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Abstract 

Data assimilation is a powerful tool for directly forecasting tsunami wavefields from the waveforms recorded at dense 
observational stations like S-Net without the need to know the earthquake source parameters. However, this method 
requires a high computational load and a quick warning is essential when a tsunami threat is near. We propose a new 
approach based on a deep predictive coding network for forecasting spatiotemporal tsunami wavefields. Unlike the 
previous data assimilation method, which continuously computes the wavefield when observed data are available, 
we use only a short sequence from previously assimilated wavefields to forecast the future wavefield. Since the pre-
dictions are computed through matrix multiplication, the future wavefield can be estimated in seconds. We apply the 
proposed method to simple bathymetry and the 2011 Tohoku tsunami. The results show that our proposed method 
is very fast (1.6 s for 32 frames of prediction with 1-min interval) and comparable to the previous data assimilation. 
Therefore, the proposed method is promising for integration with data assimilation to reduce the computational cost.
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Introduction
Tsunami forecasting systems have advanced significantly 
in recent years, especially since the 2004 Indian Ocean 
and 2011 Tohoku tsunamis. In most forecasting systems, 
information on the earthquake source parameters, that is, 
epicenter, focal mechanism, and depth, are necessary to 
run the tsunami propagation model (Satake 2014, 2015). 
Calculating the earthquake source parameters from seis-
mic observations in real-time is a difficult task because 
of the complexity of the structure beneath the Earth and 
the uncertainties in source characterization. Even though 
the parameters can also be calculated using the waveform 
inversion method (Satake 1989), it still requires many tri-
als and errors to find the best-fit fault configuration. With 
the vast deployment of offshore observational stations 

in recent years, many studies prefer tsunami forecasting 
systems that estimate sea surface deformation instead of 
the earthquake source mechanisms (Maeda et  al. 2015; 
Tsushima et  al. 2011; Wang et  al. 2019a). Several stud-
ies have proposed comprehensive forecasting systems 
that use a tsunami database to forecast tsunami inunda-
tion caused by a near-field earthquake (Fauzi and Mizu-
tani 2020; Gusman et al. 2014; Mulia et al. 2018; Setiyono 
et  al. 2017). However, these studies are not free from 
uncertainty in estimating the tsunami source.

Real-time data transmission through a high density 
of observational instruments interconnected with a 
cabled network has been conducted in Japan for more 
than a decade to provide tsunami predictions. In the 
Nankai region, the Dense Oceanfloor Network Sys-
tem for Earthquakes and Tsunamis (DONET), which 
is a cabled network for tsunami and seismic measure-
ment, has been extended to cover a wider region (Baba 
et al. 2014; Kaneda et al. 2015). A new cabled network, 
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Seafloor Observation Network for Earthquakes and 
Tsunami along the Japan Trench (S-Net) (Yamamoto 
et  al. 2016), is currently being installed in the Japan 
Trench, and some operations were started in 2016.

With the availability of dense observational stations, Maeda 
et al. (2015) first proposed a data assimilation (DA) method 
which was able to forecast tsunami wavefields without the 
need to know information on the earthquake source param-
eters by utilizing the observed tsunami amplitude. The tech-
nique was introduced to avoid uncertainties in estimating the 
tsunami source. The method was successfully implemented 
for the 2011 Tohoku earthquake. However, besides requiring 
a dense observation network, it also has a high computational 
cost because of the direct linear long-wave (LLW) numerical 
simulation. Several examples of the use of a dense observa-
tional network for tsunami DA, such as DONET, have been 
demonstrated in previous studies (Wang et al. 2018, 2019b). 
To reduce the computational cost, Wang et al. (2017) used a 
Green’s function database to speed up the assimilation pro-
cess. However, unlike the previous tsunami DA, the method 
was not developed to predict the tsunami wavefield, but only 
to synthesize waveforms at points of interest. An improved 
DA was presented by Yang et al. (2019) with an even higher 
computational cost because of the introduction of the ensem-
ble Kalman filter into the model.

