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Abstract 

In recent years, the damages resulting from abnormal hydrometeorological climate have substantially increased over 
the world due to the climate variability and change. Especially, the flood damage has been severely occurred dur-
ing the flood season almost every year in Korea. For an example, we had the localized heavy rainfalls for 54 days in 
flood season of 2020 and had huge property damage and loss of life. Therefore, the study needs to be conducted 
to improve the predictive power of seasonal time-scale forecasts spanning one to several months for the damage 
reduction and prevention. In this regard, this study aims to provide a priori predictions (several months ahead) of 
the climate variable at target sites with a statistical method based on teleconnection with global climatic conditions. 
Herein, the paradigm of the temperature and precipitation prediction in the Geum river basin in Korea is presented. 
The purposes of the study are also (1) to analyse the characteristics of summer temperatures and precipitation 
according to the occurrence of El Niño/La Niña and (2) to suggest a seasonal prediction model that can consider the 
effects of the occurrence of El Niño and La Niña during the flood season. The model is constructed by classifying the 
data period into El Niño, La Niña, and neutral status. Then we have shown that the prediction model improves the 
predictive power for the predictions of climate variables such as temperature and precipitation at mid-latitude sta-
tions which Korea is located. Therefore, this study demonstrates the possibility of improving the predictive power for 
forecasting temperature and precipitation by the prediction model considering climate variability.
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Introduction
The frequency and magnitude of extreme events (e.g., 
droughts, floods) are increasing worldwide. The sea-
sonal forecasting that considers changes in the climate 
variables on a scale spanning one to several months can 
be more effective for managing the extreme events than 
long-term forecasting (Wood and Lettenmaier 2006). 
Previous studies have statistically predicted the regional 
climate (e.g., temperature, precipitation) of a target 
site based on global scale-climate variables, such as 

sea surface temperature (SST) and geopotential height 
(GPH), through teleconnection. Statistical analysis meth-
ods, such as multiple regression analysis and machine 
learning techniques, have been mainly applied to pre-
dict climate variables such as temperature and precipi-
tation based on teleconnection (Asong et  al. 2018; Cho 
et al. 2016; Kim et al. 2018; Lee et al. 2018; Sittichok et al. 
2018). In recent years, the studies on El Niño–South-
ern Oscillation (ENSO), a climate variability factor that 
affects the global climate, have also been conducted 
(Amarasekera et  al. 1997; Bonsal et  al. 2001; Broman 
et al. 2020; Denise et al. 2017; Feng et al. 2020; Korecha 
and Sorteberg 2013; Mamalakis et al. 2018; Meißner et al. 
2017; O’Reily et al. 2018; Seibert et al. 2017; Shabbar and 
Yu 2012; Shabbar and Khandekar 1996; Silva et al. 2019). 
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However, the accuracy and reliability of the seasonal 
forecasting techniques are still inadequate. It is because 
the seasonal climate, especially in the mid-latitudes, is 
affected by various climate factors such as air currents in 
the tropical ocean and Artic oscillation (Cai et al. 2011; 
Cho et al. 2016; Cao et al. 2017; Lee 2015; Lee et al. 2016; 
Gerlitz et  al. 2016; He and Wang 2013; He et  al. 2017; 
Kim and Ahn 2012; Nur’utami and Hidayat 2016; Ouy-
ang et al. 2014; Park and Ahn 2016; Qiu et al. 2014; Sin-
ghrattna et al. 2005).

The Korean Peninsula is located on the western bor-
der of the North Pacific Ocean and is influenced by the 
El Niño and La Niña phenomena. Therefore, there is 
large seasonal variability in precipitation and the studies 
have been conducted on the teleconnection between the 
precipitation in Korea and ENSO events. Say, Cha et al. 
(1999) analysed the relationship between ENSO and the 
climate in Korea, showing that El Niño has the tendency 
to modulate temperature. Kim et al. (2008a, b) analysed 
the effects of ENSO on the frequency and spatial dis-
tribution characteristics of rainfall in Korea. Lee et  al. 
(2016) identified the climatic teleconnections between 
ENSO and mid-latitude precipitation over South Korea. 
Previous studies have either analysed the relationship 
between ENSO and the climate or made seasonal predic-
tions using climate variables; however, there is yet to be 
a study on the seasonal prediction of climate variables 
considering climate variabilities, such as El Niño and La 
Niña.

Therefore, this study aims to perform seasonal pre-
diction of climate variables considering the effects of El 
Niño/La Niña on the climate in Korea. Particularly, sea-
sonal predictions of the flood season temperature and 
precipitation using lagged teleconnection with SST and 
GPH were performed. Section  "Materials and methods" 
briefly describes the El Niño/La Niña phenomenon and 
the seasonal prediction method based on lagged telecon-
nection. In addition, the evaluation indicators used to 
assess the predictive power of the seasonal prediction 
model are described. In  "Results" section, the tempera-
ture and precipitation characteristics according to the 
occurrence of El Niño/La Niña are analysed.  "Conclu-
sions" section provides a discussion of the results and 
conclusions.

Materials and methods
Study area and data collection
Study area
In this study, the Geum River basin in Korea with an area 
of 9645.5 km2 and river length of 384.8 km was selected 
for the analysis (Fig. 1). The Geum River is the third larg-
est river in South Korea and flows from the central inland 
to the West Sea (Kim 2012). The elevation of the Geum 

River is not as high as the other rivers, but its river length 
is considerable with a smooth river slope and wide plain 
developed in the downstream region. The total area of 
the basin is composed of 62% forests, 15% rice paddies, 
and 11% fields, while the rest of the area is composed of 
urbanized areas, grasslands, and bare lands (Ahn et  al. 
2013).

