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Abstract 

River Hooghly, a tributary of river Ganges is one of the major rivers of Asia having traditional, social, economic, reli-
gious, and spiritual values. Water samples were collected from 18 sampling locations of river Hooghly during summer 
(dry), monsoon (wet), and winter (cold) seasons. The samples are analysed for basic physicochemical properties and 
abundance of selected potentially toxic elements (PTEs) are measured. Several PTEs, e.g., Al, Fe, Ni, and Pb, were found 
to be above the permissible limits, prescribed by national and international guidelines for safe human consumption. 
The trend of variation in the mean PTE concentrations showed the following order: Cd < Pb < Co < Cr < Ni < Cu < Zn < 
Mn < Fe. Due to the presence of high total dissolve solid (TDS) and PTE contents, the water quality of river Hooghly is 
not suitable for direct human consumption. The evaluated Water Quality Index (WQI) value showed a distinct spatio-
temporal variation indicating very severe condition of water quality, which is deteriorating gradually from upstream 
to downstream. In summer, monsoon, and winter, the highest WQI values were observed in Maushuni Island (S15), 
Petuaghat (S18), and Tapoban (S17), respectively. However, the non-carcinogenic human health risk in terms of 
Hazard Quotient and Hazard Index values of PTEs indicates no immediate adverse impact on human health due to 
exposure of PTE contaminated water from river Hooghly through ingestion or dermal route. Though, these risk values 
for children were higher than adults warranting the adoption of a long-term management plan to cope with poten-
tial human health risks. The result suggests implementation of a combination of stringent socio-legal regulations and 
numerical models for sustainable water related health risk management in river Hooghly.
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Introduction
Riverine freshwater is a major natural resource for eco-
logical sustainability (Rai 2008). Organic and inorganic 
contaminants or pollutants may enter in the riverine 
or estuarine systems from a wide range of anthropo-
genic sources, e.g., industrial and domestic effluents 
(Amman et  al. 2002), storm and surface water run–off 
(Bhattacharya et  al. 2015), agriculture and aquacul-
ture run-off (Ghosh et  al. 2016; Mitra et  al. 2018a) and 
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natural processes like biogeochemical cycle (Garrett 
2000), chemical leaching of bedrocks and water drain-
age basins (Zhou et  al. 2008a, b), sediment resuspen-
sion, and ground water inflow (González-Ortegón et  al. 
2019). Among the organic and inorganic contaminants 
of water, potentially toxic elements (PTEs) are drawing 
added attention due to their non-biodegradable nature 
and accumulation potential through tropic levels caus-
ing a long-term effect on the ecosystem. PTEs refer to 
both metals and non-metals having a range of environ-
mental significance (Nieder et al. 2018). Some PTEs have 
nutrient-like profiles, such as Copper (Cu) and Cadmium 
(Cd), suggesting their correlation with biological cycles 
(Boyé et  al. 2012), whereas some other PTEs such as 
Lead (Pb) possess scavenger like behaviour (Flegal and 
Patterson 1983). Some of the PTEs such as Cobalt (Co), 
Copper (Cu), Iron (Fe), Manganese (Mn), and Zinc (Zn) 
take part in several significant biochemical reactions and 
act as terminal electron acceptor and micro nutrients 
(Munoz-Olivas and Camara 2001), but show toxic effects 
in excess quantities (Low et  al. 2015). Some other ele-
ments such as Arsenic (As), Cadmium (Cd), and Mercury 
(Hg) show toxicity in minute quantity (Alves et al. 2014). 
Thus, use of PTE contaminated water in irrigation may 
have detrimental effects on local biodiversity including 
invertebrate and microbial communities hampering eco-
logical balance and sustainability (Kar et  al. 2008; Tom 
et al. 2014; Bhattacharya et al. 2015; Ferreira et al. 2016; 
Allinson et al. 2017). Moreover, the water qualities of the 
rivers and estuaries are also regulated by constant influx 
of contaminated water from several point or non-point 
sources from upstream making difficult to regulate the 
water quality (Mitra et al. 2018a).

The estuarine region behaves like a natural filter or 
buffer zone where the PTEs are adsorbed by the sus-
pended solids and/or might get bio-accumulated in 
aquatic organisms, e.g., phytoplanktons, zooplankton, 
benthos, invertebrate, fish, etc. (Tao et al. 2012; Karbassi 
et  al. 2015). Dissolved organic matter (e.g., humic acid, 
fulvic acid, carbohydrates) also plays a crucial role in reg-
ulating PTE concentration in natural streams by forming 
metal complexes or chelates (Philippe and Schaumann 
2014). In the past few decades, public health policy-mak-
ers and researchers have focused on increasing anthro-
pogenic input resulting exposure of aquatic habitats to 
hazardous contaminants due to their toxicity and persis-
tence in natural environment (Upadhyay et al. 2006; Zhou 
et al. 2008a, b). Toxic elements also had the probability of 
human health risk (carcinogenic and non-carcinogenic) 
even at concentration below permissible limit and can 
be estimated following United States Environmental Pro-
tection Agency (USEPA) methods (USEPA 2004; Gao 
et  al. 2019). Seasonal or temporal variations in intensity 