Here we conduct a numerical experiment by inte-
grating a deep predictive coding network (Lotter et al. 
2017) with the DA. The method was initially used 
in the computer vision field to predict future video 
frames. In this study, the predictive coding network 
is used to predict the next time steps of the tsunami 
wavefield utilizing a short sequence of the previously 
assimilated wavefield. In this manner, tsunami propa-
gation after the last assimilated wavefield is estimated 
by the predictive coding network. In other words, the 
method we propose is a joint method between DA and 
predictive coding network, which is not independent 
from the conventional DA. Like the other typical data-
driven methods, the computational time of the predic-
tive coding network is short. The method reduces the 
computational time for DA; this enables the tsunami 
wavefield and arrival time at the coastal region to be 
predicted within a short time (1.6  s). We first devel-
oped a tsunami propagation database from predefined 
scenarios to train the predictive coding network. To 
evaluate the performance of our proposed method, 
we conducted experiments with two cases: simple 
bathymetry, and the 2011 Tohoku earthquake.

Methodology
Data assimilation
The sequential DA method has been widely used in 
weather forecasting (Kalnay 2002). The tsunami DA 

method proposed by Maeda et  al. (2015) for simulating 
tsunami wavefields in real-time is based on the optimal 
interpolation method, which has a lower computational 
cost than the more advanced method using the ensem-
ble Kalman filter, under the assumption that the system 
is linear. Even though the optimal interpolation method 
is simple, however, the DA approach showed good agree-
ment with real tsunami data (Gusman et  al 2016; Hei-
darzadeh et  al. 2019; Wang et  al. 2017, 2019a) and the 
synthetic case (Mulia et al. 2017). In the numerical simu-
lation, the tsunami wavefield at the nth time step is rep-
resented as xn

(
η
(
n�t, x, y

)
,M

(
n�t, x, y

)
,N

(
n�t, x, y

))
 , 

where η is the tsunami height, M and N  are the depth-
integrated tsunami fluxes in the x and y directions and �t 
is the time step. The DA method can be expressed as

At each time step, the forecasted tsunami wavefield xfn 
at the nth time step is computed by numerically solving 
linear long-wave theory using the assimilated wavefield 
at the previous time step xan−1

 . The vector F  is the propa-
gation matrix, which corresponds to the 2-D LLW tsu-
nami propagation model. The residuals between the 
observed tsunami amplitude and the forward simulation 
at the observational stations yn is calculated as (
yn −Hx

f
n

)
 . H is a vector that has a value of 1 at the 

observational stations and zero at the other elements, 
and is used to extract the forecasted tsunami height at 
the observational stations. The residuals are then multi-
plied by the smoothing matrix W  to bring the assimilated 
wavefield closer to the observed tsunami wavefield. The 
smoothing matrix is an essential factor in DA as it con-
trols the quality of the assimilated wavefield. We compute 
the smoothing matrix by solving the following equation:

where P = �εf εf T� and R = �εOεOT� are the error covari-
ance matrices of the forward simulation and the observa-
tions, respectively. εf  and εO are the errors of the forward 
simulation and observations, respectively, while εf T 
and εOT are the corresponding transpose matrices. We 
assume the Gaussian-distributed errors to compute both 
covariance matrices, with a characteristics distance of 
20 km (Maeda et al. 2015; Wang et al. 2019a).

By iteratively solving Eqs. (1) and (2), the tsunami wave-
field is assimilated, and we can obtain forecasted tsunami 
waveforms at any location inside the model domain dur-
ing and after the assimilation process.

(1)x
f
n = Fxan−1,

(2)xan = x
f
n +W

(
yn −Hxbn

)
.