Hydrometeorological data
The study was performed based on data collected from 
six weather stations (Cheongju, Daejeon, Chupun-
gryeong, Boeun, Buyeo, and Geumsan). For the analy-
ses, the monthly mean temperature and precipitation 
data from the Meteorological Administration’s Auto-
mated Surface Observing System (ASOS) were collected. 
Table 1 lists the observation periods and specifications of 
each weather station. Figure 2 shows the monthly mean 
temperatures at the six weather stations, demonstrating 
a similar pattern with relatively equal values. Figure  3 
shows the monthly precipitation values at the six weather 
stations, showing relatively large monthly precipitations 
in Cheongju and Buyeo in August 1995, and in Boeun 
and Daejeon in August 1998. In addition, less rainfall was 
recorded during the flood season (June to September) in 
2013 and 2015.  

Climate data
The SST and GPH data provided by NCEP/NCAR were 
collected as the global climate data. These materials are 
available for download from IRI/LDEO climate data 
library. The SST anomaly was used to examine the corre-
lation of the weather data at the different weather stations 
and the GPH data at 850 hPa, which exhibits a high cor-
relation with the weather change, was used. The ranges of 
the SST and GPH data are listed in Table 2.

The analysis data used were obtained from 1993 to 
2016, which is the available range from the weather sta-
tions. As this study aims to obtain seasonal prediction 
during the flood season, the data from June to Septem-
ber within the period of analysis was used. The data from 
June 1993 to September 2012 were used to build the 
model and the data from June 2013 to September 2016 
were used for the verification.

El Niño and La Niña phenomena
El Niño refers to a phenomenon in which the SST in the 
tropical Pacific Ocean is higher than its usual value, last-
ing for several months or longer. This occurs due to the 
interaction between the ocean and atmosphere in the 
tropical Pacific Ocean, particularly the weakening of the 
east–west trade winds at the equator. When the trade 
winds are weakened, the regions with strong convective 
activity in the Western Pacific expand and move to the 
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mid-Pacific region. As the seawater moves to the east due 
to the changes in atmospheric circulation, the thermo-
cline in the Eastern Pacific region deepens and SST rises, 
leading to a change in the atmosphere. In contrast, the 
opposite occurs for La Niña, in which SST in the mid-
Pacific region is lower than its usual value.

When the five consecutive 3-month running mean 
of the SST anomaly is + 0.5  °C or higher in the tropi-
cal Pacific Niño 3.4 region (5° S to 5° N, 170° W to 120° 

W), which is the most commonly used region for moni-
toring El Niño and La Niña, the first month is deemed 
as the beginning of El Niño. Conversely, when the five 
consecutive 3-month running mean of the SST anom-
aly is − 0.5 °C, the first month is regarded as the begin-
ning of La Niña. El Niño and La Niña phenomena occur 
in the tropical Pacific region, but they affect global 
weather and climate, including the global temperature 
and precipitation, through the teleconnection of the 
atmosphere and ocean.

Fig. 1  Geum river basin in Korea as the study area

Table 1  Specifications of the observation weather station included in the study

Observation station Longitude (degree) Latitude (degree) Benchmark elevation 
(EL.m)

Start of 
operation 
(year)

Cheongju 127.441 36.639 57.160 1967

Daejeon 127.372 36.372 68.940 1969

Chupungryeong 127.995 36.220 244.730 1937

Boeun 127.734 36.488 174.99 1972

Buyeo 126.921 36.272 11.330 1972

Guemsan 127.482 36.106 170.350 1972
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Seasonal prediction model for temperature 
and precipitation based on lagged teleconnection
Global climate model (GCM) is known to reproduce 
atmospheric fluctuations more accurately on a global 
scale than a detailed climate distribution on a regional 
scale. Therefore, the indirect prediction of the long-
term climate of a region based on identifying the fac-
tors that directly or indirectly affect the regional climate 
using GCM is expected to have better performance. The 
method used to estimate the local climate using the cor-
relation between the regional climate, and oceanic and 

Fig. 2  Monthly mean temperature at the six weather stations in Geum river basin (January 1993 to December 2016)

Fig. 3  Monthly precipitation at the six weather stations in Geum river basin (January 1993 to December 2016)

Table 2  Range of the provided sea surface temperature (SST) 
data and geopotential height (GPH) data

Class Name Range

SST Longitude 0.5° E to 0.5° W, by 1° (N = 360)

Latitude 89.5° S to 89.5° N, by 1° (N = 180)

Time November 1981 to September 2019, by month 
(N = 445)

GPH Longitude 0° W to 2.5° W, by 2.5° (N = 144)

Latitude 90° N to 90° S, by 2.5° (N = 73)

Pressure 1000 hPa to 10 hPa (N = 17)

Time January 1949 to September 2019, by month (N = 849)
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atmospheric circulation over a wide area is called “statis-
tical downscaling”.

Statistical downscaling is an indirect downscaling 
method used in predicting precipitation and temperature 
in a target basin based on the observed data, which are 
observed climate factors that have been acquired either 
present or recently. This is done by considering the lag 
time that may exist between the global-scale climate pat-
tern and precipitation or temperature in the target basin. 
The predictors are calculated based on past observations 
and are only considered when the lag time is greater than 
the lead time, considering the lag time between the cli-
mate factor and dependent variables (Choi and Moon 
2013; Kim et al. 2008a, b; Kim and Park 2010; Kim et al. 
2007; Kim and Kim 2010; Schepen et al. 2012; Wang et al. 
2008).