of agricultural and industrial activity, aquaculture, storm 
water drainage, atmospheric deposition, and climatic 
events can have strong influences on the status of river 
water quality (Singh et al. 2004; Ouyang et al. 2006; Li and 
Zhang 2010). River Hooghly, a tributary of river Ganges is 
one of the major rivers of Asia having traditional, social, 
economic, religious, and spiritual values. About 0.5 billion 
peoples are directly or indirectly dependent on Ganges 
river system for their livelihood (Bharati et al. 2016). The 
region experiences 80% of its annual rainfall between June 
and September from southwest monsoon (Mukhopad-
hyay et al. 2006). This strong monsoonal effect might have 
strong consequences on PTEs inputs to river Hooghly 
during rainy season. Hence, characterization of seasonal 
variability of contaminants in this river water is essential 
for proper evaluation of water quality and assessment of 
long-term impacts on public health and human welfare. 
This approach can help to formulate proper policy for 
reducing contaminants and safeguarding human health 
and hygiene in the Hooghly river region of the lower 
Gangetic basin. Although there are several studies (e.g., 
Sekhar et  al. 2005; Mukhopadhyay et  al. 2006; Hender-
son et al. 2007; Sarkar et al. 2007; Pertsemli et al. 2007; Li 
et al. 2008; Li and Zhang 2010; Mitra et al. 2018a, b), none 
has emphasised the implication of seasonal and geospa-
tial variations of PTEs for the management of river water 
quality. To bridge the existing knowledge gap, the present 
study aims to evaluate geospatial and seasonal water qual-
ity and potential non-carcinogenic health risk associated 
with PTEs in river Hooghly.

Materials and methods
Study area and sampling
River Ganges divides into two major distributaries; Bha-
girathi (India) and Padma (Bangladesh) at Mithipur vil-
lage in Murshidabad district, West Bengal. The tidal 
regime of river Bhagirathi starting from the downstream 
of Nabadwip city is known as river Hooghly (Rudra 2014; 
Ghosh et  al. 2016), and serves as a navigable waterway 
for Kolkata and Haldia ports (Fig.  1). Water samples 
were collected using clean plastic sampling bottles from 
a depth of 10 cm in triplicate from 18 sampling stations 
covering ~ 200 km of River Hooghly in summer (March–
May), monsoon (June–September), and winter (Novem-
ber–January) during low tide in 2015–2016 to avoid 
marine dilution of PTEs and other parameters, readily 
transferred to the laboratory in ice box and processed 
(Fig. 1).

Characterization of physicochemical properties and PTEs 
of water
pH and electrical conductivity (EC) were measured on 
field using HANNAH Multi parameter (HI-9829-13102). 
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Dissolved oxygen (DO) concentration was measured fol-
lowing Winkler’s method (Winkler 1888; APHA 2017). In 
laboratory, surface water quality parameters such as total 
dissolved solid (TDS), salinity, hardness, alkalinity, and 
chemical oxygen demand (COD) were analysed following 
protocols as described in APHA (2017). PTEs in water 
were measured using inductively coupled plasma optical 
emission spectrometer (ICP-OES) (Thermo Fisher iCAP 
7400 ICP-OES). Analytical procedure, accuracy, and 
precision data have been provided in Additional file  1: 
Table S1.

Geospatial analysis
A multivariate interpolation method, i.e., inverse distance 
weighed (IDW) process, was used in ArcGIS software 
(V10.2) to plot the seasonal geospatial map of studied 
PTEs. The data were projected to WGS 1984, UTN zone 
45 N.

Statistical analysis
General statistical analyses of physicochemical proper-
ties of water were conducted to understand the varia-
tion in physicochemical characteristics of water. Pearson 
product correlation co-efficients, analysis of variance 
(ANOVA) single factor method followed by post hoc 

comparison test, i.e., least significant difference (LSD 
test), and principal component analysis (PCA) between 
PTEs were done using software SPSS (V16.1) to under-
stand the source and association of the PTEs. Shapiro–
Wilk test was also applied to evaluate the normality of 
the dataset, whereas Kaiser–Meyer–Olkin (KMO) Meas-
ure and Barlett’s Test of Sphericity were used to find data 
adequacy for PCA (Kaiser 1958; Ul-Saufie et al. 2013).

Evaluation of water quality indices (WQI) and risk 
assessment
Water quality indices (WQI) can be described as a rat-
ing that reflects the combined impact of different water 
quality parameters (Şener et al. 2017; Gao et al. 2019). To 
calculate WQI, different weights were assigned to each 
of the measured chemical parameters (Ramakrishnaiah 
et  al. 2009; Yidana and Yidana, 2010). However, risk 
assessment of the PTEs is a multi-step procedure based 
on the exposure to and tendency of the PTEs to bioac-
cumulate within the human body. Human body can 
be exposed by PTEs from water through consump-
tion/ingestion or dermal routes. Thus, the examined 
PTEs were compared with reference dosages, and the 
mean daily intake (MDIingestion and MDIdermal) were esti-
mated for both children and adults as per USEPA Risk 

Fig. 1  Study area
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Assessment Guidance for Superfund (RAGS) standards 
(USEPA 1989, 1991, 2004, 2011; Wu et  al. 2009; Li and 
Zhang 2010; Mitra et al. 2018b; Singh et al. 2018; Saleem 
et al. 2019; Gao et al. 2019). Toxicological profile of the 
studied elements indicates that all PTEs have toxic carci-
nogenic or non-carcinogenic human health effects (Luo 
et  al. 2012). Here, the potential degree of non-carcino-
genic risk to human population due to ingestion of PTE 
contaminated water was evaluated as hazard quotients 
(HQ). Detailed calculation of WQI, risk assessment, and 
HQ is given in Additional file 1: Table S2.