(3)W = PHT +
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HPHT − R

)−1
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Deep predictive coding networks
Traditionally, static images are used to train computer 
vision models. However, in the real world, the visual world 
involves spatiotemporal movement. As a complex system, 
the human brain is continuously making spatiotemporal 
predictions based on the incoming sensory stimuli, and 
this is mirrored in the concept of predictive coding (Fris-
ton and Kiebel 2009; Rao and Ballard 1999). Predictive 
coding networks were initially developed by Lotter et  al. 
(2017) based on this concept, but reformulated in mod-
ern deep learning techniques and trained using a gradient 
descent method with an implicitly embedded loss function. 
A network consists of several repeating stacked layers that 
make local predictions of the input to the modules. The dif-
ference between the actual input and its prediction then 
proceeds to the higher layer. The architecture of the pro-
posed method is shown in Fig. 1. Each level of the network 
is composed of four main components: an input convolu-
tional unit ( Al ), a recurrent representation unit ( Rl ), a pre-
diction unit ( ̂Al ) and an error representation unit ( El ). The 
recurrent representation unit Rl estimates the prediction 
Âl of the input Al . The error unit El computes the differ-
ence between Al and Âl , and then passes it to the next layer 
of the network as input Al+1 . The representation unit Rl 
receives a copy of the error matrix El along with the input 
from the representation unit of the higher layer Rl+1 , which 
is then used to estimate future predictions.

Predictive coding networks initially focused on image 
sequences in video data. In this study, we use the assimi-
lated tsunami wavefields from the DA process. The readers 
are referred to Lotter et  al. (2017) for the detailed expla-
nation of the predictive coding networks. Considering a 
sequence from the assimilated tsunami wavefield xt as the 
input to the model, the target for the lowest layer of the net-
work is set to the input sequence itself, that is At

0
= xt∀t . 

Except for layer 0, the targets for the higher layers At
l are 

determined by a convolution of error units from the lower 
layer Et

l−1
 , which is followed by an exponential linear unit 

(ELU) activation function (Clevert et  al. 2016) and max-
pooling, as described in Eq. (4). After several experiments, 
we found that the ELU activation function is more suitable 
for our study than the rectified linear unit function that was 
used in the previous model (Lotter et al. 2017).

where H is the max-pooling result of f (C) , C is the con-
volution result of Et

l−1
 , and f  is the ELU activation func-

tion. We used the convolutional long short-term memory 
units (convolutional LSTM) (Hochreiter and Schmid-
huber 1997; Shi et  al. 2015) as the backbone for the 
representation units. Convolutional LSTM is the most 
important part of the model as it keeps the information 

(4)At
l =

{
xt l = 0

H l > 1
,

Fig. 1  Architecture of the deep predictive coding network
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from the previous time step and passes it to the next time 
step of the sequence, similar to the human brain’s ability 
in remembering or forgetting information. By using the 
convolutional LSTM, Rt

l is then determined based on the 
representation from the previous time step Rt−1

l  , Et−1

l  , as 
well as Rt

l+1
 . Rt

l+1
 should go through an upsampling pro-

cedure because of the max-pooling in At
l units. The pre-

dictions Ât
l are estimated through a convolution of Rt

l and 
followed by an ELU activation function (Eq. (5)):

where K  is the convolutional results of Rt
l . Finally, the 

error units Et
l  are computed from the difference between 

At
l and Ât

l and then divided into ELU-activated positive 
and negative values [Eq.  (6)]. The model is trained by 
minimizing the sum of the error units using a gradient 
descent method to fine-tune the network parameters. 
The training loss which should be minimized is expressed 
in Eq. (7):

where λt and λl are the weighting factors by time and 
layer, respectively, and nl is the number of units in the 
lth layer. We set λt = 0 for the first time step and λt = 1 
for the remaining steps, while λ1 = 1 for the lowest layer 
and λ1 = 0 for the upper layers. Those criteria are selected 
because they produced the best performing model as 
suggested by Lotter et al. (2017).