In this study, the SST and GPH data provided by the 
National Centres for Environmental Prediction and 
National Centre for Atmospheric Research (NCEP/
NCAR) were used as the observed climate factors to 
predict the monthly mean temperatures and precipita-
tion. The delayed teleconnection of 1–6 months between 
the dependent variables and the global climate factors 
were considered. The time series of the most correlated 
grid was extracted to construct the prediction model, as 
shown in Fig. 4.

In this study, the data period for constructing the pre-
diction model was classified as El Niño, La Niña, and 
neutral status. The observational temperature and pre-
cipitation data, SST anomaly, and GPH data were classi-
fied for each period. Seasonal prediction was performed 
by constructing the model based on the teleconnection 
analysis according to the lag time.

Predictive power evaluation indices
In this study, the normalized root-mean-square error 
(NRMSE) and mean absolute percentage error (MAPE) 
were used as indices to evaluate the predictive power of 
the model. The correlation coefficient is an index rang-
ing from − 1 to 1 that shows the degree of linear relation-
ship between the prediction and observation data. The 
correlation coefficient of 1 and − 1 represents the posi-
tive and negative correlation between the prediction and 
observation, respectively. NRMSE is obtained by dividing 
the RMSE by the range of observation (maximum–mini-
mum); the closer the NRMSE is to 0 (%), the smaller the 
difference between the prediction and observation data. 
MAPE is the degree that accounts for error in the pre-
diction; the closer the MAPE is to 0 (%), the smaller the 
difference between the prediction and observation data. 
These indices are calculated as follows:

Fig. 4  Prediction model for temperature and precipitation based on the teleconnection between precipitation and temperature. SST is the sea 
surface temperature and GPH is the geopotential height. The prediction model was constructed by extracting the time series of the grid with 
the highest correlation. T and P denote the monthly mean temperature and precipitation, respectively; and a, b, c, a’, b’, and c’ are the regression 
coefficients for the time series of the grid with the highest correlation in the SST anomaly and GPH data
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where yi denotes the observation, ŷi denotes the predic-
tion, n denotes the number of data, and Max

(
yi
)
 and 

min
(
yi
)
 denote the maximum and minimum observa-

tions, respectively.

Results
Analysis of weather characteristics during the flood season 
according to the occurrence of El Niño and La Niña
To identify the effects of ocean and atmospheric fluc-
tuations on the summer temperature and precipitation 
in Korea considering the El Niño and La Niña phenom-
ena, the data were classified into El Niño, neutral, and La 
Niña. The characteristics of the temperature and precipi-
tation during each period were compared and analysed. 
The results were obtained by comparing the distribution 
of the monthly mean temperature and precipitation data 
for each state during the flood period from June 1993 to 
September 2016.

From the distribution of the monthly mean tempera-
ture in the form of a box plot based on the classification 
of the periods (Fig.  5), the monthly mean temperature 
during the El Niño period was 19–28.1 °C and the mean 
value was lower with a wider range of distribution 

(1)NRMSE(% ) =

√
1

n

∑n
i=1

(
yi − ŷi

)2

Max
(
yi
)
−min

(
yi
) × 100

(2)MAPE =

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣×
100%

n

compared with the neutral and La Niña periods. The 
deviation range of the quartile values for each classifi-
cation was less than 1  °C and there were no significant 
characteristics for all studied periods (Table 3).

From the distribution of the monthly precipitation in a 
box plot for each classification (Fig. 6), the largest mean 
and range were noted in the La Niña period, followed 
by the neutral and El Niño periods. During the El Niño 

Fig. 5  Distribution of the monthly mean temperature as a function of classification of the period

Table 3  Distribution of the monthly temperature and 
precipitation according to the classification of the period

Class [unit: °C, mm]

El Niño Neutral La Niña

Monthly temperature

 Minimum 19.0 18.3 20.3

 First quartile 20.5 21.5 21.5

 Median 22.2 23.0 23.3

 Mean 22.6 23.2 23.4

 Third quartile 24.7 25.2 25.0

 Maximum 28.1 26.8 26.8

Monthly precipitation

 Minimum 19.0 18.3 20.3

 First quartile 20.5 21.5 21.5

 Median 22.2 23.0 23.3

 Mean 22.6 23.2 23.4

 Third quartile 24.7 25.2 25.0

 Maximum 28.1 26.8 26.8
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period, the mean monthly precipitation was 181.7  mm 
with a median of 145.7  mm. Meanwhile, the mean was 
263.7  mm with a median of 216.7  mm during the La 
Niña period, indicating a wider range of distribution. In 
the case of the neutral period, the mean was 232.1 mm 
and the median was 209.7  mm, demonstrating values 
between those of the El Niño and La Niña periods. For 
the distribution of the monthly precipitation (Table  3), 
there were differences for each classified period, suggest-
ing that the climate factors of the El Niño and La Niña 
periods directly or indirectly influenced the monthly pre-
cipitation during the flood season.

One-way analysis of variance (ANOVA) was per-
formed to quantitatively analyse the statistical sig-
nificance in the difference in the distribution of each 
classification. This analysis method is used to compare 
the variation between and within three or more groups 
to determine the significance of the difference between 
them. The results of the analysis based on the division 

of the monthly precipitation and mean temperature as 
a function of the classification of the period are listed in 
Table  4. The P-ratio is the ratio of the mean-of-squares 
between and within the groups. If the P value is within 
5% of the significance level, the difference between the 
groups was considered significant. For the monthly mean 
temperature, the P value was 0.25, indicating that the dif-
ference between the groups was not significant. In con-
trast, the P value for the monthly precipitation was 0.02, 
suggesting a statistically significant difference. There-
fore, the data characteristics for the period of each status 
should be reflected to predict the monthly precipitation.

