
Septyana et al. Geosci. Lett.             (2019) 6:7  
https://doi.org/10.1186/s40562-019-0137-z

RESEARCH LETTER

Multi‑channel waveform clustering: a first 
look at microseismic multiplets from coalbed 
methane stimulation
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Abstract 

Interpreting microseismic events triggered by reservoir stimulation (especially hydraulic fracturing) has become a 
common practice to understand fracture dimension and geometry. In this area of study, the need for accuracy and 
resolution of microseismic data is relatively high since the object of investigation is relatively small compared to 
other seismological studies. Hence, a robust tool is necessary to assure the quality of microseismic event locations 
and support the interpretation. To achieve these primary objectives, we performed a waveform clustering workflow 
that analyzes all waveforms representing a microseismic event. Using this approach, we identified multiplets sug-
gesting events that are closely located and originated from the same source mechanism. We tested the workflow on 
microseismic data from coalbed methane stimulation. The method increases our confident on using the dataset for 
interpretation especially since the monitoring survey is limited by a single borehole array with very minimal spatial 
coverage.
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Introduction
Non-ideal survey configurations and limited knowledge 
of parameters in microseismic data processing manifest 
some degrees of uncertainty in microseismic hypocenter 
location. While the intention is to capture and sample 
seismic waves properly, most microseismic experiments 
are conducted in reasonably practicable operations. 
Determining microseismic source location is also fac-
tored by the lack of information about the medium in 
which seismic waves travel. Additionally, for most rou-
tine workflows that use travel-time inversion method, the 
resulted source locations are driven by the uncertainty in 
travel-time information extracted from seismograms.

In an attempt to obtain reliable results and meaningful 
interpretation from microseismic data, waveform clus-
tering has been used for improving the solution of source 

information. This owes to earlier findings in seismol-
ogy that repeating earthquake events originating from 
the same fault plane will have similar waveforms (Geller 
and Mueller 1980). In other words, those similar events 
have similar source mechanism and propagate through 
the medium with identical properties. A group of similar 
events is referred to a multiplet or specifically a doublet 
for two similar earthquake events (Poupinet et al. 1984). 
By performing waveform clustering for multiplet identifi-
cation and analysis, we can assess the reliability of source 
properties (hypocenter location, moment tensor, etc.) 
and medium properties such as velocity, anisotropy, and 
attenuation. (Poupinet et al. 1984; Jones et al. 2014; Cas-
tellanos and Van der Baan 2015). Thus, multiplet analysis 
can be a robust Quality Control (QC) tool on key param-
eters in routine microseismic data processing (Castella-
nos and Van der Baan 2015).

Application of waveform clustering has been dem-
onstrated in various seismological studies such as seis-
motectonics (Poupinet et  al. 1984; Orozco-alzate 2007; 
Adelfio et al. 2012; Nakamura et al. 2016), induced seis-
micity in geothermal fields (Rowe et  al. 2002; Moriya 
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et  al. 2003; Dyer et  al. 2010), oil and gas fields (Arrow-
smith and Eisner 2006; De Meersman et al. 2009; Fagan 
et  al. 2013; Jones et  al. 2014), and hydraulic fracturing 
treatment in tight reservoirs (Castellanos and Van der 
Baan 2015; Kumano and Tamagawa 2016). Those studies 
have shown the effectiveness of waveform clustering in 
deducing more accurate and higher resolution subsurface 
information.

In general, seismic waveform clustering means group-
ing seismic events based on waveform similarity. Some 
studies used a representative recording station (Buur-
man et al. 2013) or a representative receiver component 
(Moriya et  al. 2003). The choice is commonly based on 
signal-to-noise ratio (S/N). In this study, we simultane-
ously used all channels and all components representing 
a seismic event so that we can compare relative changes 
between different components and different channels. 
We utilized waveforms in time domain aiming to cap-
ture characteristic of P and S waves (polarity, frequency 
content, phase), S to P time difference, S-to-P amplitude 
ratio, etc.

