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Abstract 

The rainfall intensity–duration–frequency (IDF) curves play an important role in water resources engineering and 
management. The applications of IDF curves range from assessing rainfall events, classifying climatic regimes, to 
deriving design storms and assisting in designing urban drainage systems, etc. The deriving procedure of IDF curves, 
however, requires long-term historical rainfall observations, whereas lack of fine-timescale rainfall records (e.g. sub-
daily) often results in less reliable IDF curves. This paper presents the utilization of remote sensing sub-daily rainfall, i.e. 
Global Satellite Mapping of Precipitation (GSMaP), integrated with the Bartlett-Lewis rectangular pulses (BLRP) model, 
to disaggregate the daily in situ rainfall, which is then further used to derive more reliable IDF curves. Application of 
the proposed method in Singapore indicates that the disaggregated hourly rainfall, preserving both the hourly and 
daily statistic characteristics, produces IDF curves with significantly improved accuracy; on average over 70% of RMSE 
is reduced as compared to the IDF curves derived from daily rainfall observations.

Keywords:  IDF curves, Rainfall disaggregation, Remote sensing, GSMaP, Bartlett-Lewis rectangular pulses model

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

Introduction
The rainfall intensity–duration–frequency (IDF) curves 
are graphical representations of the probability that a 
given average rainfall intensity will occur within a given 
period of time (Dupont and Allen 2000). Providing math-
ematical relationship between the rainfall intensity i , the 
duration d , and the return period T  (or equivalent to the 
annual frequency of exceedance f  ), the IDF curves allow 
for the estimation of the return period of an observed 
rainfall event or conversely of the rainfall intensity corre-
sponding to a given return period (Elsebaie 2012). Design 
storms derived from IDF curves are commonly adopted 
in water resources engineering for designing of urban 
drainage systems, evaluating the endurance of hydraulic 
structures, and assessing regional flood vulnerabilities 
(Keifer and Chu 1957).

The first IDF curve was established as early as 1932, 
whilst since then many sets of IDF relationships have 
been constructed for several parts of the world (Chow 
1988; Gellens 2002; Grimaldi et al. 2011). As presented in 
Fig. 1, the typical steps to derive the IDF curves are as fol-
lows (Koutsoyiannis et al. 1998; Nhat et al. 2006):

1.	 Retrieve the extreme rainfall intensities for a specific 
duration through annual maximum analysis;

2.	 Fit the extreme rainfall intensity time series, for each 
duration, to a theoretical distribution function, e.g. Gen-
eralised Extreme Value (GEV), Gumbel, Pearson III;

3.	 Calculate the rainfall intensity, for each duration and 
return period, based on the selected distribution 
function; and

4.	 Construct the IDF curves following the empirical 
formulae, e.g. Talbot, Bernard, Kimijima, Sherman, 
through regression techniques.
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The deriving procedure of IDF curves involves utiliza-
tion of long-term historical rainfall observations. When 
fine-timescale rainfall records (e.g. sub-daily) are not avail-
able, the characteristics of extreme rainfall intensities and 
subsequently their distribution functions corresponding 
to the short durations might not be captured. This miss-
ing information will, in step (4), result in regression errors 
which are even more pronounced at short durations.

Fine-timescale rainfall observation, however, is often 
a luxury for many regions due to the high cost, confi-
dentiality, time-consuming procedures involved in data 
acquisition and sharing, etc. As proxies to the in  situ 
rainfall measurement, satellite or radar-based precipita-
tion products have been widely used to derive the IDF 
curves in case of data scarcity. Ombadi et  al. (2018) 
developed a methodological framework to adjust the 
bias and transform the satellite areal rainfall to point 
rainfall, and applied the products to develop IDF curves 
in ungauged regions. Marra et  al. (2017) compared IDF 
curves from radar and satellite estimates over the east-
ern Mediterranean and quantified the uncertainty related 
to their limited record on varying climates. Awadallah 
and Awadallah (2012) used Tropical Rainfall Measuring 
Mission (TRMM) satellite data to derive the relations 
between maximum sub-daily, daily and monthly rain-
fall and combined the relations with the coarse rainfall 

measurements to develop IDF curves for a scarce region 
in Africa. However, above studies either depend merely 
on the satellite or radar data, without utilizing the local 
rainfall measurement, e.g. Ombadi et  al. (2018) and 
Marra et al. (2017), or the methodology is a simple scal-
ing approach and lacking of theoretical background, e.g. 
Awadallah and Awadallah (2012).