Precipitation during the flood season is known to be 
affected by the El Niño and La Niña phenomena. Every 
summer, the warm and humid North Pacific anticy-
clone from the southwest of the Korean peninsula rises 
to the north, and the cold and humid Okhotsk sea anti-
cyclone descends from the northeast and forms a sea-
sonal rain front. If El Niño occurs during this period, 

Fig. 6  Distribution of the monthly precipitation as a function of the classification of the period

Table 4  ANOVA results for the monthly mean temperature and precipitation

Class Factor Sum-of-squares Degrees-of-
freedom

Mean square F ratio P value F critical value

Monthly temperature Between groups 14.45 2 7.23 1.38 0.25 2.33

Within group 991.69 189 5.25

Total 1,006.14 191

Monthly precipitation Between groups 159,458.8 2 79,729.41 3.91 0.02 2.33

Within groups 3,857,516 189 20,410.14

Total 4,016,975 191
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the trade winds, which blow from east to west and cause 
the spread of hot water from the Western to the East-
ern Pacific, are weakened. Correspondingly, the North 
Pacific anticyclone, which develops in the east of Japan, 
fails to receive sufficient water vapor, thereby consider-
ably inhibiting its development. As the force of the North 
Pacific anticyclone is weakened, the seasonal rain front 
cannot be formed or cannot move to the north, thereby 
affecting the southern region only. Therefore, the occur-
rence of El Niño during the rainy season results in a “dry 
rainy season” with considerably lower rainfall. Accord-
ingly, the precipitation decreases compared to the same 
period in a normal year and the number of typhoons also 
decreases. This further results in a decrease in the precip-
itation during the late summer (late August to early Sep-
tember). In contrast, the opposite occurs due to the La 
Niña phenomenon. Particularly, when La Niña occurs in 
the summer, the number of typhoons in the Korean Pen-
insula increases and the precipitation during the second 
rainy season tends to increase.

This identifies the impacts of El Niño and La Niña on 
precipitation during the flood season in Korea. There-
fore, developing a model to predict monthly precipitation 
in the summer considering the classification of the period 
(El Niño/La Niña/neutral) would increase the predictive 
power.

Seasonal climate prediction based on lagged 
teleconnection
General seasonal prediction based on teleconnection
To identify the climate factors that will be used as inde-
pendent variables for the prediction model of tempera-
tures and precipitation in the target basin, the correlation 
between the meteorological data, and global-scale ocean 

and atmospheric climate data were analysed. The 
monthly mean temperature and observation data col-
lected from the six weather stations were used as the 
representative values. The global-scale SST anomaly and 
GPH data from the same period were also used. The cor-
relation coefficient was calculated for each grid in the 
GCM considering the lag time (1–6  months). The con-
ceptual diagram is shown in Fig. 1.

A linear regression model was constructed to predict 
temperature and precipitation using the SST anomaly 
and GPH data with the highest correlation calculated 
for each lag time. The time series data of the grid with 
the highest correlation coefficient (for a lag time greater 
than the lead time) was used as the independent variable 
of the prediction model. For example, to achieve accurate 
predictions one month ahead, all teleconnection climate 
factors selected with lag times of 1–6 months can be used 
as independent variables. However, for predictions two 
months ahead, the teleconnection climate factors with 
a lag time of one month were excluded. Table 5 lists the 
equations of the prediction model for temperature and 
precipitation based on teleconnection as a function of 
lag time. In the model, the SST anomaly and GPH were 
expressed as SST and GPH, respectively, and the num-
bers in the parentheses indicate the lag time.

The results obtained by the prediction model for the 
monthly mean temperature are shown in Fig.  7 and 
Table  6. As shown in the graphs, the prediction val-
ues were slightly higher than the observation results 
obtained in September 2014 for lead times in the range 
of 1–4 months and temperature was generally underesti-
mated from July to August 2013. Nonetheless, the trend 
of the observation matched well with the general predic-
tion for all lead times.

Table 5  Temperature and precipitation prediction model based on the teleconnection as a function of the lag time

Lag time Prediction model

1 month Monthly precipitation P = a1 ·SST(−1)+a2 ·SST(−2)+· · ·+a6 ·SST(−6)+b1 ·GPH(−1)+b2 ·GPH(−2)+· · ·+b6 ·GPH(−6)

Monthly mean temperature T = á1 ·SST(−1)+ á2 ·SST(−2)+· · ·+ á6 ·SST(−6)+ ´b1 ·GPH(−1)+ ´b2 ·GPH(−2)+· · ·+
´b6 ·GPH(−6)

2 months Monthly precipitation P = a1 ·SST(−2)+a2 ·SST(−3)+· · ·+a5 ·SST(−6)+b1 ·GPH(−2)+b2 ·GPH(−3)+· · ·+b5 ·GPH(−6)

Monthly mean temperature T = á1 ·SST(−2)+ á2 ·SST(−3)+· · ·+ á5 ·SST(−6)+ ´b1 ·GPH(−2)+ ´b2 ·GPH(−3)+· · ·+
´b5 ·GPH(−6)

