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Abstract 

The geological setting of Jakarta and its immediate surroundings are poorly understood, yet it is one of the few 
places in Indonesia that is impacted by earthquakes from both the Java subduction zone and active faults on land. In 
this study, a borehole seismic experiment with low noise characteristics was deployed to record seismic activity on 
the ~ E-W oriented Baribis Fault, which is ~ 130 km long, passes to the south of Jakarta, and is only ~ 20 km away at 
its nearest point. A primary objective of this study is to determine whether this fault is seismically active, and there-
fore, whether it might pose a threat to nearby population centers, including Jakarta in particular. A total of seven 
broadband instruments that spanned Jakarta and the surrounding region were installed between the end of July 
2019 and August 2020, during which time we were able to detect and locate 91 earthquakes. Two earthquakes were 
located close to the Baribis Fault line, one of which was felt in Bekasi (southeast of Jakarta) where it registered II-III on 
the Modified Mercalli Intensity (MMI) scale. The focal mechanism solutions of these events indicate the presence of a 
thrust fault, which is in good agreement with previous studies, and suggest that the Baribis Fault is active.
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Introduction
Jakarta, the capital city of Indonesia, located in the west-
ern Java, is underpinned by a geologically complex ter-
rane that arises from the convergence of the Australian 
Plate and the Eurasian Plate along the Java Trench. In 
addition to earthquakes generated along this subduction 
zone, Jakarta and its surroundings are also affected by 
earthquakes that rupture on active crustal faults in west-
ern Java, such as the Cimandiri Fault (Katili and Soetadi 
1971; Setyadji et al. 1997), Lembang Fault (Daryono et al. 
2018), Cipamingkis Fault (Gunawan and Widiyantoro 
2019), and Garut Faults (Supendi et al. 2018). These active 
faults are located close to areas with high population 

densities, such as Jakarta and Bogor. In the case of the 
Baribis Fault, whose status (seismically active or inac-
tive) is unknown, the result of a previous study using 
ambient noise tomography (ANT) reveals it as a velocity 
contrast that passes to the south of Jakarta (Rosalia et al. 
2019), which confirms the finding of Simandjuntak and 
Barber (1996) based on geological mapping (see Fig. 1). 
Furthermore, based on geodetic constraints from Global 
Positioning System data, Koulali et al. (2017) produced a 
kinematic model of convergence of the Australian Plate 
and the eastern Sunda Arc that involves slip partitioning 
between the Java Trench and a structure extending nearly 
E-W across Java. Although most of the convergence is 
being accommodated by the Java megathrust, the model 
requires a small component to be accommodated along 
the Baribis Fault.

The Jakarta Basin, which hosts Indonesia’s capital 
city, has an average elevation of ~ 7  m and a variable 
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thickness that ambient noise studies suggest may exceed 
1  km in some places (Saygin et  al. 2016). Saygin et  al. 
(2017) described an autocorrelation study in Jakarta that 
revealed the underlying P-wave velocity structure; this 
was used to infer variations in basement depth beneath 
the thick sedimentary basin that hosts Indonesia’s capi-
tal city. Cipta et  al. (2018) applied trans-dimensional 
Bayesian inversion of H/V spectral ratios of fundamental 
mode Rayleigh waves extracted from the ambient seismic 
noise wavefield to reveal low seismic velocities beneath 
the northern to central part of Jakarta, which will poten-
tially contribute to seismic amplification and basin reso-
nance. Ridwan et al. (2016, 2019) defined an engineering 
bedrock morphology with a depth range of 350–725  m 
beneath Jakarta, and suggested that the region could be 
severely affected by nearby earthquakes due to ground 
motion amplification. Typically, earthquakes felt in the 
Jakarta area occur on the subducting slab that is part 
of the northerly migrating Australian Plate. Histori-
cally, there are two significant earthquakes that resulted 
in fatalities and the collapse of buildings in Jakarta; 
these occurred on January 5, 1699 and January 22, 1780 
(Musson 2012; Wichmann 1918). Nguyen et  al. (2015) 

modeled the 1699 event and suggested that a ~ Mw 8.0 
earthquake occurred in the subducting slab at a depth 
of around 160 km. During the 1780 event, 27 structures 
collapsed in Jakarta (Musson 2012; Wichmann 1918). 
In a recent seismic study using the regional network of 
the Meteorology, Climatology, and Geophysics Agency 
(BMKG) in West Java, Supendi et al. (2018) did not detect 
much seismicity around Jakarta, likely due to the lack of 
stations and the presence of high levels of anthropogenic 
noise. The use of borehole instruments will improve 
coverage and reduce the detection of such noise, which 
would permit smaller events to be recorded.