Physically based and stochastic rainfall disaggregation 
models have emerged as popular alternative approaches 
to produce finer-scale precipitation based on coarser-
scale information (Mason 1986; Wilby et  al. 2002). 
Physically based models are known for the cascade of 
uncertainty due to many uncertain processes (hence com-
plex sets of differential equations) and required variety of 
atmospheric variables, whereas in contrast the stochastic 
rainfall disaggregation methods demand low computa-
tional power and minimum model inputs. The latter are 
therefore selected in the present study and require only 
2 datasets in the study case, i.e. daily rainfall observation 
and publicly available GSMaP satellite rainfall.

Several stochastic rainfall disaggregation models have 
been developed, such as (1) the random cascade models 
based on scale-invariance theory (Gupta and Waymire 
1993; Carsteanu and Foufoula-Georgiou 1996; Molnar 
and Burlando 2005), and (2) the Bartlett-Lewis/Neyman-
Scott rectangular pulses models based on point process 

Fig. 1  Schematic diagram of deriving IDF curves
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theory (Onof and Wheater 1993; Khaliq and Cunnane 
1996; Koutsoyiannis and Mamassis 2001; Gyasi-Agyei 
and Mahbub 2007). Studies have been conducted to 
assess the performance of different disaggregation meth-
ods towards their suitability and effectiveness (Ferraris 
et al. 2003; Serinaldi 2010; Licznar et al. 2011). A general 
conclusion as for the best model, however, cannot be 
drawn as rainfall properties significantly differ for dif-
ferent climatic regions with different generating mecha-
nisms (Sharma and Mehrotra 2010). In view of its wide 
applicability in various climatic conditions, Bartlett-Lewis 
rectangular pulses (BLRP) model, in particular HyetosR, 
is selected in this study as the rainfall disaggregation tool. 
HyetosR is an R package developed to disaggregate daily 
rainfall into hourly time series, which combines a rainfall 
simulation model based on the BLRP process with a pro-
portional adjusting procedure to rescale the hourly totals 
to the required daily values (Koutsoyiannis and Onof 
2000, 2001; Kossieris et  al. 2012). Hourly rainfall obser-
vations are not necessary as a direct input for HyetosR; 
however, sub-daily rainfall statistics is still required for 
the parameter estimation of the BLRP model.

As an alternative source for sub-daily rainfall statistics, 
the remote sensing rainfall from Global Satellite Map-
ping of Precipitation (GSMaP) is acquired and used in 
this study. The GSMaP project was initiated for a study 
“Production of a high-precision, high-resolution global 
precipitation map using satellite data”, promoted by 
Japan Aerospace Exploration Agency (JAXA) Precipita-
tion Measuring Mission (PMM) Science Team (Okamoto 
et al. 2005; Kubota et al. 2007). GSMaP offers near-real-
time hourly global rainfall maps with a resolution of 0.1 
degree from January 1998 to November 2010. However, 
capturing rainfall extremes by satellite products has been 
recognized as an open issue (Endreny and Imbeah 2009; 
AghaKouchak et al. 2011; Gourley et al. 2011; Stampoulis 
et  al. 2013); GSMaP rainfall, with no exception, under-
estimates rainfall intensity in general (Dinku et al. 2010; 
Tian et  al. 2010). This limitation, and together with its 
short period (< 13 years), hinders the direct application of 
GSMaP rainfall in deriving IDF curves, especially affects 
the accuracy corresponding to longer return periods.

The present study attempts to make the best of daily 
rainfall observations and sub-daily satellite-based rainfall 
to derive IDF curves that are able to capture the frequency 
characteristics of short-duration rainfall extremes. The 
utilization of BLRP model is explored to disaggregate daily 
observations into hourly by using satellite-based rainfall 
characteristics, i.e. derived from GSMaP statistics. The 
GSMaP rainfall statistics are used to guide the parameter 
optimization of the BLRP model, which is then applied to 
downscale the daily rainfall observations into hourly rain-
fall. The proportional adjusting procedure in the BLRP 

model adjusts the daily cumulated sums of the disaggre-
gated rainfall to the magnitude of daily rainfall observa-
tions and hence overcomes the GSMaP’s shortcoming 
of underestimating reality. The downscaled hourly rain-
fall from BLRP is then extracted for its annual maxima 
(AMAX) through extreme value analysis and fed as inputs 
to derive the intended higher resolution IDF curves. An 
ensemble of 100 BLRP simulations is conducted to reduce 
the uncertainties in the random process of the BLRP 
model. The resulted IDF curves are evaluated against the 
IDF curves constructed from real hourly observations 
and the ones constructed from just daily rainfall observa-
tions to assess if the proposed approach can indeed repro-
duce the frequency characteristics of sub-daily rainfall 
extremes. The methodology, study case, and conclusions 
are elaborated in following sections.