First, we need to develop a database from multiple pre-
defined scenarios to train the model. The scenario and 
experiment settings are explained in the next section. 
For each scenario, we simulate the tsunami propagation 
using the LLW tsunami model. The synthesized tsunami 
heights at every time step ( �t = 1 s) are used to estimate 
the tsunami wavefield through the assimilation process 
using Eq.  (1). Once the assimilation process has started, 

(5)Ât
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∑
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we use the assimilated wavefield from those scenarios 
with 1-min intervals to train the model. Since the pro-
posed algorithm learns the pattern of the tsunami propa-
gation during the training process, we would expect the 
model to behave similarly to the tsunami propagation 
model. The predictive coding network in this study was 
composed of four layers of networks with 3 × 3 filter 
sizes, and channel sizes of 1, 48, 96 and 192 for each layer. 
The model was trained using a gradient descent algo-
rithm, RMSprop, with a learning rate α of 0.001, decreas-
ing by a factor of 10 halfway through the training process.

Joint DA‑predictive coding
In this study, the predictive coding network is integrated 
with DA to provide quick early tsunami warnings. The 
DA can represent the tsunami wavefields accurately, but 
it comes at a relatively high computational cost. There-
fore, the predictive coding network is introduced to save 
computational time. Figure  2 shows a simple schematic 
of the joint DA-predictive coding method. In a real prac-
tice, once the tsunami reaches the offshore observational 
stations, the DA starts to reconstruct the wavefield. By 
only using a short sequence of data-assimilated wavefield 
as the input, the predictive coding will predict the future 
time steps promptly. The DA process keeps running in 
the background, so that if a newly assimilated wavefield 
is available, the predictive coding will continue the pre-
diction process with the new data. Thus, predictions with 
longer time steps with better accuracy can be obtained. 
With this simple approach, if one has already been using 
DA for its tsunami warning system, there is no need to 
significantly change the system because the predictive 
coding will directly use the DA’s output to make future 
predictions. Therefore, with much faster computational 
time, as discussed in the next section, integrating pre-
dictive coding with DA is expected to provide a quicker 
forecast than solely using DA.

Here, we configured the model using four assimi-
lated wavefields, enabling the model to predict the next 
four steps in the wavefield. Four frames of the wave-
fields are selected by considering the fact that the model 

Fig. 2  Schematic of the joint DA-predictive coding method
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accumulates the information over time to provide accu-
rate predictions. After several trials, we found that four 
frames of the input are adequate to provide reasonable 
predictions. Adding more input frames may provide more 
accurate predictions; however, it also increases the compu-
tational time of DA, which may delay the tsunami warning.

Numerical implementations and results
To quantify the prediction accuracy of the proposed 
method, the forecasted wavefields are compared to the 
assimilated wavefields computed by DA. However, quan-
titative assessment of the generative models is a complex 
problem (Theis et al. 2016), and we adopted a structural 
similarity index measurement (SSIM) (Wang et al. 2004) 
to measure the model performance quantitatively. SSIM 
is currently widely used in the image vision field to pro-
vide a clear judgment of the similarity between two 
images:

(8)

SSIM
(
x, y

)
=

(
2µxµy + C1

)(
2σxy + C2

)
(
µ2
x + µ2

y + C1

)(
σ 2
x + σ 2

y + C2

) ,

where µx and µy are the averages of the images x and y, 
respectively, and σ 2

x  and σ 2
y  are the variances of x and y, 

respectively. C1 = (k1L)
2 and C2 = (k2L)

2 are two varia-
bles that are designed to avoid a zero denominator, while 
L is the dynamic range of the pixel values and k1 = 0.01 
and k2 = 0.03 are constants. SSIM is a signed expression 
ranging between – 1 and 1, with a larger value indicating 
a greater similarity. We also used a conventional statisti-
cal measure, the root mean square error (RMSE), which 
measures the average magnitude of the prediction error:

where η̂i and ηi are the tsunami height from the proposed 
method and DA at point i , respectively.