Results
Physicochemical properties of water
In river Hooghly, physicochemical properties of water 
in summer, monsoon, and winter season varied between 
7.22 and 7.80, 7.23 and 8.00, and 7.19 and 8.00 for pH; 
308.0 and 3120, 122 and 3100, and 135 and 3200 µS/
cm2 for EC; 568.2 and 2250, 274.6 and 1668.3, and 503.4 
and 2023.6 mg/l for TDS, 0.04 and 26.80, 0.09 and 19.80, 
and 0.08 and 21.78 for salinity; 80.6 and 1881.0, 19.8 and 
1485.0, and 22.3 and 1650.4 mg/l for hardness; 136.5 and 
1173.0, 126.1 and 1044.3, and 133.2 and 1085.5 mg/l for 
alkalinity; 3.1 and 4.9, 3.7 and 5.1, and 3.1 and 5.5 mg/l for 
DO; 16.3 and 52.1, 20.5 and 42.1, and 29.3 and 51.3 mg/l 
for COD, respectively (Additional file  1: Table  S3). In 
summer, highest value of pH was recorded in Lot 8 (S14), 
EC, salinity, and DO in Maushuni Island (S15), TDS, 
hardness, and alkalinity in Tapoban (S17), and COD in 
Bata (S7). During monsoon, highest value of pH and DO 
was observed in Panihati (S3), EC, TDS, salinity, alka-
linity in Tapoban (S17), and hardness and COD in Che-
maguri (S16), whereas in winter, highest value for pH was 
observed in Shibpur (S6), EC and Salinity in Tapoban 
(S17), TDS and alkalinity in Petuaghat (S18), hardness in 
Chemaguri (S16), and DO in 58 Gate and COD in Bata 
Nagar (S7).

Spatiotemporal distribution of PTEs
The vast study area in River Hooghly is regularly exposed 
to different sources of natural and anthropogenic inputs 
and experiences dynamic river processes resulting in var-
ied distribution of PTEs. The average range of concentra-
tions for PTEs in summer, monsoon, and winter varied 
between 5401.7 and 15,488.5, 4710.8 and 16,988.6, and 
6146.6 and 16,287.4 µg/l for Al, 3.7 and 14.1, 2.6 and 9.3, 
and 4.3 and 18.2 µg/l for Cd, 14.7 and 57.0, 10.6 and 30.7, 
and 14.4 and 61.6  µg/l for Co, 17.4 and 54.1, 10.7 and 
41.5, and 16.0 and 68.4 µg/l for Cr, 34.6 and 76.3, 24.0 and 
61.0, and 33.6 and 85.9 µg/l for Cu, 4436.4 and 17,552.1, 
4597.9 and 15,111.8, and 6546.9 and 21,461.2 µg/l for Fe, 
122.5 and 334.5, 84.0 and 300.8, and 130.9 and 422.5 µg/l 
for Mn, 24.9 and 63.5, 18.2 and 71.6, and 28.3 and 

107.3 µg/l for Ni, 7.9 and 29.8, 6.3 and 25.5, and 10.1 and 
35.8 µg/l for Pb, and 37.7 and 101.1, 30.2 and 78.3, and 
45.3 and 121.4  µg/l for Zn (Additional file  1: Table  S4), 
respectively, as depicted on the geospatial maps devel-
oped using ArcGIS. The colour gradient from blue to 
red represents the lowest to highest concentration of 
PTEs (Figs.  2, 3, 4). In summer, highest concentrations 
of Al, Cd, Cr, and Cu were observed in Nayachar (S12), 
Co in Tapoban (S17), Fe, Mn, and Pb in Falta (S10), Ni in 
Shibpur (S6), and Zn in Maushuni Island (S15). During 
monsoon, maximum concentrations of Cd were found in 
Petuaghat (S18), Co in Lot 8 (S14), Cr in Haldi estuary 
(S13), Al and Cu in Nayachar (S12), Fe and Pb in Falta 
(S10), Mn in Halisahar (S2), Ni in Bata Nagar (S7), and 
Zn in Shibpur (S6), whereas in winter, the highest con-
centration of Cd was observed in Haldi estuary (S13), Co 
in Tapoban (S17), Cr in Petuaghat (S18), Al, Cu, Fe, and 
Pb in Falta (S10), Mn in Diamond Harbor (S11), Ni in 
Birlapur (S8), and Zn in Maushuni Island (S15).

Discussion
Regulation of physicochemical parameters of river 
Hooghly
The physicochemical profile of a water body is regulated 
by an interplay of multitude of biological, physical, and 
anthropogenic processes (Singh et al. 2004; Ouyang et al. 
2006; Li and Zhang 2010; Zhang and Gao 2015; Mitra 
et al. 2018b). pH is a significant physicochemical param-
eter indicative of the usage of water for drinking and irri-
gation purpose (Şener et al. 2017), as it can regulate the 
alkalinity, hardness, and solubility of PTEs in water col-
umn (Osibanjo et al. 2011; Şener et al. 2017). A higher pH 
reduces the solubility of PTEs, while lower pH enhances 
release of their ions (Singh and Kumar 2017). However, 
irrespective of the season and sampling stations, the 
range of pH observed in river Hooghly varies between 
neutral to sub-alkaline range (7.19–8.00) that is within 
the WHO guidelines and Indian Standards for safe drink-
ing water (WHO 2008, 2011; BIS 2012).