Methodology
Figure  2 illustrates the proposed IDF deriving scheme, 
which is conducted in 4 steps.

Step 1 Calculate rainfall statistics
Reanalysis version of GSMaP hourly rainfall (GSMaP_
MVK Ver.5.222) is downloaded from the database of 
JAXA (ftp://rainm​ap:amech​i-zu@hokus​ai.eorc.jaxa.jp/).

Rainfall statistics is calculated upon extracting the rain-
fall time series at the GSMaP grid cell nearest to the rain-
fall measurement station. The statistics includes mean 
EG , variance varG , auto-covariance acovG and probability 
of dry PG , where the subscript G indicates the rainfall sta-
tistics calculated from the GSMaP rainfall.

Step 2 Estimate BLRP model parameters
The Bartlett-Lewis rectangular pulses (BLRP) model is 
essentially a random-parameter rainfall generator based 
upon a Poisson cluster process (Rodriguez-Iturbe et  al. 
1987, 1988). This paper uses the most enriched version 
of the BLRP model with seven parameters, i.e. � , κ , φ , α , 
ν , µX , and σX (Onof and Wheater 1994). The description 
of the BLRP model and the physical meaning of the seven 
parameters are detailed in Appendix A.

The model parameters can be estimated by minimizing 
an objective function defined as

where mean E , variance var , auto-covariance acov , and 
probability of dry P (defined as ”ratio of the number of 
dry recordings to the total number of recorded data”) are 
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the modelled rainfall statistics which are functions of the 
aforementioned seven parameters (refer to Appendix A), 
w1 to w4 represent the weights applied to each absolute 
relative errors, and h is the timescale. Five timescales are 
selected herein, i.e. 1  h, 2  h, 6  h, 12  h, and 24  h. Equa-
tion (1) implies the necessity of presenting rainfall statis-
tics at various timescales in estimating the parameters for 
the BLRP model.

The seven parameters for the BLRP model are in this 
paper simultaneously optimized in order to minimize the 
objective function, i.e. Eq. (1), using the genetic algorithm 
(GA) which solves the optimization problems based on 
the mechanics of natural genetics (Goldberg 1989).

Step 3 Disaggregate daily rainfall observations
The BLRP models are run separately for each cluster of 
wet days, i.e. a series of consecutive wet days delimited by 
at least one dry day. Several runs are conducted for each 
cluster, until the departures of the daily sums become 
lower than an acceptable limit, which is herein defined as 
0.1  mm as a trade-off between the model accuracy and 
program running time. The departure δ is defined as

where L . is the number of wet days in the cluster, c = 0.1 
mm is a small constant to avoid zero denominator, Zk 
and Z̃k are, respectively, the observed and simulated daily 
rainfall depths on day k.

The cluster is further processed to scale the hourly 
rainfall depths through the proportional adjusting proce-
dure according to

(2)δ =

[

L
∑

k=1

ln2
(

Zk + c

Z̃k + c

)

]

1
2

where X̃s is the initially generated hourly intensity, Z is 
the observed daily rainfall depth, and Xs is the adjusted 
hourly intensity. This rescaling process enforces the sum 
of disaggregated rainfall consistent with the daily obser-
vations and therefore corrects the underestimation errors 
in the GSMaP rainfall. As a result, the daily and coarser-
scale (e.g. bi-daily) extremes from the disaggregated rain-
fall are identical as the extremes from the observed data.

Step 4 Derive IDF curves
The annual maxima (AMAX) of the disaggregated hourly 
rainfall is then extracted and fed as the input to derive the 
IDF curves following the typical procedure, as described 
in Introduction. GEV distribution function is adopted 
in the study case based on the standard practice (Public 
Utilities Board Singapore 2012); the Sherman equation is 
selected to regress the IDF curves, i.e.

where i is the rainfall intensity, d is the duration, a , b , and 
e are the regression parameters determined by the least 
square method. Different a , b , and e values are regressed 
for different return periods T .