Simple bathymetry
To assess the performance of our proposed method, 
we conducted a numerical experiment with a simple 
bathymetry profile as the simplest case. The numeri-
cal domain is shown in Fig.  3. We set a homogeneous 

(9)RMSE =

√√√√1

n

n∑

i=1

(
η̂i − ηi

)2
,

Fig. 3  Domain of the simple bathymetry case. The colored area indicates the location of the cosine basis function of the initial water surface for 
training and testing purposes. The blue dots indicate the array of the observational stations
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bathymetry with a uniform depth of 2000  m. The size 
of the numerical domain was 300  km in the x and y 
directions with a grid width of Δx = Δy = 1000  m. We 
set an array of 25 virtual stations as a dense observa-
tional station is typically required by the conventional 

DA method to provide a good assimilation result. The 
distance between observational points in the x- and 
y-directions was 15  km. We used a two-dimensional 
cosine basis function (Hossen et al. 2015) for the initial 
water surface:

Fig. 4  Comparisons of the wavefields for the model input and the estimated wavefields from the proposed method, DA and forward modeling for 
the simple bathymetry case. a Input to the model; b forecasted tsunami wavefields; c assimilated tsunami wavefields; d results of forward modeling
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where L is the characteristics source size, and we chose 
L = 70 km. The maximum initial height η0 = 1 at x = x0 
and y = y0 , which is the center of the source.

Three scenarios of the initial tsunami sources were 
used; two for the training, and one for testing pur-
poses. The location of the initial tsunami sources for 
training and testing is selected arbitrarily and shown in 
Fig.  3. Because the wave propagation in a homogene-
ous bathymetry is not complex, we assumed that two 
initial sources are enough for model training. For train-
ing, we first simulated the tsunami propagation using the 
LLW tsunami model. Assuming the recorded waveform 
at observational stations as the observed data, once the 
tsunami signal had been recorded at the stations, the 
assimilation process had started, and we concatenated 
the assimilated wavefield with 1-min intervals from 
those two scenarios as the training input. We found that 
training the model with a training epoch of 350, which 
indicate the number of times the model go through the 
training dataset, was enough to provide a good repre-
sentation of the database. Similarly, for the prediction, 
once the assimilation process had begun, four assimilated 
tsunami wavefields with an interval of 1 min originating 
from the testing scenario were used as the input to the 
model.

A comparison between the predictions, DA, and for-
ward modeling is shown in Fig. 4. We set the initial water 
surface at t = 0 as the tsunami source. When the tsu-
nami reached the observational stations, in this case, at 
t = 11  min, the data assimilation started. Here, we used 
four assimilated wavefields starting from t = 11  min to 
14  min (Fig.  4a) to predict the next four frames of the 
wavefield, i.e., t = 15 to 18 min (Fig. 4b). From the com-
parison, the estimated wavefields are visually very similar 
to the DA (Fig. 4c). The model can mimic the character-
istics of the DA indicated with SSIM and RMSE values 
ranging from 0.850 to 0.955 and 0.003 to 0.009 m, respec-
tively. We included a box and whiskers diagram to further 
analyze the differences between the forecasts and DA 
(Fig. 5). The box and whiskers plots suggest that the fore-
casts had a similar distribution to the DA, in which the 
median of the absolute errors are very close to the zero. 
We also randomly selected ten observational stations and 
compared the recorded waveforms produced by the pro-
posed method and DA (Fig. 6). The selected stations are 
plotted in Fig. 3. Overall, the forecasted waveforms were 
almost identical to the waveforms estimated by the DA 
with a mean correlation coefficient of 0.988. The figure 

(10)ηi =
η0

4
×

[
1+ cos

(
π(x − x0)

L

)]
×

[
1+ cos

(
π
(
y− y0

)

L

)]
, −L ≤ xi, yi ≤ L,

shows that the DA (Fig.  4c) provided a good wavefield 
approximation in the vicinity of the observational points, 
though a broader coverage of the stations may be nec-
essary to improve the quality of the DA, as exhibited in 
the forward modeling results (Fig. 4d). However, here we 
only focused on the performance of the proposed model 
over the DA.

The 2011 Tohoku tsunami
Next, we applied the proposed method to the tsunami 
induced by the 2011 Tohoku earthquake. We used 
bathymetry data with a resolution of 4050  m (Fig.  7a). 
The bathymetry dataset, which was obtained from the 
Cabinet Office of Japan, is based on a nautical chart and 
digital data compiled by the Japan Coast Guard and the 
Japan Hydrographic Association.