3 months Monthly precipitation P = a1 ·SST(−3)+a2 ·SST(−4)+· · ·+a4 ·SST(−6)+b1 ·GPH(−3)+b2 ·GPH(−4)+· · ·+b4 ·GPH(−6) 

Monthly mean temperature T = á1 ·SST(−3)+ á2 ·SST(−4)+· · ·+ á4 ·SST(−6)+ ´b1 ·GPH(−3)+ ´b2 ·GPH(−4)+· · ·+
´b4 ·GPH(−6) 

4 months Monthly precipitation P = a1 · SST(−4)+ a2 · SST(−5)+ a3 · SST(−6)+ b1 · GPH(−4)+ b2 · GPH(−5)+ b3 · GPH(−6)

Monthly mean temperature T = á1 · SST(−4)+ á2 · SST(−5)+ á3 · SST(−6)+ ´b1 · GPH(−4)+ ´b2 · GPH(−5)+ ´b3 · GPH(−6)

5 months Monthly precipitation P = a1 · SST(−5)+ a2 · SST(−6)+ b1 · GPH(−5)+ b2 · GPH(−6)

Monthly mean temperature T = á1 · SST(−5)+ á2 · SST(−6)+ ´b1 · GPH(−5)+ ´b2 · GPH(−6)

6 months Monthly precipitation P = a1 · SST(−6)+ b1 · GPH(−6)

Monthly mean temperature T = á1 · SST(−6)+ ´b1 · GPH(−6)
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The results obtained by the prediction model for the 
monthly precipitation are shown in Fig. 8 and Table 7. As 
shown in the graphs, the model shows overestimations 
between observed data. Specifically, for the results from 
the flood season of 2015, the prediction was consider-
ably greater than the actual precipitation, which has a low 
value.

The prediction model was evaluated using the cor-
relation coefficient between the predicted and observed 

monthly mean temperatures and precipitation for each 
lead time. In Table  8, the correlation coefficient was 
0.6 or higher for the monthly mean temperature for all 
lead times. With the exception of the predicted results 
obtained for a lead time of six months, outstanding 
results with a correlation coefficient of 0.7 were obtained. 
For the predicted monthly precipitation, the overall cor-
relation coefficient was less than 0.3 regardless of the lead 
time. Therefore, the prediction model based on lagged 

Fig. 7  Results of the temperature prediction model based on teleconnection

Table 6  Results of the temperature prediction model based on teleconnection

Month and year of 
prediction

Observation (°C) Prediction by lead time (°C)

1 month 2 months 3 months 4 months 5 months 6 months

June 2013 23.2 23.2 23.0 22.5 22.3 22.8 21.0

July 2013 26.2 25.4 25.1 24.6 24.8 25.2 24.3

August 2013 26.8 25.1 24.8 24.4 24.5 24.9 24.1

September 2013 20.4 19.7 19.5 19.2 19.7 21.5 20.7

June 2014 22.2 22.8 22.5 22.0 21.9 22.2 21.9

July 2014 25.1 26.2 26.0 25.6 25.3 26.1 24.8

August 2014 23.5 26.2 25.9 25.3 25.1 25.7 24.3

September 2014 20.5 23.2 23.9 22.5 24.2 21.9 21.5

June 2015 22.3 24.6 24.7 23.3 23.1 24.3 22.3

July 2015 24.5 26.4 26.2 25.7 25.7 26.3 25.7

August 2015 25.1 26.3 25.9 25.1 25.0 25.2 24.5

September 2015 20.1 21.7 21.3 20.5 20.5 21.0 21.2

June 2016 22.7 23.1 22.8 22.3 22.3 22.4 20.6

July 2016 25.7 25.6 25.1 24.3 24.2 24.9 24.2

August 2016 26.7 26.1 25.2 24.2 24.1 25.1 23.7

September 2016 21.4 22.1 21.7 21.5 21.6 24.2 25.1
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Fig. 8  Results of the precipitation prediction model based on teleconnection

Table 7  Results of the precipitation prediction model based on teleconnection

Month and year of 
prediction

Observation (mm) Prediction according to lead time (mm)

1 month 2 months 3 months 4 months 5 months 6 months

June 2013 157.1 189.9 172.1 147.0 237.8 207.9 285.5

July 2013 226.9 379.0 363.8 342.7 397.0 326.0 299.8

August 2013 134.9 283.6 288.8 281.5 276.1 224.4 220.8

September 2013 134.9 185.9 167.1 160.1 180.2 222.3 262.6

June 2014 94.3 225.7 206.6 158.3 131.8 106.1 155.5

July 2014 137.1 374.7 379.6 340.4 305.9 289.8 259.0

August 2014 296.8 310.9 300.3 301.1 282.0 193.4 200.5

September 2014 118.3 102.4 89.3 67.8 47.7 141.5 194.9

June 2015 99.5 355.9 395.1 341.1 271.6 217.2 261.7

July 2015 145.7 408.5 386.3 325.0 261.1 254.7 237.9

August 2015 70.2 378.2 396.3 306.3 264.5 232.3 246.0

September 2015 23.7 388.6 404.6 345.5 328.0 272.0 216.9

June 2016 55.6 202.5 188.4 134.8 103.6 85.8 -6.2

July 2016 367.7 394.9 396.7 343.5 289.0 266.0 256.0

August 2016 68.2 466.6 495.7 382.1 381.9 320.0 290.9

September 2016 150.9 271.6 276.4 238.3 225.3 246.0 285.7

Table 8  Correlation coefficient of the prediction models based on teleconnection according to lead time

Lead time 1 month 2 months 3 months 4 months 5 months 6 months

Correlation coefficient

 Monthly mean temperature 0.82 0.76 0.80 0.73 0.78 0.63

 Monthly precipitation 0.11 0.05 0.19 0.22 0.21 0.28
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teleconnection was applicable to the monthly mean tem-
perature but not to the monthly precipitation.