In this study, earthquake monitoring was carried out by 
deploying seven borehole seismometers (Fig. 1; Table 1) 
around the Baribis Fault near Jakarta. Despite prior work 
in this area (e.g., Simandjuntak and Barber 1996 and 
Rosalia et al. 2019), it is still unclear whether the fault is 
currently active and may pose a risk to Jakarta.

Data and method
We completed a temporary installation of seven bore-
hole seismometers in July–August 2019, as part of the 
collaboration between Institut Teknologi Bandung (ITB) 

Fig. 1  Map of the study area. Blue and green inverted triangles are the borehole and BMKG seismic stations, respectively, used in this study; black 
line represents the Baribis Fault extracted from Simandjuntak and Barber (1996); left inset shows the location of the western part of West Java (red 
rectangle) with respect to the Indonesian region; right inset shows the location of the study area (black rectangle) with respect to the western part 
of Java. Red lines correspond to the other major crustal faults, including Cimandiri and Lembang Faults which were extracted from Irsyam et al. 
(2017, 2020) and the Cipamingkis Fault (Gunawan and Widiyantoro 2019)
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and PT. Resuransi Maipark Indonesia. The two first seis-
mometers were deployed at the end of July 2019. Five 
more seismometers were then deployed in early August 
2019. The station design consists of three-component 
(3C) C100 wideband seismometers deployed at a depth 
of between 4 and 11 m below ground level using a PVC 

pipe (Fig. 2a), and a Sri32L Geobit digitizer placed on the 
surface in a compact shelter 1 m3 in size (Fig. 2b and c). 
The seismometers have a flat response between 10 s and 
98 Hz, a sensitivity of 1500 V/m/sec on all components, 
and the signal is digitized at 32 bit resolution. In this 
study, a sample rate of 100 sps is used. The drilling of the 
borehole was assisted by a digger machine, and the mini 
shelter was made of iron to protect the instruments from 
theft or damage (Fig.  2c). The borehole seismic stations 
were powered by 12 Volt 75 Ah lead-acid car batteries, 
which were replaced approximately every 1.5  months. 
Examples of 3C seismograms recorded by the borehole 
stations are shown in Additional file 1: Fig. S1.

To determine the quality of the seismogram data, the 
average of the recorded noise level was evaluated by com-
puting a probability density function (PDF) and plotting 
the probabilistic power spectral density (PPSD) (Fig. 3 for 
borehole stations and Additional file 1: Fig. S2 for BMKG 
stations; the seismometer frequency responses are shown 
in Additional file 1: Fig. S3). To do this, we removed the 

Table 1  The location of seven borehole stations used in this 
study

Station name Latitude (deg.) Longitude (deg.) Depth (m)

BAR1 − 6.3506 106.8891 10

BAR2 − 6.4579 107.0383 4

BAR3 − 6.2720 106.9257 7

BAR4 − 6.4977 106.7880 9

BAR5 − 6.3403 106.6429 11

BAR6 − 6.3067 107.0640 8

BAR7 − 6.2133 106.8317 10

Fig. 2  Photographs of instrumentation and example field sites. a C100 wideband seismometer, b Sri32L Geobit digitizer, and c borehole 
instrumentation at BAR6 in Bekasi
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Fig. 3  PPSD for stations a BAR1, b BAR2, c BAR3, d BAR4, e BAR5, f BAR6, and g BAR7. Each plot was constructed using 9648 power spectral 
densities (PSDs) from August to November 2019. White dashed lines indicate the boundaries of 90 percent of the data distribution in each period. 
Red lines depict high- and low-noise models (Peterson 1993)
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mean, detrended, and then deconvolved the instrument 
response of the seismogram data without prior bandpass 
filtering. The signal was then windowed using the Han-
ning tapered window function with a window length of 
10 min, making sure that each of these windows did not 
overlap one another. The PPSD was calculated using a 
standard FFT algorithm, and the results were interpo-
lated logarithmically. The PPSD results from all win-
dows at each station were then stacked. The PDF was 
calculated using an adaptive kernel density estimation 
algorithm based on a linear diffusion process (Botev and 
Grotowski 2010). The PDF creation process was done 
iteratively to obtain the optimal bandwidth by consid-
ering the most common linear diffusion with the same 
stationary density as the estimated pilot density. The pro-
gram for calculating PDFs with adaptive kernel density 
estimates was created by Botev (2016) and calculations 
were performed using the vertical component seismo-
grams (BHZ) only.