For model training, we arranged multiple scenarios 
for simple rectangular fault models. We set 15 reference 
points as the top-center of the faults. The placement of 
the reference points is shown in Fig. 7b. We set an earth-
quake magnitude ranging from 8.0 to 9.0 (0.2 intervals); 
in total, there were 90 scenarios. The earthquake depth, 
strike and dip angles were determined based on SLAB 2.0 
(Hayes et al. 2018), while the rake angle was set to 90º for 
all scenarios, representing the thrust fault mechanism. 
To calculate the area of the fault, the magnitude scale 

Fig. 5  Box and whiskers plots indicating the absolute error between 
the proposed method and DA for the simple bathymetry case
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relation for the plate-boundary proposed by Murotani 
et al. (2013) was used:

where S is the rupture area of the fault (km2) and Mo is 
the seismic moment (Nm). The length (L) and width 
(W) of the fault are calculated from the simple formula 

(11)S = 1.34 × 10
−10M2/3

o ,

L = 2W  . We used a coseismic deformation in an elastic 
half-space model (Okada 1985), to compute the initial 
sea surface elevation for the DA. We set the same num-
ber of training epoch as used in the simple case, and 
the training process was conducted in a similar manner. 
For model testing, we used a source model of the 2011 
Tohoku earthquake, which was calculated by conducting 

Fig. 6  Comparisons of waveforms between the proposed method and DA at ten randomly selected stations of the dense observational stations for 
the simple bathymetry case. The location of the selected stations is shown in Fig. 3

Fig. 7  a Bathymetry data and the locations of S-Net and GPS buoys stations; b top-center of the fault scenarios to develop the database



Page 9 of 13Fauzi and Mizutani ﻿Geosci. Lett.            (2020) 7:20 	

a joint inversion using a tsunami, GPS and seafloor defor-
mation data (Gusman et al. 2012).

A comparison between the predictions, DA and for-
ward modeling is shown in Fig.  8. In this case, the DA 
process started at t = 1 min. We used four frames of the 
assimilated wavefield from t = 1 to 4 min (Fig. 8a) as the 
input to the model to predict the next four frames of 

the wavefield (t = 5 to 8 min). The results show that the 
predictions (Fig. 8b) are very similar to the DA (Fig. 8c) 
with SSIM and RMSE values ranging from 0.949 to 0.955 
and 0.173 to 0.196, respectively. We further explored 
the capability of the proposed method by recursively 
feeding back the prediction into the model to pro-
vide longer wavefields predictions up to t = 36  min. We 

Fig. 8  Comparisons of the wavefields for the model input and the estimated wavefields from the proposed method, DA and forward modeling for 
the 2011 Tohoku tsunami. a Input to the model; b forecasted tsunami wavefields; c assimilated tsunami wavefields; d results of forward modeling
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show four snapshots of the resulting forecasts at t = 14, 
21, 28 and 35 min (Fig. 9). In Fig. 10, we also compared 
the assimilated and forecasted waveforms from ten ran-
domly selected S-Net stations and with real waveform 
data from the 2011 Tohoku tsunami recorded at five 
GPS buoys (GB801, GB802, GB803, GB804, GB806). The 
location of the GPS buoys and selected observational 
stations are shown in Fig. 7a. At ten S-Net stations, the 
forecasted waveforms show reasonably good agree-
ment with the DA, with a mean correlation coefficient 
of 0.748. However, both the assimilated and forecasted 
waveforms underestimated the observations at the GPS 
buoys. Nonetheless, both exhibit similar trends to the 
observations.