Study case
The proposed IDF deriving scheme is applied to the 
east of Singapore. Singapore is an island country 
located near the equator featuring a tropical rainforest 
climate. The area of Singapore is about 700  km2, and 

(3)Xs = X̃s

(

Z
∑24
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)

(4)i =
a

(d + b)e

Fig. 2  Flow diagram of the proposed downscaled rainfall IDF derivation
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the elevation ranges from 0 to 164  m above mean sea 
level (MSL) with relatively mild slopes. In Singapore, 
convective thunderstorm prevails and short-duration 
precipitation dominates; the design storms are there-
fore often derived with short durations (below 4 h; Pub-
lic Utilities Board Singapore 2012), which makes the 
accuracy of IDF curves at sub-daily scales substantially 
important. In spite of a wetter monsoon season from 
November to January, the annual rainfall extremes can 
actually occur in any month of a year. In order to cap-
ture all possible extremes, this study applies rainfall 
disaggregation for Singapore on the basis of all calendar 
months.

Figure 3 shows the location of Changi Met Station and 
the distribution of the GSMaP grid points. The Changi 
Met Station, located in the east of Singapore with a flat 
topography, uses a tipping bucket rain gauge. Hourly 
rainfall observations are available at the Changi Met Sta-
tion for 50 years from 01 January 1966 to 31 December 
2015. The GSMaP rainfall is extracted from the near-
est grid point, i.e. 4 km from the Changi Met Station at 
(103.95° E, 1.35° N), as highlighted in Fig. 3.

Table  1 illustrates the rainfall statistics from Novem-
ber to January, calculated from both GSMaP rainfall and 
rainfall observations at five timescales. Figure 4 presents 
the scatter plots of the tabulated rainfall statistics. The 
statistics of the GSMaP rainfall is highly correlated with 
the rainfall observation statistics, and the discrepan-
cies between the rainfall statistics are in general insig-
nificant, with an exception at variance where GSMaP 
drastically underestimates the observations. In order to 
account for the less representative variance, a smaller 
weight is applied to define the objective function in 
Eq. (1), i.e. w1 = w3 = w4 = 1 whilst w2 = 0.1 . The values 
are determined by the method of trial and error, which 
are validated to inflict insignificant influence to the dis-
aggregation results. The general resemblance also con-
firms the applicability of estimating parameters for the 
BLRP model using the statistics calculated from GSMaP 
rainfall.

Table  2 summarizes the optimized parameters of the 
BLRP model. The parameters appear to be different for 
different months due to their distinct rainfall statistics. 
A total of 100 simulations are carried out with the same 
set of optimized parameters to account for and assess the 

Fig. 3  Location of Changi Met Station and GSMaP grid points
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uncertainties in the random process of the BLRP model. 
The boxplots of differences between the disaggregated 
and observed mean rainfall extremes are presented in 
Fig. 5. For all sub-daily durations, the median differences 
are slightly below zero, indicating the underestimation 
of extremes in the disaggregated rainfall, whereas the 
magnitude of the quantile boxes (75th percentile–25th 
percentile) varies from 5 to 15  mm/h as the duration 
decreases, implying the uncertainty generally increases 
as the duration decreases; for the daily and bi-daily dura-
tions, the disaggregated rainfall extremes are identical 
with the observed extremes.

Figure 6 presents the IDF curves with 10-year, 20-year, 
50-year, and 100-year return periods derived from dif-
ferent rainfall data. IDF A is derived from hourly rainfall 
observations, IDF B is derived from daily rainfall observa-
tions, whereas the dotted, dashed and solid lines in IDF C 
are, respectively, derived from the 25th, 75th percentiles 
and median rainfall extremes of the disaggregated hourly 
rainfall. IDF A, derived with the most thorough and accu-
rate rainfall information, is used as the benchmark for 
comparison. Due to the missing information of sub-daily 
rainfall extremes, IDF B drastically underestimates the 

rainfall intensity, especially at short durations. As shown 
in Fig. 5, the medians of disaggregated rainfall extremes 
are lower than the observed extreme values. This results 
in the underestimation of the IDF curves derived from 
the median rainfall extremes of the disaggregated hourly 
rainfall. Nonetheless, the errors are corrected to a great 
extent in the median IDF C which has a much better 
agreement with IDF A and an overall improved accuracy. 
The improvement is even more prominent at shorter 
durations. Figure  6 also shows that the uncertainties in 
the derived IDF C are effectively reduced by taking the 
median extreme values of the ensemble of 100 BLRP 
simulations.