In general, rivers which are relatively narrow in the 
upstream and have funnel-shaped wide mouth in the 
downstream show a steep salinity gradient across the 
river. A similar pattern of steep salinity gradient is also 
evident in river Hooghly, as it is a funnel-shaped wide 
mouthed macro-tidal river (Mukhopadhyay et  al. 2006; 
Rudra 2014). This salinity gradient might be regulat-
ing the flocculation of dissolved PTEs, which affects the 
elemental composition of the river (Samani et al. 2015). 
Irrespective of the season, the salinity of samples col-
lected from Babughat (S5), the sampling station near Kol-
kata varies between 0.09 and 0.12. The salinity is found to 
be lowest in summer, in Babughat (S5) when tidal magni-
tude or influx is expected to be higher compared to other 
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Fig. 2  Geospatial distribution of dissolved Aluminium (Al), Cadmium (Cd), Cobalt (Co), and Chromium (Cr) in river Hooghly. a Al, b Cd, c Co, and d 
Cr

Fig. 3   Geospatial distribution of Copper (Cu), Manganese (Mn), Iron (Fe), and Nickel (Ni) in river Hooghly. a Cu, b Mn, c) Fe, and d Ni
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seasons (Sadhuram et  al. 2005; Mukhopadhyay et  al. 
2006). This indicates that increased magnitude of tidal 
influx rarely influences salinity of river Hooghly near Kol-
kata (Samanta et  al. 2018) and flocculation of dissolved 
PTEs at lower saline regime (Samani et al. 2015).

The mean values of EC, TDS, salinity, hardness, and 
alkalinity show wide range of variation throughout the 
river, but have direct relation with each other. The post 
hoc analysis indicates significant statistical variation of 
Hardness, DO, COD, and TDS (LSD Test; p < 0.05). It 
was evident from the observed data that the monsoonal 
downpour has reduced the TDS, EC, salinity, alkalinity, 
hardness, and COD level of river Hooghly, but DO was 
increased within the same timeframe. Measured salinity, 
EC, and TDS show an increasing trend towards mouth 
of the river Hooghly, which also complements the study 
of Mitra et  al. (2018b). In river Hooghly, the mean val-
ues of salinity and TDS are comparatively higher in sum-
mer than those in monsoon and winter, which might be 
due to the combined effect of higher rate of evapora-
tion, higher water temperature, and lower precipitation 
(Rajasegar 2003; Mukhopadhyay et al. 2006; Mitra et al. 
2018b). High TDS concentration in downstream might 
also be due to dissolved clay particles and sediment 
resuspension from wide mud flats along both banks of 
river Hooghly (Batabyal et al. 2014; Ghosh et al. 2019a). 
The elevated alkalinity of river Hooghly was found to be 
twice or higher of the permissible limit which indicate the 
prevalence of bicarbonates (Ghosh et al. 2019a). Irrespec-
tive of the sampling station and seasons, water of river 

Hooghly is found to be very hard (BIS 2012), and due 
to high TDS, it is not fit for direct human consumption 
without treatment (WHO 2004, 2008, 2011). The DO 
values indicate that hypoxic condition does not prevail 
in river Hooghly (Satpathy et al. 2013) and complements 
the study of Kazi et  al. (2009). However, the observed 
DO value suggests that water of river Hooghly was suit-
able for drinking only after proper treatment and disin-
fection, but might be used directly for the propagation of 
wildlife and fisheries (BIS 2012). The mean COD values 
are found to be highest in winter and lowest in summer 
which might be due to the abundance of microbial pop-
ulation in river Hooghly in summer season as reported 
by Basu et  al. (2013). Moreover, higher COD values in 
upstream of river Hooghly are due to inflow of domestic 
and municipal sewage along with agricultural waste and 
effluents from adjoining industries (Kazi et al. 2009; Pati 
et al. 2014).

Regulation of geospatial distribution of PTEs
River Hooghly is comparatively well mixed and there 
is little stratification in the water column (Mukhopad-
hyay et  al. 2006; Samanta and Dalai 2018). In general, 
irrespective of sampling locations and seasonal changes 
in river Hooghly, the mean concentrations of PTEs are 
found to be in the following order Cd < Pb < Co < Cr < 
Ni < Cu < Zn < Mn < Fe < Al (Table 1) (LSD test; p < 0.05). 
PTEs like Al, Cd, Fe, Ni, and Pb in water of river 
Hooghly exceed respective permissible limit prescribed 
by World Health Organization and Indian Standard 

Fig. 4  Geospatial distribution of Lead (Pb), Zinc (Zn), and Water Quality Index (WQI) in river Hooghly. a Pb, b Zn, and c WQI
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(WHO 2008, 2011; BIS 2012). Rapid and unplanned 
urbanization along with industrialization have homog-
enized the sources and tidal influx in river Hooghly 
throughout the year, which might have played a cru-
cial role behind the similar mean spatial distribution 
or concentration of PTEs in all three seasons (Stucker 
and Lyons 2017). However, adsorption, flocculations, 
formation of oxides and/or hydroxides, alumina-sil-
icates, organic chelates, and river water chemistry are 
major factors which regulate the distribution of PTEs 
in the water column (Takayanagi and Gobeil 2000). A 
large quantum (4 × 108 m3) of PTE containing sewage 
is entering regularly into the river from adjoining urban 
settlements (Mukhopadhyay et  al. 2006). The sewage 
from the adjoining cities, industrial discharge, and agri-
cultural run-off contains colloidal materials or particles 
like dissolved organic carbon (DOC) which can form 
complexes with PTEs by organic ligands (Wen et  al. 
1999). Moreover, the downstream of river Hooghly is 
also dominated by mangrove forests, which acts as a 
major source of DOC. Samani et al. (2015) pointed out 
that DOC (hydrophobic humic materials) plays a cru-
cial role in the flocculation of PTEs because of salinity 
gradient. Higher concentrations of Al and Fe are evi-
dent as dissolved toxic elements in all of the sampling 
stations of river Hooghly as Al and Fe are major constit-
uents of the earth crust (Mitra et al. 2018b). PTEs (Cd, 
Co, Cr, Cu, Mn, Ni, Pb, and Zn) might have sourced in 
river Hooghly from different industrial units compris-
ing paper and pulp, iron and steel, thermal power plant, 
brick kiln, welding industries, and battery industries, 

which have been operating on both the banks of the 
river (Karar and Gupta 2006; Govil et  al. 2008; Ghosh 
et al. 2016, 2019b; Bakshi et al. 2017, 2019; Mitra et al. 
2018b).