To demonstrate our waveform clustering workflow, we 
evaluated a microseismic dataset from coalbed methane 
(CBM) stimulation, a pilot project in Indonesia. It was 
collected from a single array of seismic recording tool (8 
channels of 3 component receivers) in a nearly vertical 
borehole to understand fracture behaviors generated by 
hydraulic fracturing. We expected that waveform cluster-
ing can identify multiplets related to fracturing coal beds. 
We then checked consistency within each group espe-
cially in terms of hypocenter locations. Hence, a compel-
ling basis has been established to ensure reliability of data 
interpretation.

Data and method
Multi‑channel waveform clustering (MWC) workflow
Microseismic event clustering begins with measur-
ing similarity/dissimilarity of event pairs based on their 
waveforms. A common metric used in seismology is 
cross-correlation coefficient of two seismograms from 
two different events (Arrowsmith and Eisner 2006; De 
Meersman et  al. 2009; Jones et  al. 2014; Castellanos 
and Van der Baan 2015; Kumano and Tamagawa 2016). 
Cross-correlation coefficient is computed and normal-
ized either in time or frequency domain. The similarity 
metric can also be determined based on the averaged 
coherency calculated from normalized cross-spectrum 
of event pairs (Poupinet et al. 1984; Moriya et al. 2003). 
Alternatively, one can also simply measure dissimilarity 
of two waveforms either in time or frequency domain. 
Using the measured dissimilarity based on normalized 
spectra of the waveforms has been demonstrated in 

some published studies (Orozco-Alzate 2007; Fagan et al. 
2013).

Finding clusters based on waveform similarity metric 
can be performed by various workflows. Once similarity 
metric is determined, clustering can be done by applying 
a threshold. Event pairs that exceed the similarity thresh-
old will form doublets (Aster and Scott 1993; Moriya 
et al. 2003; Arrowsmith and Eisner 2006; De Meersman 
et  al. 2009; Jones et  al. 2014; Castellanos and Van der 
Baan 2015). Arrowsmith and Eisner (2006) described a 
two-step process by first assigning events into doublets 
followed by grouping doublets into multiplets (chainlike 
clustering). Alternatively, a group of seismic events can 
only form multiplets if all pairs within the group meet 
the threshold criteria, and in fact are strongly correlated 
(Castellanos and Van der Baan 2015). No formulation 
exists on how a threshold is defined; the goal is to bal-
ance between clustering objectives and data quality. Low 
S/N data generally require low threshold, whereas a rela-
tively high threshold is needed to differentiate multiplets 
(De Meersman et al. 2009). Castellanos and Van der Baan 
(2015) apply a cross-correlation threshold of 90% to be 
able to group strongly similar events for a QC purpose. 
One can also iterate the process by applying a relatively 
high threshold to identify strongly related multiplets and 
then a relatively low threshold to form multiplet groups 
(De Meersman et  al. 2009). The approach of using a 
threshold is also used for another similarity metric other 
than cross-correlation. Moriya et al. (2003) defined mul-
tiplets as any group of seismic events having an average 
coherency above 0.68 within a certain frequency band.

In this study, we referred multi-channel waveform 
clustering (MWC) as the workflow we used to identify 
multiplets from a set of multi-component receivers. This 
consists of several steps: (1) precondition the waveforms, 
(2) concatenate the preconditioned waveforms from 
three components, (3) calculate a metric of waveform 
dissimilarity from pairs of seismic events for each chan-
nel, (4) obtain a multi-channel dissimilarity matrix, and 
(5) perform clustering based on a dissimilarity matrix.

Data preconditioning prior to waveform clustering can 
involve filtering, normalization, and global waveform 
cross-correlation. A band-pass filtering is commonly 
adequate to remove unwanted signals such as low- and 
high-frequency noise but retain some characters that are 
useful for clustering. Then, data normalization is per-
formed to compensate variability of energy level from 
different events. In a multi-component experiment, each 
channel can be regarded as a vector. Its normalization 
is based on the highest hypotenuse value on the signal 
coda. Lastly, time alignment is useful to optimize dissimi-
larity metric calculation of time-series data. Very poor 
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time alignment can lead to pitfall when comparing the 
waveforms.