Table  3 summarizes the root mean square error 
(RMSE) of IDF B and median IDF C, as assessed with IDF 
A, calculated by

where N = 7 , j = 1, 2, . . . , 7 , ij and i′j are, respectively, the 
rainfall intensities from IDF A and IDF B or median IDF 

(5)RMSE =

√

√

√

√
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ij − i
′

j

)2

Table 1  Comparison of GSMaP and observation (Obs) rainfall statistics at Changi from November to January

Mean (mm) Variance (mm2) Auto-covariance Probability of dry

GSMaP Obs GSMaP Obs GSMaP Obs GSMaP Obs

November

 1 h 0.29 0.33 1.54 5.89 1.12 1.15 0.83 0.91

 2 h 0.58 0.67 5.44 14.46 3.13 3.33 0.78 0.87

 6 h 1.73 2.00 28.87 59.64 5.78 5.56 0.63 0.75

 12 h 3.47 3.99 79.74 129.99 5.39 5.26 0.49 0.61

 24 h 6.93 7.99 170.26 273.04 13.95 13.84 0.35 0.37

December

 1 h 0.40 0.41 1.88 6.29 1.48 1.43 0.82 0.88

 2 h 0.82 0.82 6.75 16.84 4.95 5.41 0.78 0.83

 6 h 2.38 2.45 47.29 76.94 28.50 26.81 0.67 0.71

 12 h 4.75 4.91 148.23 204.34 73.41 69.87 0.55 0.59

 24 h 9.51 9.82 418.21 499.78 170.38 165.32 0.36 0.39

January

 1 h 0.31 0.32 2.24 4.32 1.85 2.00 0.88 0.91

 2 h 0.61 0.63 8.30 12.64 6.01 5.79 0.85 0.88

 6 h 1.84 1.88 56.80 61.94 28.92 26.79 0.77 0.79

 12 h 3.68 3.75 166.19 257.82 69.21 62.13 0.69 0.72

 24 h 7.36 7.50 460.79 574.29 136.79 144.97 0.57 0.58
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C corresponding to the 7 durations, i.e. 10, 30, 60, 120, 
360, 720 and 1440 min. As shown in Table 3, the RMSE 
is significantly reduced in the median IDF C, and the 
reduction rate increases as the return period increases 
from 10 years to 100 years with an average reduction of 
over 70%.

Conclusions
This paper proposes a novel rainfall IDF curve deriving 
scheme, which combines rainfall in situ observations and 
remote sensing data (GSMaP) through stochastic downs-
caling and successfully utilizes the downscaled or disag-
gregated sub-daily rainfall to derive the IDF curves for 

Fig. 4  Scatter plots of GSMaP and Obs rainfall statistics

Table 2  Summary of the optimized Bartlett-Lewis model parameters at Changi from November to January

� κ φ α ν µX σX

November 1.2 8.7 0.6 20 0.3 23.8 23.2

December 0.4 5.5 0.3 6.7 1.1 6.4 18.3

January 0.2 5.5 0.3 15.5 2.2 12.1 36.1
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Singapore. The statistics calculated from GSMaP data are 
utilized to optimize the parameters in the Bartlett-Lewis 
rectangular pulses (BLRP) model. The optimized BLRP 
model is then applied to disaggregate the daily rainfall 
observations into hourly time series. The disaggregated 
hourly rainfall, preserving both the hourly and daily sta-
tistic characteristics, is then extracted for its annual max-
ima (AMAX) and used to derive the IDF curves.

The proportional adjusting procedure in the BLRP 
model regulates the disaggregated hourly rainfall to pre-
serve the daily statistics as in the daily observations. The 
daily and coarser-scale (e.g. bi-daily) extremes from the 
disaggregated rainfall are identical as the extremes from 
the observed data. This rescaling process in BLRP over-
comes the GSMaP’s shortcoming of underestimating the 
overall magnitudes of rainfall. Combining the sub-daily 
rainfall extremes from the disaggregated rainfall with the 
daily and coarser-scale (e.g. bi-daily) rainfall extremes 
from the observations is proved to result in a more 

reliable IDF derivation, especially corresponding to the 
sub-daily durations.

The seven parameters of the BLRP models are simulta-
neously optimized based on the genetic algorithm (GA). 
An ensemble of 100 BLRP simulations is conducted to 
account for the uncertainties in the stochastic disaggre-
gation process. The overall accuracy of the IDF curves 
is significantly improved after considering the sub-daily 
extremes retrieved from the disaggregated hourly rain-
fall. The improvement is even more prominent at short 
durations which are of more importance for regions 
where convective thunderstorm prevails and short-dura-
tion precipitation dominates. On average, over 70% of the 
RMSE is reduced at Singapore.