When compared with other rivers and estuaries 
around the globe, concentrations of toxic elements 
measured in river Hooghly are observed to be much 
higher than Costa Concordia wreck, Han river, Yang-
tze river, Padma river, Yangzhong water system, and 
Ghana stream rivers (Asante et  al. 2007; Zhou et  al. 
2008a, b; Wu et al. 2009; Li and Zhang 2010) but lower 
than Odiel River and Sydney estuary (Olias et al. 2004; 
Birch and Lee 2018). The PTEs concentration of river 
Hooghly are also found to be higher than river Padma, 
Bangladesh (Jolly et  al. 2013) which might be due to 
greater fresh water input in river Padma from river 
Brahmaputra and river Meghna. While comparing with 
different rivers of India like Gomti river, Manjira river, 
Mahanadi river, and Subarnarekha river, the concen-
tration of toxic elements were observed to be higher 
in river Hooghly, except for Cu which was higher in 
Manjira river, and Pb and Zn for Gomti river (Senapati 
and Sahu 1996; Konhauser et al. 1997; Gaur et al. 2005; 
Krishna et  al. 2009). However, the concentration of 
toxic elements like Cd, Co, and Zn showed a temporal 
increment when compared with previous studies on the 
same river (Table  2). Thus, river Hooghly has became 
a major route or drain for discharge of toxic elements 
originating from different point and non-point sources 
like municipal and urban wastes, industrial effluents, 
and agricultural run-off to the Bay of Bengal.

Table 1  Distribution of PTEs in river Hooghly

All values are in µg/l

Parameter Al Cd Co Cr Cu Fe Mn Ni Pb Zn

Summer Mean 8306.5 6.5 25.0 27.8 41.0 7659.7 158.7 35.1 13.2 52.0

Std. deviation 4721.2 3.9 16.0 15.8 22.9 4516.9 93.1 18.8 7.9 28.2

25th Percentiles 6132.4 4.1 15.3 19.1 33.8 5060.4 124.0 27.1 8.9 41.3

50th Percentiles 8493.0 6.4 23.1 28.6 40.4 7783.2 165.8 36.8 12.7 56.5

95th Percentiles 15,197.0 14.7 54.7 54.4 76.4 16,429.0 308.9 63.2 27.4 99.4

Monsoon Mean 7471.6 5.7 21.0 21.8 34.9 6667.8 132.4 29.0 10.8 42.0

Std. deviation 5409.0 4.3 16.7 16.7 26.1 4969.7 103.0 20.6 8.3 29.6

25th Percentiles 915.1 1.1 3.3 3.5 3.6 1068.9 11.3 4.5 1.9 4.5

50th Percentiles 7981.5 5.7 19.9 22.4 37.4 7136.1 129.4 31.4 11.8 51.7

95th Percentiles 15,454.0 14.7 52.4 52.6 76.4 16,429.0 310.4 60.1 27.4 84.8

Winter Mean 9482.90 8.69 30.87 32.89 51.18 9183.40 193.18 45.34 15.78 66.38

25th Percentiles 3885.38 4.21 15.78 16.84 22.32 4132.27 92.92 23.14 7.64 27.60

50th Percentiles 7572.70 5.61 18.68 20.75 38.78 7293.00 145.54 34.11 11.98 56.91

95th Percentiles 9236.80 8.39 29.45 31.47 46.50 8563.20 184.50 42.30 14.42 66.03

25th Percentiles 15,882.00 17.71 61.16 66.46 88.15 15,645.00 375.47 93.88 31.69 113.77
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Statistical analysis to identify potential sources of PTEs
As evident from Additional file  1: Table  S5, in river 
Hooghly throughout the year, the spatial distributions 
of all potentially toxic elements are correlated with each 
other (r = 0.217–0.737; n = 162; p < 0.01) except for Ni, 
which is correlated with Al (r = 0.197; p < 0.05). Cd, Co, 
Cr, Mn, and Zn show weak positive correlation with Al 
(r < 0.422) which indicates lesser role of clay minerals in 
geochemical cycling of these PTEs in river Hooghly. Cu, 
Fe, and Pb show strong positive correlation with Al sug-
gesting previous association of these elements with clay 
minerals. However, inter-elemental associations among 
PTEs suggest that the elements are cycled mostly with a 
common phase of Fe–Mn oxyhydroxides (Samanta et al. 
2017). The positive correlations between PTEs also indi-
cate that they might originate from identical natural/riv-
erine and/or anthropogenic sources having similar mode 
of movement in the river Hooghly. Higher concentrations 
of PTEs like Al, Fe, Mn, Co, and Cr can be attributed 
to various sources, which may be both natural erosion 
and weathering (Ghosh et al. 2018, 2019a, b; Mitra et al. 
2018b) and/or anthropogenic activities; for example, 
Al can be sourced from foils, garbage, electrical wires, 
alloy industries (Mitra et al. 2018b); Cd can be originated 
from fossil fuel, thermal power plants, fertilizer, indus-
trial waste incineration (Caruso and Bishop 2009; Reza 
and Singh 2010; Raknuzzaman et  al. 2016; Mitra et  al. 
2018b); Co from metal alloys run-off from navigating 
ships (Mitra et al. 2018b); Cr from textile industries, dyes, 
pigments; Cu from insecticides, smelting industries, and 
shipping and boating activities (Shazili et al. 2006; Ghosh 
et al. 2016, 2019a, b; Ismail et al. 2016); Fe from iron and 
steel industries, thermal power plant, fossil fuel (Mahato 
et al. 2014; Mitra et al. 2018b); Mn from paper and pulp 
industry, power plant, and welding industries (Giri and 
Singh 2014); Ni from glass and ceramic industries, power 
plants, automobiles batteries, alloys, and smelting indus-
tries (Tariq et al. 2006; Govil et al. 2008); Pb from batter-
ies, fossil fuels, chemical fertilizers (Jumbe and Nandini 
2009; Wuana and Okieimen 2011); Zn from fertilizers, 
synthetic paints, and immersion of idols (Wu et al. 2009; 
Bhattacharya et al. 2015).