The second step is simply to concatenate the wave-
forms from the three components (X–Y–Z) in each chan-
nel. By implementing this, we expect to have good event 
representations that contain all phases and directional-
ity of seismic waves as recorded by three different com-
ponents. We propose this approach as an alternative to 
averaging the similarity metric from each component (as 
in Arrowsmith and Eisner 2006).

In this study, we use the general Euclidian distance 
metric to determine event (dis)similarity based on wave-
forms in time domain. For each channel, the pairwise 
dissimilarity forms an N (N − 1)/2 array where N  is the 
number of microseismic events being studied. For every 
n sample of time domain data, dissimilarity dij is defined 
from a pair of microseismic events i and j with wave-
forms of xit and xjt , respectively. Since we concatenate 
the three component signals, it is reflected here that total 
samples being evaluated is 3n.

As dissimilarity measures are obtained for each chan-
nel c , they can be combined to represent dissimilarity for 
all channels. Here we use the quadratic sum of dissimilar-
ity from each individual channel.

Waveform dissimilarity can be easily visualized using a 
dissimilarity matrix DMi,j which is a symmetrical N × N  
matrix. Each element ( i, j ) contains waveform dissimilar-
ity metric Dij between seismic event i and j . Its diagonal 
element is equal to zero since each event is compared to 
itself (reflexivity). It also satisfies commutativity property 
that Di,j = Dj,i.

Once the multi-channel dissimilarity matrix is formed, 
we perform clustering process using hierarchical agglom-
erative clustering (HAC). We choose this method for its 
illustrative advantages in understanding the nature of 
clustering from the data (Fagan et al. 2013). This method 
takes the dissimilarity metric to design data cluster in a 
hierarchical fashion. It starts by assigning each event as 
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a cluster. Each cluster is then recursively merged with 
another cluster based on the dissimilarity metric. The 
mechanism of linkage is visualized by a hierarchical tree 
(i.e., a dendrogram) that allows us to design and choose 
criterion for data clustering.

Multiplet identification and analysis from CBM 
microseismic data
The field data we used to implement the multi-channel 
waveform clustering technique is microseismic data 
which recorded during stimulation phases of CBM res-
ervoirs in Sanga–Sanga, Kalimantan. Halinda et al. (2013) 
presented the results and discussed the operational chal-
lenges regarding the monitoring program. The data-
set was acquired by a single geophone array deployed 
in a nearly vertical well at around 100 m away from the 
treatment well. The array was 8 channels of 3-compo-
nent receivers (one vertical and two horizontal sensors). 
Each channel was separated with a spacing of 30  m in 
measured depth along the wellbore. From the shallowest 
receiver (channel no 1), positioned at depth of 508 m, the 
array spread over 210 m along the wellbore to the deepest 
receiver (channel no 8). The recorded data were sampled 
at 4 kHz and stored as continuous digital signals.

The main processing workflow employed the grid-
search method based on P- and S-arrival time picks 
where a velocity model was built from a sonic log avail-
able at the monitoring well. Since the sensor coverage is 
limited spatially, hypocenter location determination uti-
lized particle motion analysis to obtain azimuth infor-
mation between microseismic sources and receivers. 
Figure 1a shows microseismic events located during 6 h 
of monitoring, indicating some seismic activities trig-
gered by the stimulation program. The located micro-
seismic events are mainly trending along the NW–SE 
orientation. It also appears to branch out almost orthogo-
nally to the main fracture orientation. These apparent 
orientations can be interpreted as a manifestation of 
stress regime around the area being stimulated by injec-
tion. From both spatial and temporal analyses, we inter-
preted the NE–SW branches occurred later as the rock 
was further deformed by the stimulation.