Data processing was then carried out using two stages: 
(i) event identification using the FilterPicker Algorithm 
(Lomax et  al. 2012) and (ii) manual picking of P- and 
S-wave arrival times of 3-component waveforms using 
Seisgram2K (Lomax and Michelini 2009). The earth-
quake hypocenters were then determined using the 
Hypoellipse software (Lahr 1979). Hypoellipse uncertain-
ties are derived from the joint hypocentral confidence 
region by projecting the joint hypocentral error ellip-
soid onto the corresponding regions and by scaling the 
major axis with the corresponding ratios of the χ2 value 
for the different degrees of freedom (Lahr 1989). Fitting 
of the displacement spectrum amplitude was done using 
a Brune-type model (Havskov and Ottemöller 2010) to 
calculate the moment magnitude (Mw), and the ISOLA 
package (Sokos and Zahradnik 2008) was used to per-
form moment tensor inversion from the borehole and 
BMKG seismic stations (see inverted blue and green tri-
angles in Fig. 1). For determining the focal mechanisms, 
the observed waveforms were pre-processed using a 
bandpass filter of 0.04 Hz to 0.09 Hz. The data processing 
stage of focal mechanism analysis is as follows: (i) conver-
sion of data from SAC to ASCII format; (ii) input of the 
earthquake hypocenter location (longitude, latitude, and 
depth) and origin time; (iii) station selection; (iv) removal 
of instrument response, trial seismic source depth, and 
(v) Green’s function calculation using the discrete wave-
number method (Bouchon 1981) to create a synthetic 
signal based on the velocity model. The match between 
the observed and best-fitting synthetic data is character-
ized by the overall variance reduction. The time window 
chosen for each waveform starts from the event origin 
time, and ends when the earthquake signal is no longer 
visible above the background noise. For hypocenter 

relocation and focal mechanism determination, we used 
the 1-D seismic velocity model from Koulakov et  al. 
(2007) combined with AK135 (Kennett et al. 1995). As of 
August 2020, the array had recorded 43 local earthquakes 
inland and 48 regional earthquakes in the southern part 
of West Java (Additional file 1: Figs. S4 and S5). We suc-
cessfully calculated the moment magnitude of a subset of 
82 events as listed in Table S1, after requiring a signal-to-
noise ratio > 2.0 to ensure good quality results.

Results and discussion
The background noise levels from the seven borehole sta-
tions are shown in Fig.  3. The PPSD shows that all sta-
tions provide similar results for periods greater than 50 s. 
Differences between stations were observed at shorter 
periods; this likely represents different levels of anthro-
pogenic noise between stations. Station BAR4 had the 
lowest level of anthropogenic noise, whereas the highest 
was at Station BAR6. Generally, the range of differences 
in the noise level of each borehole station is relatively 
small compared with installations on the surface (see, 
e.g., Miller et al. 2016), which indicates the effectiveness 
of this approach in reducing noise contamination. Fig-
ure 4 shows an example comparison of waveforms from 
borehole and BMKG surface stations. The seismic wave-
forms recorded by both kinds of seismometer are quite 
consistent, although the borehole seismometers appear 
to be less noisy.

We detected and located 91 earthquakes from one year 
of data, which together yielded a total of 489 and 458 
P- and S-wave arrival times, respectively. To check the 
reliability of the hypocenter solutions, a Wadati diagram 
of arrival times was plotted (Fig. 5). In general, a Vp/Vs 
ratio of 1.75 was obtained. This value is close to the global 
average Vp/Vs for crust which is 1.73 (Stein and Wyses-
sion 2003), indicating that our picking of P- and S-wave 
arrival times was robust. We plotted the magnitude–fre-
quency relation (Fig. 6) for earthquakes recorded by the 
borehole stations in the neighborhood of the array. Com-
parison with equivalent results from the existing regional 
stations from BMKG shows that the magnitude com-
pleteness (Mc) of our borehole stations is lower than the 
Mc of the BMKG stations, indicating that the borehole 
array can record smaller events.