The ANOVA results suggest a statistically significant 
variation in distribution of toxic elements at all 18 sam-
pling stations and between seasons in river Hooghly at 
99.995% confidence level (Additional file 1: Tables S6 and 
S7). Post hoc analysis additionally reveals significant sta-
tistical variation in the distribution of elements amidst 
the seasons, more specifically between summer and 
monsoon (LSD test; p < 0.05); except Cr, among monsoon 
and winter (LSD Test; p < 0.05). However, Co, Ni, and 
Zn shows statistical significant variation in their distri-
bution between winter and summer (LSD test; p < 0.05). 

Shapiro–Wilk test was applied to evaluate the normal-
ity of the experimental data after transforming the data 
by taking the base 10 logarithms. Kaiser–Meyer–Olkin 
(KMO) Measure and Barlett’s Test of Sphericity were 
used to find data adequacy for PCA. The KMO meas-
ure value (0.874) is greater than 0.500, indicating that 
the data are sufficient and Barlett’s measure of spheric-
ity (p < 0.001) for all examined data shows a higher degree 
of relationship among the PTEs, suggesting suitability 
of the data set for performing PCA (p < 0.001) (Kaiser 
1958; Ul-Saufie et  al. 2013). The result of PCA (VARI-
MAX rotation mode) suggests that eigen values more 
than 1 represent 65.9% of the total variance, indicating 
that distinctive controlling components or sources are 
responsible for the distribution of dissolved PTEs in river 
Hooghly. PCA for the PTEs shows two different sources 
or components in which first principal component (PC-
1) have strong positive loadings on Al, Cd, Co, Cr, Cu, 
and Fe, having 35.6% variability, while second principal 
components (PC-2) extracted accounted for 65.9% of var-
iability and strong positive loadings among the PTEs like 
Mn, Ni, Pb, and Zn in river Hooghly (Fig. 5). The compo-
nents of PC-1 showed correlation with each other indi-
cating similar sources of their origin. They might be the 
product of natural weathering and erosion of upstream 
alumina-silicate (quartz, feldspars, mica) and clay miner-
als containing catchment rocks as Al and Fe is abundant 
in earth crust (McDonough and Sun 1995; Dalai et  al. 
2002); Cr is the product of extensive chemical weather-
ing of bed rocks in plains; Cu, Cd, and Co are associated 
with the carbonate and Fe–Mn oxyhydroxides contain-
ing mineral particles (Achyuthan et al. 2002; Ghrefat and 
Yusuf 2006; Ghosh et al. 2016; Samanta and Dalai 2016; 
Manon et al. 2019). Fe–Mn oxyhydroxides also play a sig-
nificant role in geochemical cycling of PTEs in the water 
column of river Hooghly (Samanta et al. 2017). The com-
ponents of PC-2 indicate anthropogenic sources of ori-
gin as they are found predominantly in municipal and 
domestic sewage, agricultural run-off, and effluents from 
industries (Govil et al. 2008; Wuana and Okieimen 2011; 
Giri and Singh 2014; Bhattacharya et  al. 2015; Ghosh 
et  al. 2016, 2018, 2019a, b). The results of both correla-
tion analysis and PCA suggest that the sources of PTEs 
in water of river Hooghly are combination of both natural 
and anthropogenic processes.

Evaluation of water quality index
In this study, the water quality of river Hooghly has been 
evaluated for drinking and other purposes by comparing 
with permissible or acceptable limits fixed by WHO and 
Indian standards of drinking and surface water quality 
(IS 10500: 2012 and IS 2296: 1982) (ISI 1991; WHO 2008, 
2011; BIS 2012). Both basic physicochemical parameters 
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like pH, EC, salinity, hardness, alkalinity, DO, COD, TDS, 
and PTEs like Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn 
were considered to evaluate the WQI. The relative weight 
(Wr) values are shown in Additional file  1: Table  S8. In 
summer, monsoon, and winter, the WQI values of river 
Hooghly are found to vary between 373.7 (S2) and 2196.5 
(S15), 365.4 (S2) and 1589.5 (S18), and 478.9 (S2) and 
1886.2 (S17), respectively (Fig.  4c). WQI values showed 
increasing trend towards downstream due to high salin-
ity in the mouth of the river and strong tidal amplitude 
(Mukhopadhyay et  al. 2006; Rudra 2014). Irrespective 
of sampling locations and seasonal changes, the evalu-
ated WQI value of river Hooghly indicates "very severe" 
condition of water quality which is unsuitable for direct 
human consumption. This poor condition of water qual-
ity might be due to both natural processes like upstream 
erosion causing influx of sediment loads (Rudra 2014) 
and anthropogenic activities (Ghosh et  al. 2018, 2019a, 
b; Bakshi et  al. 2018, 2019). Moreover, this mangrove 
dominated estuarine system acts as a source and sink of 
nutrients and PTEs. Their flow in river Hooghly has been 
regulated by the input of litter fall and nutrients associ-
ated with the sediment particles, which are released dur-
ing estuarine transport (Mukhopadhyay et al. 2006).