It is highly expected that microseismic events can pro-
vide useful information to evaluate the outcome and per-
formance of well treatment. Therefore, we used multiplet 
identification and analysis using the proposed waveform 
clustering workflow to assess the reliability of the esti-
mated microseismic locations, so we can comfortably 
make an interpretation.

As described above, the first thing in the workflow was 
preconditioning the waveform from all events so they can 
be optimally used for clustering. We filtered the signals 
using band-pass filter with corner frequencies of 60 and 
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550  Hz to retain useful signals for clustering, and then 
normalized the filtered signals to the maximum energy in 
each channel (based on all 3 components). Therefore, sig-
nals from different events were equalized for clustering 
purpose. What important in this clustering workflow is 
the shape of the waveforms that may represent the source 
mechanism or ray path of the event.

Another key ingredient in data preconditioning was to 
get a decent time alignment between event pairs so that 
the dissimilarity measure for the two events is not mis-
taken due to poor time alignment. We used waveform 
cross-correlation (WCC) technique to estimate time lags 
around P arrival time from a pair of events. The analysis 
was only performed on event pairs with cross-correlation 
coefficient greater than or equal 0.7 to ensure reliabil-
ity of estimated time lags. In every calculation, an event 
with high S/N was chosen as a master or reference event. 
Figure  2 shows waveforms before and after waveform 
cross-correlation. In this example, the waveform cross-
correlation technique has successfully improved time 
alignment with a reference of the P-wave arrival pick.

Once we are satisfied with the data precondition-
ing, we tested the waveform clustering workflow on 159 
microseismic events, selected from the 6  h of monitor-
ing. Dissimilarity metric was calculated from 500  ms 
data starting from 40  ms before P wave to encapsulate 
all seismic waves recorded in each event. As described 
in the workflow section, the calculation of waveform 
dissimilarity for every microseismic event pairs was 

done channel by channel. After dissimilarity measures 
were obtained per each channel, they were combined to 
obtain the multi-channel dissimilarity measures. This 
approach of calculating waveform dissimilarity measures 
was intended to avoid calculation pitfall if there was any 
incorrect sensor orientation that can occur to a wellbore 
array. To display some of the calculated multi-channel 
dissimilarity measures, a Dissimilarity matrix is shown 
in Fig.  3a. Each element ij of the matrix contains the 
calculated dissimilarity measures between event i and j, 
or event j and i. We can observe zero dissimilarity (red 
color) in all diagonal elements of the matrix as all events 
are compared to itself. In contrast, brighter color towards 
white suggested two event pairs have high degree of dis-
similarity (less or not similar). The dissimilarity matrix in 
Fig. 3a which is in chronological order can be reordered 
based on resulted clusters, in this case multiplet groups, 
as shown in Fig. 3b.

The clustering technique used in this study is hierarchi-
cal agglomerative clustering (HAC). The agglomerative 
mechanism for all 159 events can be visualized by a den-
drogram (Fig. 4). All events are initialized as a single skel-
eton to form a cluster. A cluster is then linked to another 
cluster based on the dissimilarity measures which can 
be generalized as dissimilarity between a subset when it 
has more than one event. This linkage can continue until 
all events ultimately merge to one cluster. However, we 
can stop the agglomeration by setting a dissimilarity cut-
off. The clusters (or ‘multiplet groups’) are defined as any 

Fig. 1  The microseismic events colored by time of occurrence suggesting microseismic events were initiated from the treatment location, 
propagated along N330° orientation, and N240° at later time (a), associated with fluid injection program (b)



Page 5 of 11Septyana et al. Geosci. Lett.             (2019) 6:7 

skeletons, pairs, or groups of events that are linked before 
exceeding the cut-off. For example, using a dissimilarity 
cut-off of 0.4, we will obtain several events linked to form 
clusters including 3 multiplet groups with more than 4 
members of highlighted microseismic events (Fig.  4). If 
we use 0.5 cut-off instead, bigger multiplet groups will 
be formed. As the cut-off increases, the total number of 
multiplet groups decreases, since more events or clus-
ters can link together creating bigger-size clusters before 
exceeding the cut-off. The choice of cut-off can be subjec-
tively driven by specific purposes. One can make several 
different cut-offs for different purposes of analysis.