Generally, the earthquake hypocenter locations deter-
mined from borehole and BMKG stations are divided 
into local and regional earthquakes with magnitudes 
ranging from Mw 2.4 to Mw 5.5. Local earthquakes are 
located inland, while regional earthquakes are located 
in the southern part of Banten and West Java (Fig.  7a). 
Uncertainties and travel-time residuals associated with 
hypocenter location of all events recorded by the bore-
hole and BMKG stations are shown in Additional file 1: 
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Fig. 4  a Map of event and stations used in the comparison of waveform and spectrum of an earthquake (Mw 3.2 on March 29, 2020) at adjacent 
BMKG (JBJI) and borehole (BAR4) stations. b The earthquake waveforms. c The corresponding spectrum. We show normalized time series of vertical 
component seismogram (top panel) and the evaluated signal and noise spectra (bottom panel). The window length used in the calculation of the 
noise and signal spectra are 5 s before and 5 s after the P-wave arrival time, respectively. In the top panel the signal window is represented as a blue 
shaded window, while noise is enclosed by a gray shaded window. In the spectrum panel, the gray curve represents the noise spectrum and the 
black curve is the signal spectrum
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Fig. S6 and Fig. S7, respectively. We identified local earth-
quakes in four regions: Region 1 located west-southwest 
(WSW) of Mt. Salak, Region 2 located north of Mt. 
Gede, Region 3 located south of Purwakarta, and Region 
4 located on the Baribis Fault (Fig. 7b). From August to 
September 2019, there was a swarm of earthquakes in 
Region 1, which occurred ~ 13  km WSW of Mt. Salak-
Bogor, West Java (Fig.  7b). Based on the BMKG report, 
the magnitude of these events varied from M 2.2 to M 
4.2. Several of the events were felt by inhabitants, and 
one event caused structural damage (M 4.2 on August 

23, 2019). Our interpretation of this swarm event is that 
it was probably related to stress changes due to volcano 
tectonic activity. Supendi et  al. (2018) showed that a 
destructive earthquake occurred in this area on Septem-
ber 8, 2012 (ML 4.6) along a thrust fault. In Region 2, we 
found seven earthquakes located ~ 12  km north of Mt. 
Gede (Fig.  7b). The three earthquakes that occurred in 
Region 3 were probably caused by an unidentified local 
fault in the region.

Finally, in Region 4, we identified two events on the 
Baribis Fault on December 10, 2019 (Mw 3.0) and March 
29, 2020 (Mw 3.2). We note that the December 10 event 
was felt in Bekasi where it registered II-III MMI (Fig. 7b). 
We also conducted focal mechanism analysis in order to 
estimate the type of fault slip for Region 4 events. The two 
focal mechanism solutions of the events located close to 
the Baribis Fault (see Additional file 1: Fig. S8 for location 
uncertainties) reveal a thrust fault dipping southwards 
(Fig. 7b). While both focal mechanism solutions are con-
sistent with thrust faulting, there are notable differences 
in strike and dip. These differences are likely due to (1) 
both earthquakes being of small magnitude, with nar-
rower frequency ranges and lower signal-to-noise ratios, 
which result in fairly substantial parameter uncertainty; 
(2) different segments of the Baribis Fault likely having 
different dip angles. A detailed comparison of the focal 
mechanism solutions derived from our borehole station 
data and the BMKG data as well as the combined bore-
hole and BKMG data, along with waveform fitting, is 
shown in Additional file 1: Figs. S9–S13.

The earthquakes felt in Jakarta and its surroundings 
are usually located south of West Java, and are related 

Fig. 5  Wadati diagram for the events used in this study. The 
estimated Vp/Vs ratio is 1.75

Fig. 6  Earthquake magnitude–frequency relation (Gutenberg–Richter law) for earthquakes that occurred within the blue rectangle shown in 
Fig. 7a, and were recorded during the same period by a borehole stations and b BMKG stations. The triangles and squares in the plot depict data 
and cumulative number of the data, respectively
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to subduction zone processes along the Java Trench. 
However, the earthquake felt in Bekasi on December 
10, 2019, was located inland and close to the Baribis 
Fault line, indicating that it is probably active. This new 
seismic evidence is important, and suggests that the 
Baribis Fault should be considered when updating our 
national hazard maps since its hazard potential is not 
considered in the current generation of maps (Irsyam 
et  al. 2017, 2020). This is for the simple reason that 
its status as an active or inactive fault was not known 
when the hazard maps were assembled.

Conclusions
We deployed seven borehole seismometers in and 
around Jakarta to monitor earthquakes in the region. 
The new data, which are more sensitive to small 
events compared to the existing surface network run 
by BMKG, allow us to address fundamental scientific 
questions about the Baribis Fault near Jakarta, in par-
ticular whether it is currently active or not. Our obser-
vations and results indicate that an earthquake felt in 
Bekasi was located very close to the Baribis Fault line 
(~ 1.8  km south of the fault), and had a focal mecha-
nism consistent with an oblique thrust fault. Another 
event was also recorded close to the eastern part of the 
Baribis Fault line with a reverse mechanism. These two 
events may be evidence that the Baribis Fault is active, 
which has important implications for seismic hazard in 
the megacity of Jakarta. In addition, we identified three 
seismically active regions: Region 1 located west-south-
west of Mt. Salak-Bogor, Region 2 located north of Mt. 
Gede-Bogor, and Region 3 located south of Purwakarta. 
The seismicity in these regions require further study to 
understand whether they are related to volcanic or tec-
tonic processes.
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