Evaluation of non‑carcinogenic human health risk
Non-carcinogenic health risks in terms of MDIingestion, 
MDIdermal, HQingestion, HQdermal, and HI for summer, 
monsoon, and winter for adult and child are summarized 
in Table 3. The MDIingestion and MDIdermal values of Al are 

found to be highest in summer and monsoon and for Fe 
in winter, whereas MDIingestion and MDIdermal values of 
Cd are observed to be lowest irrespective of season and 
age groups. However, the mean HQingestion and HQdermal 
values for Co and Cr are observed to be highest, whereas 
mean HQingestion and HQdermal values of Zn are found to 
be lowest for both age groups throughout the year. The 
HQingestion, HQdermal, and HI value for both adult and chil-
dren are well below the unity, i.e., safe limits suggesting 
no immediate adverse non-carcinogenic effect on human 
health due to ingestion or dermal contact of water from 
river Hooghly. Moreover, the MDIingestion, MDIdermal, 
HQingestion, HQdermal, and HI values for children are 
higher in comparison with adults suggesting necessity 
of long-term measures to mitigate non-carcinogenic 
human health risks. As evident from Table  3, findings 
of our study complement with Wang et  al. (2017), Xiao 
et al. (2019), and Gao et al. (2019), and indicate that the 
children are much more susceptible and vulnerable than 
adults to PTE exposure. It is also evident from our results 
that humans are getting PTE exposure predominantly via 
oral or ingestion route rather than dermal pathways in 
the study area of River Hooghly where bathing is widely 
practiced since ages mostly due to religious beliefs, and 
prawn seed/crab collection is being conducted for the 
sustenance of livelihood especially for the riverine com-
munity of lower Bengal delta. It can also be concluded 
that at the upstream of river Hooghly, the local inhabit-
ants might be at higher non-carcinogenic risk, as they are 
consuming river water after filtration and disinfection 

c)

PC-1

PC-2

Component Plot Component Matrix
Component

1 2
Al 0.830 0.089
Cd 0.687 0.415
Co 0.725 0.246
Cr 0.647 0.434
Cu 0.642 0.527
Fe 0.807 0.259
Mn 0.272 0.677
i 0.131 0.829

Pb 0.471 0.624
Zn 0.278 0.852

a b

Fig. 5  Principal component analysis of PTEs. a Component plot (VARIMAX rotation); b component matrix
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but getting exposure to dissolved PTEs. A regular expo-
sure to PTEs at this level will be toxic towards human 
causing long-term irreversible health effects (Singh et al. 
2018). Moreover, long-term PTE exposure might also 
lead to bio-magnification and bio-accumulation of PTEs 
causing different diseases like cardiovascular problems, 
damage of kidney, renal cortex and liver, osteoporosis, 
and developmental retardation (Oyem et  al. 2015; Paul 
2017; Mitra et al. 2018b).

Conclusions
The deterioration of water quality of river Hooghly due 
to different natural and anthropogenic processes of var-
ied nature is coupled with a combination of biological 
and/or physicochemical processes. The pH and other 
physicochemical properties of river Hooghly such as 
alkalinity and hardness are in direct relation with each 
other. Salinity, EC, and TDS show an increasing trend 

towards mouth of the river Hooghly. The river water is 
found to be unsuitable for direct human consumption as 
indicated by the WQI. Increased concentration of PTEs 
is observed especially near the industrial belt and urban 
centres surrounding the river belt. The varied accumu-
lation of PTEs at different sampling locations might be 
due to local tidal amplitude, magnitude of discharge of 
industrial effluent and municipal sewage, and sedimen-
tation. The concentrations of PTEs like Cd, Co, and Zn 
show temporal increment in concentration compared to 
other available reports on river Hooghly. The evaluation 
of non-carcinogenic human health risk of PTEs indicates 
no immediate adverse impact due to ingestion or dermal 
contact of water through bathing or drinking from river 
Hooghly. However, children are much more susceptible 
to non-carcinogenic health risks than adults. The results 
suggest implementation of a combination of legislative 
regulation, awareness campaign among stake holders, 

Table 3  Seasonal MDIingestion (adult and child), MDIdermal (adult and child), HQ (adult and child), and HI (adult and child)

Seasons Parameters Al Cd Co Cr Cu Fe Mn Ni Pb Zn

Summer MDI ingestion (adult) 3.64E−01 2.81E–04 1.09E–03 1.21E–03 1.80E–03 3.33E–01 7.01E-03 1.53E–03 5.78E–04 2.28E–03

MDI ingestion (child) 5.30E–01 4.09E–04 1.58E–03 1.76E–03 2.62E–03 4.85E–01 1.02E–02 2.23E–03 8.42E–04 3.33E–03

MDI dermal (adult) 3.37E–05 2.60E–08 4.02E–07 2.24E–07 1.66E–07 3.08E–05 6.49E–07 5.67E–07 2.14E–07 1.27E–07