This study implies a promising solution to high tempo-
ral resolution data scarcity that often impedes the accu-
racy of IDF curves for more reliable engineering design 
related to shorter durations. However, caution should 
also be taken as the study case is located at relatively flat 

Fig. 5  Differences between the disaggregated and observed mean rainfall extremes (centre mark: median; lower edge: 25th percentiles; upper 
edge: 75th percentiles)
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area (east of Singapore) where impact of topography on 
spatial variability is assumed to be negligible. Further-
more, the IDF deriving scheme is applied and validated 
using rainfall data from one station only. To consider 
more stations and to further validate the method with a 
variety of climatic features are of interest for future study.
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Appendix A: The Bartlett‑Lewis rectangular pulses 
model
The Bartlett-Lewis rectangular pulses (BLRP) model, 
proposed by Rodriguez-Iturbe et  al. (1987, 1988), is a 
random-parameter rainfall generator based upon a Pois-
son cluster process. Figure 7 depicts the general assump-
tions of the BLRP model, including:
 

1.	 Storm i occurs at ti following a Poisson process with 
rate �;

2.	 Origin tij of cell j in storm i follows a Poisson process 
with rate β;

3.	 Cells in storm i terminate after vi following an expo-
nential distribution with parameter γ;

4.	 Duration wij of cell j in storm i follows an exponen-
tial distribution with parameter η;

5.	 Intensity Xij of cell j in storm i follows an exponential 
distribution with a parameter µX OR a gamma distri-
bution with mean µX and standard deviation σX.

In the original Bartlett-Lewis model, all parameters are 
assumed constant; in the modified Bartlett-Lewis model, 
β and γ vary with constant ratios κ =

β
η
 and φ =

γ
η
 ; η is 

also assumed to follow a gamma distribution with shape 
parameter α and scale parameter ν . Therefore, in its most 
simplified version the Bartlett-Lewis model has five param-
eters, i.e. � , β , γ , η and µX or equivalently � , κ , φ , η and µX , 
whereas in its most enriched version the model has seven 
parameters, i.e. � , κ , φ , α , ν , µX and σX.

The most enriched version is proved to reproduce more 
satisfactory rainfall characteristics at different timescales 
for different climatic types (Onof and Wheater 1994). The 
modelled rainfall statistics, i.e. mean E , variance var , auto-
covariance acov and probability of dry P , can be, respec-
tively, expressed by following equations:

(6)E = h�µXν
µC

α − 1

Fig. 7  Illustration diagram of the BLRP rainfall disaggregation model (Koutsoyiannis and Onof 2001)

ftp://rainmap:amechi-zu%40hokusai.eorc.jaxa.jp/
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In above equations, h is the timescale, τ = 1 is the time 
lag, µC and µT represent the mean number of cells per 
storm and the expected duration of the storm, i.e.

whereas the other parameters are formulated as

(7)

var = 2A
[

(α − 3)hν2−α
− ν3−α

+ (ν + h)3−α
]

− 2B
[

φ(α − 3)hν2−α
− ν3−α

+ (ν + φh)3−α
]

(8)

acov = A

{

[ν + (τ + 1)h]
3−α

− 2(ν + τh)3−α

+[ν + (τ − 1)h]
3−α

}

− B

{

[ν + (τ + 1)hφ]
3−α

− 2(ν + τhφ)3−α

+[ν + (τ − 1)hφ]
3−α

}

(9)P = exp
{

�
[

−h− µT + G∗

P(0, 0)C
]}

(10)µC = 1+
κ

φ

(11)
µT =

[

1+ φ(κ + φ)− 1
4φ(κ + φ)(κ + 4φ)+ 1

72φ(κ + φ)
(

4κ2 + 27κφ + 72φ2
)

]

ν

φ(α − 1)

(12)δ =
p

µX

(13)p =

(

µX

σX

)2

(14)

A =
�µCν

α

δ2(α − 1)(α − 2)(α − 3)

[

p(p+ 1)+
κφp2

φ2 − 1

]

(15)B =
�µCκµ

2
Xν

α

φ2
(

φ2 − 1
)

(α − 1)(α − 2)(α − 3)

(16)C =

φ + κ

(

ν
ν+(κ+φ)h

)α−1

φ + κ

(17)G∗

P(0, 0) =

(

1− κ − φ +
3
2κφ + φ2

+
1
2κ

2
)

ν

φ(α − 1)
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