not have opti-
mally learned from input data to predict (generalize) the 
non-landslide locations. Accordingly, the relatively lower 
performance of DNN may be related to the remained 
noise in the dataset (Sameen et  al. 2020). Hence, the 
combination of more advanced feature selection tech-
niques such as principal component analysis (Sun et  al. 
2018) and variable importance can optimally reduce 
the dataset’s noise and improve such models’ predictive 
capability, especially DNN.

Comparison of landslide susceptibility prediction results 
with previous studies
Nevertheless, the accuracy of the LSP map obtained by 
the RF model in this study, which performed the best, 
was relatively higher than the previous similar studies 
in other parts of the region (e.g., Xianshuihe fault zone, 
eastern Himalayan syntax, and Pauri Garhwal in Uttara-
khand, etc.) (Guo et al. 2015; Kumar et al. 2017; Du et al. 
2019; Peethambaran et  al. 2020). This comparison may 
be unfair because the previous studies have considered 
different areas of the region (local scales), and the land-
slide prediction results are susceptible to the spatial scale 
of the study, which determines the nature and the scale 
of the input dataset (Yesilnacar and Topal 2005; Achour 
and Pourghasemi 2020). Besides, it should be noted that 
different researchers use different data sources as another 
cause of the difference.

Conclusions
Landslide susceptibility prediction is a prerequisite for 
preventing and reducing landslide hazards, as one of 
the significant natural hazards that cause great damage 
to human life and the economy in QTP and surround-
ing areas. This study evaluated the performance of the 
five well-known and advanced machine learning models, 
including DNN, LR, NB, RF, and SVM, for LSP modeling 
in the entire QTP region with highly complex structure 
and surface topography. Before machine learning mod-
eling implementation, data pre-processing (normali-
zation and multi-collinearity analysis) was performed 
on thirteen landslide conditioning factors. After that, 
the five ML models were trained under similar condi-
tions (input variables) using optimal hyperparameters to 
obtain the highest model performance according to the 
structural complexity of the study area. Finally, five land-
slide susceptibility prediction models were evaluated and 
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compared to highlight the most suitable LSP model using 
three state-of-the-art performances criteria.

Our finding revealed a reasonable range of goodness-
of-fit in all the models with the superior performance of 
the RF model. The higher performance of the RF model 
confirmed its higher predictive capability for future land-
slides in the study area. This provided a comprehensive 
insight into the landslide prediction for future landslide 
hazards management and practices in the study area. 
However, the highly comparable result of the DNN model 
suggested that integrating the random forest model into 
DNN model can significantly improve the model perfor-
mance and provide a more robust model for future land-
slide predictions.

The results of LSP maps from the five ML models 
depicted that the north-northwestern and south-south-
eastern regions are highly susceptible) and very-high 
susceptible regions to the landslide events. Conversely, 
the low-susceptible and very-low susceptible regions are 
located in the study area’s center, west, and northwest. 
The main limitation of this study area can be related to 
the data scarcity in terms of landslide historical events 
(triggering source) and landslide triggering factors (espe-
cially geological information) which is a well-known con-
straint for LSP modeling at the regional scale. Indeed, 
the availability of various sources of landslide events 
(snowmelt induced, earthquake-induced, etc.) is helpful 
for building a more comprehensive landslide inventory 
as the baseline information for improving the prediction 
capability of ML in LSP modeling. On the other hand, 
the results from the analysis highlighted that landslide 
events in the study area are affected by tectonics, topog-
raphy, and rainfall. Therefore, a further seismic-related 
analysis, such as focal mechanism, peak ground accelera-
tion, and peak ground velocity analysis, is highly recom-
mended to improve the LSP modeling in the region. The 
combination of a comprehensive landslide inventory with 
earthquake-related analysis offers an excellent tool for 
early landslide predictions and landslide-related disasters 
mitigations in the study area. This eventually provides an 
unprecedented insight into the landslide causative factors 
in the entire QTP for further division of the area based 
on the landslide triggering factors.
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