MDI dermal (child) 3.16E–03 2.44E–06 3.77E–05 2.11E–05 1.56E–05 2.90E–03 6.09E–05 5.32E–05 2.01E–05 1.19E–05

HQ ingestion (adult) 3.64E–04 5.61E–04 3.62E–03 4.04E–04 4.50E–05 1.11E–03 3.50E–04 7.66E–05 4.13E–04 7.61E–06

HQ ingestion (child) 5.30E–04 8.17E–04 5.27E–03 5.88E–04 6.55E–05 1.62E–03 5.10E–04 1.12E–04 6.01E–04 1.11E–05

HQ dermal (adult) 1.69E–07 5.20E–06 6.70E–06 1.50E–05 1.39E–08 6.86E–07 8.11E–07 1.05E–07 5.10E–07 2.11E–09

HQ dermal (child) 1.58E–05 4.88E–04 6.29E–04 1.40E–03 1.30E–06 6.44E–05 7.61E–05 9.86E–06 4.78E–05 1.98E–07

HIAdult 3.64E–04 5.67E–04 3.63E–03 4.19E–04 4.50E–05 1.11E–03 3.51E–04 7.67E–05 4.13E–04 7.61E–06

HIChildren 5.46E–04 1.31E–03 5.90E–03 1.99E–03 6.68E–05 1.68E–03 5.86E–04 1.21E–04 6.49E–04 1.13E–05

Monsoon MDI ingestion (adult) 3.03E–01 1.93E–04 6.75E–04 7.50E–04 1.32E–03 2.61E–01 5.70E–03 1.30E–03 4.48E–04 1.80E–03

MDI ingestion (child) 4.41E–01 2.81E–04 9.83E–04 1.09E–03 1.92E–03 3.80E–01 8.29E–03 1.89E–03 6.52E–04 2.62E–03

MDI dermal (adult) 2.81E–05 1.79E–08 2.50E–07 1.39E–07 1.22E–07 2.42E–05 5.27E–07 4.81E–07 1.66E–07 1.00E–07

MDI dermal (child) 2.63E–03 1.68E–06 2.35E–05 1.30E–05 1.15E–05 2.27E–03 4.95E–05 4.52E–05 1.56E–05 9.38E–06

HQ ingestion (adult) 3.03E–04 3.86E–04 2.25E–03 2.50E–04 3.30E–05 8.71E–04 2.85E–04 6.50E–05 3.20E–04 6.00E–06

HQ ingestion (child) 4.41E–04 5.62E–04 3.28E–03 3.64E–04 4.81E–05 1.27E–03 4.15E–04 9.47E–05 4.66E–04 8.74E–06

HQ dermal (adult) 1.40E–07 3.57E–06 4.17E–06 9.26E–06 1.02E–08 5.38E–07 6.59E–07 8.92E–08 3.95E–07 1.67E–09

HQ dermal (child) 1.32E–05 3.36E–04 3.91E–04 8.69E–04 9.56E–07 5.05E–05 6.19E–05 8.37E–06 3.71E–05 1.56E–07

HIAdult 3.03E–04 3.90E–04 2.25E–03 2.59E–04 3.30E–05 8.72E–04 2.85E–04 6.51E–05 3.20E–04 6.00E–06

HIChildren 4.55E–04 8.98E–04 3.67E–03 1.23E–03 4.90E–05 1.32E–03 4.77E–04 1.03E–04 5.03E–04 8.89E–06

Winter MDI ingestion (adult) 3.53E–01 3.21E–04 1.12E–03 1.22E–03 1.94E–03 3.59E–01 7.82E–03 1.92E–03 6.43E–04 2.72E–03

MDI ingestion (child) 5.15E–01 4.68E–04 1.62E–03 1.78E–03 2.83E–03 5.22E–01 1.14E–02 2.79E–03 9.36E–04 3.97E–03

MDI dermal (adult) 3.27E–05 2.97E–08 4.13E–07 2.27E–07 1.80E–07 3.32E–05 7.24E–07 7.10E–07 2.38E–07 1.51E–07

MDI dermal (child) 3.07E–03 2.79E–06 3.88E–05 2.13E–05 1.69E–05 3.12E–03 6.80E–05 6.66E–05 2.23E–05 1.42E–05

HQ ingestion (adult) 3.53E–04 6.43E–04 3.72E–03 4.08E–04 4.86E–05 1.20E–03 3.91E–04 9.58E–05 4.59E–04 9.08E–06

HQ ingestion (child) 5.15E–04 9.36E–04 5.41E–03 5.94E–04 7.07E–05 1.74E–03 5.70E–04 1.39E–04 6.68E–04 1.32E–05

HQ dermal (adult) 1.64E–07 5.95E–06 6.89E–06 1.51E–05 1.50E–08 7.38E–07 9.05E–07 1.31E–07 5.66E–07 2.52E–09

HQ dermal (child) 1.54E–05 5.58E–04 6.46E–04 1.42E–03 1.41E–06 6.93E–05 8.50E–05 1.23E–05 5.32E–05 2.37E–07

HIAdult 3.54E–04 6.49E–04 3.73E–03 4.23E–04 4.86E–05 1.20E–03 3.92E–04 9.59E–05 4.60E–04 9.08E–06

HIChildren 5.30E–04 1.49E–03 6.06E–03 2.01E–03 7.22E–05 1.81E–03 6.55E–04 1.52E–04 7.21E–04 1.35E–05
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monitoring data, and software based models for risk and 
vulnerability assessment can be used as a useful tool for 
improvement of water quality in river Hooghly, which 
serves as a lifeline of the lower Gangetic delta and sup-
ports livelihood of millions.
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