Development and application of the prediction model 
considering the occurrence of El Niño and La Niña 
phenomena
In the previous section, the prediction obtained by the 
general prediction model for monthly precipitation did 
not simulate the observation well for the flood season of 
2015 when El Niño occurred. Therefore, in this study, a 
model for predicting the monthly mean temperature and 
precipitation was presented considering the effects of El 
Niño and La Niña.

To consider the effects of the El Niño and La Niña phe-
nomena, the training period from June 1993 to Septem-
ber 2012 was divided into three stages: El Niño, La Niña, 
and neutral. The observed temperature and precipitation 
data, and SST anomaly and GPH data were established 
according to the classification of the status. A regression 
model was constructed based on the analysis of the tele-
connection as a function of the lag time. After construct-
ing three prediction models for each status, the monthly 
mean temperature and precipitation were predicted 
using their corresponding model during the verification 
period of June 2013 to September 2016.

The prediction model methods for the monthly mean 
temperature and precipitation based on the effects of 
El Niño and La Niña were referred to as the “modified 
method” to distinguish it from the general method. The 
results of the prediction model for the monthly mean 
temperature using the modified method are shown in 

Fig. 9 and Table 9. According to the results, the predic-
tion reflected the tendency of the observation data except 
for the prediction with a lead time of 6 months. In addi-
tion, the temperature predictions in June 2015 were over-
estimated for all lead times. The results of the prediction 
model for the monthly precipitation using the modified 
method are shown in Fig. 10 and Table 10. In the result-
ing graphs, the precipitation was overestimated but 
the predicted precipitation was reduced in 2015 as the 
drought during this period was considered (Fig. 11).    

The modified prediction model was evaluated using 
the correlation coefficient between the predicted and 
observed monthly mean temperatures and precipitation 
for each lead time. As shown in Table 11, the predicted 
monthly mean temperature demonstrated a correla-
tion coefficient ≤ 0.6 for all lead times and the predicted 
monthly precipitation demonstrated a correlation coef-
ficient in the range of 0.43–0.65 depending on the lead 
time.

Comparison of the results of the seasonal prediction models
In this section, a comparative analysis of the predicted 
results obtained using the modified method and gen-
eral method was performed, and the applicability of the 
modified method was evaluated. The correlation coeffi-
cients of the predicted results obtained using the general 
method and modified methods with the observed results 
were obtained as a function of the lead time. The NRMSE 
and MAPE values are listed in Tables 12 and 13. In com-
parison of the results obtained using the two methods, 

Fig. 9  Results of the modified temperature prediction model
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lower NRMSE and MAPE values denote better predictive 
power.

Comparing Figs.  7 and 9, the general method accu-
rately predicted the temperature, which corresponds 
with the observed values, while the modified method 
overestimated the temperature in some periods. Com-
paring the evaluation indicators in Table  12, the pre-
dicted results obtained by applying the general model 
were more accurate than the modified method. For the 

monthly precipitation, the general method overesti-
mated the values during 2015, which was likely caused 
by the effects of El Niño on precipitation. As a result 
of the application of the modified method, which con-
sidered the effects of El Niño, the prediction errors of 
the 2015 results were reduced. The results in Table 13 
suggest that the modified method achieved outstand-
ing results, except for the NRMSE results with lead 
times of 5 and 6 months. However, the NRMSE results 

Table 9  Results of the temperature prediction model using the modified method

Month and year of 
prediction

Observation (℃) Prediction according to lead time (℃)

1 month 2 months 3 months 4 months 5 months 6 months

June 2013 23.2 22.5 23.3 22.1 20.9 20.7 25.7

July 2013 26.2 25.1 25.8 24.9 24.8 24.7 28.0

August 2013 26.8 24.7 25.1 24.5 24.0 23.9 26.0

September 2013 20.4 20.1 20.3 19.7 20.6 20.7 25.1

June 2014 22.2 23.4 24.0 22.8 21.4 21.2 27.7

July 2014 25.1 26.1 26.5 25.6 24.5 24.5 28.7

August 2014 23.5 24.7 25.6 24.7 24.1 23.8 26.5

September 2014 20.5 22.5 22.5 21.4 20.6 20.8 26.7

June 2015 22.3 30.3 31.6 28.7 27.9 28.6 31.9

July 2015 24.5 26.4 26.4 25.5 25.3 25.4 25.9

August 2015 25.1 24.5 24.4 24.5 24.6 23.8 23.9

September 2015 20.1 18.7 18.8 20.0 20.3 20.5 20.8

June 2016 22.7 22.0 23.3 22.3 21.4 21.3 25.1

July 2016 25.7 25.1 26.4 24.8 23.9 23.8 28.6

August 2016 26.7 19.9 26.0 26.1 27.2 26.2 29.6

September 2016 21.4 26.2 26.4 26.8 28.1 24.4 29.7

Fig. 10  Results of the modified precipitation prediction model
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obtained by the general method and modified method 
were relatively similar. Therefore, it is more advanta-
geous to apply the general model to predict the average 
monthly temperature data and the modified model to 
predict the monthly precipitation data.