Results and discussion
Using a dissimilarity cut-off of 0.4, we discovered that 
50% of the 159 events being studied are multiplets. Half 
of those multiplets belong to any group with 4 or more 
event members, and around 30% of them are doublets. 
The top 9 multiplet groups (with 3 or more members) are 
plotted in Fig. 5 and colored differently. They are distrib-
uted in 3 different areas, named area A, B, and C. There 
are 5 multiplets identified in area A, 3 in B, and 1 sepa-
rately located in area C. We then evaluated the location 
parameters of all events within each multiplet, as sum-
marized in Table 1. It is obvious that each multiplet has 
very small depth range. The standard deviation of depth 
for each multiplet is 2.1 m at maximum suggesting high 

likelihood that seismic activities are being constrained 
vertically. The back azimuth spreads around 3° with the 
standard deviation no more than 6°. Another statistical 
measure is averaged pairwise distances which evaluates 
the average of geographical distances among all events 
within a multiplet. Multiplet group B3 and C1 have rel-
atively bigger value in this metric as also visualized on 
location map.

Figure  6 shows waveforms of all events in 5 multiplet 
groups in area A. The color of waveforms represents 
each multiplet group as in Table 1, and is consistent with 
Fig.  5. Although all multiplet groups are geographically 
close (within few to 10 m from one event to another), the 
MWC has successfully identified subtle changes in the 
waveforms. As we can observe, the classification is quite 
consistent, attributed to P- and S-wave energy, polarity, 
S-to-P energy ratio, and S to P time delay. By looking at 
the time of occurrences, events in one multiplet group 
interleave with events from another group, for example 
between multiplet group A1 (orange) and A3 (blue). So, 
we cannot explain this due to changes in medium prop-
erty. A reasonable explanation is that those multiplet 
groups differ in waveforms because the 2 groups might 
relate to different fractures. Similar waveform compari-
son is done for multiplet groups in areas B and C (Fig. 7). 
It is obvious that multiplet group C1 (magenta) has 
completely different waveforms from all other events, 

Fig. 2  P-arrival pick alignment based on waveform cross-correlation. Improved waveform alignment is demonstrated by individual waveforms 
(gray lines), and stacked waveforms (blue lines)

Fig. 3  Dissimilarity matrix of microseismic event pairs sorted by chronological order (a), and reordered following the clustering result (b)
(See figure on next page.)
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suggesting it originates from a completely different 
source region, not from the same fracture zone as other 
events.

Figure 6 also demonstrates the multi-channel approach 
has performed effectively compensating poor variables 
in any sensor point (a combination between which chan-
nel and sensor component) with better variables from 
other sensor points. In case of multiplet groups in area A, 
channel 7 component Z has the least energy for S waves. 
Consequently, this sensor point is not a good variable 
for a standalone data clustering. Since the multi-channel 
approach was used, this is not an issue as all information 
from all channels and all waveforms are considered.

By looking at the hypocenter locations (Fig. 5) and the 
statistic results (Table  1) from each multiplet, we can 
notice reasonable consistency between the solution of 
hypocenter locations and waveform similarity. In over-
all, the hypocenter of all events within each multiplet 
are closely located and organized in a geologically sensi-
ble way. There are only a few potential mislocated events 
suggested by this study, one event in multiplet groups B3 
and C1.