Discussion
Computational speed is one of the most critical factors 
for real-time tsunami forecasting. In the previous studies 
(Gusman et al. 2016; Maeda et al. 2015; Yang et al. 2019), 
tsunami DA successfully provided accurate results at a 
relatively high computational cost. The predictive coding 
network learns the pattern of tsunami propagation dur-
ing the training period. Once the model has been trained, 
the spatiotemporal tsunami wavefield prediction can be 
made quickly by only performing a matrix multiplication 
procedure. We used a personal computer equipped with 
an Intel i7 processor, an 8-gigabyte graphics processing 
unit (GPU), and 16 gigabytes of memory for model train-
ing and testing. Computationally, generating four frames 
of future wavefield predictions utilizing four frames of 

Fig. 9  Comparisons of the estimated wavefields from the proposed method, DA and forward modeling for the 2011 Tohoku tsunami at t = 14, 21, 
28 and 35 min. a Forecasted tsunami wavefields; b assimilated tsunami wavefields; c results of forward modeling
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the assimilated wavefield as the input requires a com-
putational time of 0.2  s. In total, it only requires 1.6  s 
to provide wavefield predictions from t = 5 to 36 min in 
the case of the 2011 Tohoku earthquake, while the DA 
requires 360 s. With this quick computation time, we can 
provide immediate warnings, which is very important for 
the evacuation process.

In the previous DA, the tsunami model is based on 
LLW theory. Even though incorporating nonlinearity or 
a dispersive effect may improve the quality of the DA, it 
is better to avoid, as it may further increase the compu-
tational cost. Since the learning process of the proposed 
method is based on the database, incorporating those 
scenarios is more practical, because the tsunami simula-
tion is conducted in advance.

For the case of the 2011 Tohoku tsunami, both the pro-
posed method and DA-generated waveforms at the GPS 
buoys underestimate the observations (Fig.  10). With 
the limited memory capacity of our standard GPU, we 
decided to use a relatively coarse bathymetry resolution. 
As a result, a high accuracy forecasting result may not be 

achieved in this study, because, as explained in previous 
studies (Gusman et  al. 2009; Satake and Tanioka 1995), 
the forecast accuracy is strongly dependent on the topog-
raphy resolution. A more sophisticated GPU should be 
used in future studies to accommodate a finer bathym-
etry resolution. In addition, since the error propagates 
over time steps, the optimum length of future predictions 
should be carefully investigated in future work. It is clear 
from Figs. 4b, 8b, and 9a that the SSIM and RMSE tend 
to degrade over the time steps. The degradation is also 
shown in the box and whiskers plots (Fig. 11), where the 
range and length of the box and whiskers tend to increase 
at the longer time steps of the predictions. Another prob-
lem is that the S-Net stations are located inside the earth-
quake source region. In such a condition, the sea surface 
displacement cannot be directly observed by the off-
shore bottom pressure gauges after an earthquake occurs 
because the deformation wavelength is much larger than 
the ocean depth. Therefore, the sea surface elevation 
shortly after the earthquake is almost the same as that 
before the earthquake (Tsushima et  al. 2012). To solve 

Fig. 10  Comparisons of the waveforms between the proposed method, DA and observations at GPS buoys and ten randomly selected stations for 
the 2011 Tohoku tsunami. The location of the selected stations is shown in Fig. 7a
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this problem, a method which able to generate sea sur-
face deformation inside the source region (e.g., Tanioka 
2018) should be integrated with the DA. Overall, based 
on the results, the proposed network shows promise for 
integration with DA to reduce the computational cost. 

Conclusions
We conducted a study using a deep predictive coding net-
work along with the DA to forecast a tsunami wavefield 
in real-time. The objective of this research was to assess 
whether the application of a deep predictive coding net-
work combined with the DA could be implemented for 
a real-time warning system. We conducted two study 
cases: simple bathymetry and the 2011 Tohoku tsunami. 

The results showed that only utilizing four frames of the 
assimilated wavefields enabled the model to satisfactorily 
forecast the next four frames of the wavefield with SSIM 
values in the range 0.850–0.955, and up to 32 future 
frames with SSIM values in the range 0.781–0.955 for 
the simple bathymetry and the 2011 Tohoku tsunami, 
respectively. With a quick computational time and rea-
sonably accurate results, we conclude that the proposed 
method is applicable for a real-time warning system.
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