Discussion
To explain the teleconnection between each climate fac-
tor, and the monthly mean temperature and precipita-
tions in the target basin, the global-scale GPH and SST 
anomaly data are presented in Appendix 1 starting from 

Table 10  Results of the precipitation prediction model using the modified method

Month and year of 
prediction

Observation (mm) Prediction according to lead time (mm)

1 month 2 months 3 months 4 months 5 months 6 months

June 2013 157.1 237.7 287.0 281.6 276.1 227.7 310.9

July 2013 226.9 410.8 467.3 464.1 467.6 436.9 424.6

August 2013 134.9 263.1 403.4 401.6 399.9 343.6 315.0

September 2013 134.9 185.6 138.4 137.0 171.3 251.0 349.7

June 2014 94.3 300.6 339.3 328.4 328.3 268.3 364.4

July 2014 137.1 395.8 515.4 508.8 511.1 481.2 473.0

August 2014 296.8 318.2 416.5 407.1 422.8 369.0 350.1

September 2014 118.3 68.2 236.2 214.6 219.4 219.4 314.2

June 2015 99.5 422.9 397.5 391.1 413.6 240.5 334.7

July 2015 145.7 404.9 319.6 306.1 315.8 274.6 359.6

August 2015 70.2 256.6 252.5 183.1 169.1 216.0 243.6

September 2015 23.7 0.0 0.0 0.0 0.0 54.5 128.1

June 2016 55.6 241.3 321.5 316.4 308.6 253.4 300.1

July 2016 367.7 362.9 503.1 485.4 492.2 444.4 428.9

August 2016 68.2 325.5 571.2 346.2 289.2 318.3 194.7

September 2016 150.9 211.2 302.0 134.5 170.5 174.2 148.6

Fig. 11  Observed data of the monthly precipitation and mean temperature during the flood season from June 1993 to September 2016.

Table 11  Correlation coefficient according to the lead time using the modified method

Lead time 1 month 2 months 3 months 4 months 5 months 6 months

Correlation coefficient

 Monthly mean temperature 0.27 0.48 0.53 0.47 0.53 0.28

 Monthly precipitation 0.43 0.46 0.56 0.61 0.65 0.56
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5 months before the beginning of the flood season (Janu-
ary) to the end of the flood season (September) from 
1993 to 2016. The years with the highest total precipita-
tion were 1998, 2011, and 2003; the years with the lowest 
total precipitation were 2015, 1994, and 2001. The years 
with the highest monthly mean temperatures were 2010, 
2013, and 2016; the years with the lowest monthly mean 
temperatures were 1993, 2003, and 2002 (Fig. 12).

Among the three years with the highest total pre-
cipitation, La Niña occurred during the flood season 
in 1998 and 2011. In 2003, the SST anomaly data sug-
gested the lower SST in the El Niño and La Niña moni-
toring regions, which is attributed to the strengthened 
east–west trade wind. For these years, SST increased 
in the Western Pacific waters during the flow season 
from June to September. Conversely, in the years with 
the lowest total precipitation, El Niño occurred in 
2015 and 1994. While the SST in the sea area near the 
Korean peninsula was higher than the surrounding area 
during the flood season in 1994 and 2001, the SST in 
the Philippine Sea was lower than that in the surround-
ing area. In 2015, the SST in all Western Pacific waters 
were consistently low during the flood season. Contrary 
to the years with the high levels of precipitation, the 

east–west trade wind was weakened and the hot water 
from the Western Pacific region spread wider toward 
the Eastern Pacific region.

Meanwhile, high GPH anomaly data were noted from 
the mid-Pacific to the Korean regions during the years 
with the highest total precipitation in the order of 1998, 
2011, and 2003. In the years with the lowest total pre-
cipitation, low GPH values, in the order of 2015, 1994, 
and 2001, were observed in the coastal waters of Peru 
in the Eastern Pacific region from April to May, which 
migrated in the northwest direction during the flood sea-
son to eventually pass the Korean Peninsula during the 
flood season. Therefore, the results here indicate that the 
monthly GPH distribution affected the precipitation dur-
ing the flood season.

The correlation between the monthly mean tempera-
ture and SST anomaly data suggested that the monthly 
mean temperature is closely associated with the SST in 
the Korean seas. In other words, regardless of the SST in 
the surrounding sea areas, the monthly mean tempera-
ture varies according to the SSTs in the Korean Seas. The 
high and low monthly mean temperatures were predicted 
when the GPH near the Korean Peninsula was high and 
low, respectively.

Table 12  Comparison of the predicted results of the monthly mean temperature obtained using the general and modified model 
according to the lead time

Lead time (months) Correlation coefficient NRMSE (℃) MAPE (%)

Statistics Statistics Statistics

General Modified General Modified General Modified

1 0.8 0.3 21.8 46.3 5.2 9.2

2 0.8 0.5 22.9 43.4 5.3 8.2

3 0.8 0.5 20.0 34.3 4.5 6.5

4 0.7 0.5 22.5 37.1 4.8 7.1

5 0.8 0.5 21.4 32.5 5.2 6.7

6 0.6 0.3 26.4 65.7 6.0 15.9

Table 13  Comparison of the predicted results of the monthly precipitation obtained using the general and modified model 
according to the lead time

Lead time (months) Correlation coefficient NRMSE (mm) MAPE (%)

Statistics Statistics Statistics

General Modified General Modified General Modified

1 0.1 0.4 60.0 39.3 244.9 127.1

2 0.1 0.5 62.1 44.8 251.3 141.6

3 0.2 0.6 48.6 37.1 198.3 133.6

4 0.2 0.6 44.7 42.5 182.6 169.3

5 0.2 0.7 37.1 38.8 148.2 134.4

6 0.3 0.6 37.5 38.1 148.3 140.4
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In summary, precipitation was affected by the occur-
rence of El Niño and La Niña, change in the SST of the 
seawater, which moved from the Pacific equator to the 
Western Pacific and Indian Ocean, and change in the 
GPH, which moved from the Eastern Pacific region in the 
northwest direction. The monthly mean temperature was 
only affected by the SST and GPH near the Korean Pen-
insula, indicating that the El Niño or La Niña phenomena 
have no significant effects on the teleconnection.