As we observed from Fig. 1a, the located microseismic 
events appear as a cloud of point sources with NW–SE 
major orientation. The main fracture system is oriented 
NW–SE. The dataset also suggests some fractures with 

nearly perpendicular orientation to the major orienta-
tion. Furthermore, the multiplet analysis in this study 
has identified few multiplets which are positioned paral-
lel to each other following the major orientation of NW–
SE (Fig. 5). Based on their hypocenter locations, time of 
occurrence, and waveforms characteristic that we dem-
onstrated earlier (Fig. 6), we can be confident that those 
different multiplets originated from different fractures. 
It suggests that the microseismic cloud represents a frac-
ture network that contains many small fractures. Look-
ing at the located hypocentres, and time of occurrence 
of each multiplet as well as between different multiplets, 
we can infer how fractures have been created, and then 
propagated as the stimulation progress.

Conclusions
In this paper, a workflow to identify seismic multi-
plets based on waveform similarity has been presented. 
By incorporating all waveforms from all channels and 
all components of the recorded events, the method is 
proven as a robust tool in identifying multiplets from a 
microseismic cloud. The grouping criterion gives rea-
sonably confident results as illustrated by the wave-
form plots. Since the input is essentially the recorded 
waveforms, we completely avoid pitfall from incorrect 
assumptions such as velocity model. Therefore, it is more 

Fig. 4  A dendrogram of 159 events after hierarchical clustering (a), a basis of multiplet grouping, for example multiplet group A1 (b), and multiplet 
group B3 (c) are formed using a dissimilarity cut-off 0.4
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effective than clustering based on hypocenter locations. 
In fact, this method helps to identify any questionable 
event locations that are not consistent with waveform 
similarity as discussed in this study. This study has also 
demonstrated that inferring the spread and trend of 
hypocenter locations is more prudent with the basis of 
multiplets because we can (1) identify mislocated events 

and (2) classify events based on similar source mecha-
nism. This concept is very powerful for many studies that 
require relatively higher accuracy microseismic solution 
such as monitoring reservoir stimulation.

The MWC application to the Indonesian CBM stimu-
lation dataset has identified several multiplets among 
the located microseismic events triggered by injection 

Fig. 5  Identified multiplet groups in a map view suggesting two orientations for hydraulic fracturing: primarily N330° and secondarily N240° (a). A 
vertical section in South–North projection showing the triggered microseismic events is mostly located in the coal zone of injection indicated by 
red star (b). Horizontal dash lines are coal thickness at the injection well

Table 1  Identified multiplet groups (excluding doublets), depths, back azimuth, and mean of geographical distances

Area Multiplet group Color Number 
of events

Depth (m)
Mean ± std. dev.

Back Azimuth (°)
Mean ± std. dev

Averaged 
pairwise 
distances (m)

A 1 Orange 7 570 ± 2.1 231 ± 3.1 6.1

2 Dark blue 3 567 ± 1.5 230 ± 0.6 2.5

3 Blue 3 567 ± 0.6 229 ± 4.8 9.6

4 Green 6 567 ± 0.8 232 ± 4.6 8.2

5 Purple 3 573 ± 0.6 234 ± 3.9 7.2

B 1 Dark green 4 577 ± 0.8 208 ± 2.4 5.4

2 Bluish green 3 575 ± 0.6 208 ± 1.4 3.5

3 Red 8 576 ± 1.4 210 ± 5.8 10.4

C 1 Magenta 3 582 ± 1.2 212 ± 0.3 10.3
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program. The first look and analysis at those multi-
plets in this study has gained more confident on the 
hypocenter locations. This study has also enriched the 
interpretation of fracture networks in the system. The 

spatial and temporal analysis of multiplets provides a 
meaningful interpretation of how fractures have been 
evolved in the context of injection activity. By imple-
menting this method, we have demonstrated that we 

Fig. 6  Waveforms of microseismic events in area A, from three components (3 of 8 channels are shown) colored based on multiplet groups: A1, A2, 
A3, A4, A5
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can extend microseismic data interpretation to evaluate 
CBM stimulation program, from looking at fault trend 
in general to a more detail analysis about the fracture 
networks.
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