The grids with the highest teleconnection coefficient 
were used as the predictors of the general model and 
modified method according to the lag time (Appendix 2 
and 3). From Appendix 2, it is difficult to determine sig-
nificant characteristics by looking at the position of the 
grid displayed in the SST anomaly data as a function of 
lag time. However, by observing the position of the grid 
displayed in the GPH data, the grids of the mid-latitudes 
are characterized by a high positive correlation.

In the case of the delayed teleconnection coefficients for 
the El Niño, La Niña, and neutral states in Appendix 3, the 
grid with a high correlation coefficient of the SST anom-
aly with the monthly precipitation during the El Niño and 
La Niña periods moved toward the West Pacific region 
from the equator at a lag time of six months to one month 
(Figs. 26, 28). From the correlation coefficients of the GPH 
with the monthly precipitation during the El Niño and La 
Niña periods, positive correlations gradually appeared in 
the northwest direction across the Pacific Ocean in the 
waters near Peru during the La Niña period and nega-
tive correlations were observed during the El Niño period 
with high positive correlations at its edge (Figs. 26, 28). In 
the neutral period, a grid with a position similar to that 
of the general model in Appendix 2 was selected for the 
monthly precipitation and a grid with a mid-latitude posi-
tion selected similar to that in Appendix  2 was selected 
for the monthly mean temperature (Fig. 27).

Therefore, the model improved by taking into con-
sideration the climate factors that affect the actual 

precipitation using the modified method with the clas-
sified period. The monthly mean temperature was not 
directly affected by the occurrence of El Niño or La Niña 
phenomena, as indicated by the insignificant difference 
in the results obtained using the general model and mod-
ified method.

Conclusions
This study attempted to achieve seasonal predictions 
using delayed teleconnection considerations the effects of 
the El Niño or La Niña phenomena on the temperature 
and precipitation during the flood season. By comparing 
the results obtained by the general and modified meth-
ods, the predictive power for precipitation improved 
using the modified method. In contrast, there was no sig-
nificant difference found in terms of the predictive power 
for the temperature. Thus, it is more appropriate to use 
the general method to predict temperature. This was also 
confirmed by the global-scale GPH and SST anomaly 
data of the years with the highest and lowest monthly 
mean temperatures and precipitations, and the positions 
of the grids used as the predictors for the study model 
in the Appendices. Therefore, this study improved the 
predictive power for precipitation at mid-latitude points 
that are heavily affected by climate variability, including 
El Niño and La Niña. Based on the results, future studies 
could improve the predictive performance for seasonal 
climate by considering more climate factors associated 
with teleconnection.

Appendix 1: Global‑scale geopotential height 
(GPH) and sea surface temperature (SST) anomaly
See Figs. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23.
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Fig. 12  Global-scale GPH and SST anomaly (January to September 1993)
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Fig. 13  Global-scale GPH and SST anomaly (January to September 1994)
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Fig. 14  Global-scale GPH and SST anomaly (January to September 1998)
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Fig. 15  Global-scale GPH and SST anomaly (January to September 2001)
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Fig. 16  Global-scale GPH and SST anomaly (January to September 2002)
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Fig. 17  Global-scale GPH and SST anomaly (January to September 2003)
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Fig. 18  Global-scale GPH and SST anomaly (January to September 2010)
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Fig. 19  Global-scale GPH and SST anomaly (January to September 2011)
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Fig. 20  Global-scale GPH and SST anomaly (January to September 2013)
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Fig. 21  Global-scale GPH and SST anomaly (January to September 2014)
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Fig. 22  Global-scale GPH and SST anomaly (January to September 2015)
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Fig. 23  Global-scale GPH and SST anomaly (January to September 2016)
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Fig. 24  Teleconnection coefficients between the global-scale climate indices and monthly precipitation
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Fig. 25  Teleconnection coefficients between the global-scale climate indices and monthly mean temperature
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Fig. 26  Teleconnection coefficients between the global-scale climate indices and monthly precipitation during the El Niño period



Page 31 of 37Jung and Kim ﻿Geoscience Letters             (2022) 9:4 	

Fig. 27  Teleconnection coefficients between the global-scale climate indices and monthly precipitation during the neutral period
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Fig. 28  Teleconnection coefficients between the global-scale climate indices and monthly precipitation during the La Niña period



Page 33 of 37Jung and Kim ﻿Geoscience Letters             (2022) 9:4 	

Fig. 29  Teleconnection coefficients between the global-scale climate indices and monthly mean temperature during the El Niño period
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Fig. 30  Teleconnection coefficients between the global-scale climate indices and monthly mean temperature during the neutral period
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Fig. 31  Teleconnection coefficients between the global-scale climate indices and monthly mean temperature during the La Niña period
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Appendix 2: Teleconnection coefficients according 
to the lag time
See Figs. 24, 25.

Appendix 3: Teleconnection coefficients according 
to the lag time for the El Niño/Neutral/La Niña 
periods
See Figs. 26, 27, 28, 29, 30, 31.
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