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WRF‑urban canopy model evaluation 
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comfort over an urban airshed in India 
under varying land use/land cover conditions
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Abstract 

Urban heat island effect has been assessed using weather research and forecasting model (WRF v3.5) focusing on air 
temperature and surface skin temperature in the sub-tropical urban Indian megacity of Delhi. Impact of urbanization-
related changes in land use/land cover (LULC) on model outputs has been analyzed. Four simulations have been car-
ried out with different types of LULC data viz. (1) USGS, (2) MODIS, (3) user-modified USGS and (4) user-modified land 
use data coupled with urban canopy model (UCM) for incorporation of canopy features. Heat island intensities have 
been estimated based on these simulations and subsequently compared with those derived from in situ and satel-
lite observations. There is a significant improvement in model performance with modification of LULC and inclusion 
of UCM. Overall, RMSEs for near surface temperature improved from 6.3 to 3.9 °C and index of agreement for mean 
urban heat island intensities (UHI) improved from 0.4 to 0.7 with modified land use coupled with UCM. In general, 
model is able to capture the magnitude of UHI as well as high UHI zones well. A simple method of bias correction 
in model has been applied to improve model results for further application. The study highlights the importance of 
appropriate and updated the representation of land use–land cover and urban canopies for improving predictive 
capabilities of the mesoscale models. Urban heat island has been known to have effect on human thermal comfort. 
In the present study, Heat Index, a commonly used indicator of thermal comfort, is assessed spatially using WRF-UCM 
derived results. Urban areas were found to have higher Heat Index than non-urban areas by a difference of about 
1.5–2 °C. Further, it was found that urban canopy effect leads to rise in thermal discomfort by increasing Heat Index. 
There is an increase in Heat Index of about 2.0–2.5 °C at dense built-up stations. Decrease in thermal comfort causes 
a significant impact on energy demand. Hence, analysis of urban heat island effect vis-a-vis thermal comfort provides 
useful information with regard to impact on human comfort and welfare.
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Introduction
Land surface processes impact meteorology on local as 
well as climate time scales. Land cover and land use are 
essential parameters in land surface processes. Fluxes 
of heat, momentum, and moisture are parameterized in 
numerical weather predictions models through coupled 

land surface models as functions of surface albedo, sur-
face moisture availability, surface emissivity, surface 
roughness, and surface thermal inertia. Land use and 
cover determine these inputs to be used by land surface 
models which compute land–atmosphere fluxes. Hence, 
land use data are an important component of a meteoro-
logical model. The weather research forecasting model 
(WRF) is a widely used mesoscale model which finds 
application in both meteorology and air quality analysis. 
The default geographic datasets of WRF model are based 
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on the old satellite datasets. The megacity Delhi has 
experienced rapid urbanization and population growth 
in the last decade. Mohan et  al. (2011) observed that 
built-up area of Delhi witnessed an overall increment 
of 16.86% during 1997–2008 which mainly came from 
agriculture land, waste land, scrub land, sandy areas and 
water bodies. Consequently, there is a substantial mis-
match between model inputs for land use data with those 
from the actual land use, especially for Delhi region. An 
updated land use data, thus, provides a scope in improve-
ment of model performance.

Jiang et al. (2014) simulated land cover changes under 
pre-designed scenarios and then analyzed the effects 
of land cover conversion on energy flux in the semiarid 
grassland area of China using WRF model. It was  con-
cluded that there would be significant surface energy flux 
changes due to rapid economic growth scenario. Cheng 
et  al. (2013) used three land use datasets viz USGS, 
MODIS and SPOT satellite imagery to analyze WRF per-
formance for Taiwan region. Ravindranath et  al. (2010) 
compared WRF performance with USGS and AWiFS-
derived land cover dataset for India and deduced that 
land cover changes can alter not just micrometeoro-
logical features but also large-scale circulation patterns. 
López-Espinoza et al. (2012) used 2009 land use map of 
the Instituto Nacional de Estadística y Geograf ía, Mexico 
(INEGI) as input land use in WRF model for three cities 
in Mexico. The model results for temperature were com-
pared against 1992 GLCC data-based land use and an 
average increase 1.33 °C was observed in daily maximum 
temperature with new land cover data.

The present study is aimed at analyzing impact of change 
in input land cover on model-simulated parameters such 
as near surface temperature and surface skin temperature. 
The impact of incorporation of urban canopy features 
along with modifications in LULC has also been analyzed. 
Three different types of land use data have been applied to 
the model viz. USGS land use data, MODIS-based land 
use data and user-modified USGS land use data. A coupled 
simulation with modified land use data and urban canopy 
model has also been carried out. Model performance has 
been evaluated for temperature and surface skin tem-
perature based on statistical parameters. Further urban 
heat island intensities (UHI) have been computed for all 
four simulation cases for varying land use and compared 
with the UHI estimations based on observations and the 
impacts on model performance analyzed.

Description of land use datasets
USGS land use data (USGS)
There are two land use datasets that are available with 
WRF model in its geographical input database. The USGS 
land use database was generated by the United States 

Geological Survey’s (USGS) National Center for Earth 
Resources Observation and Science (EROS), the Univer-
sity of Nebraska-Lincoln (UNL) and the Joint Research 
Centre of the European Commission. This is a global 
land cover characteristics database with a resolution of 
1 km. The data set is derived from 1-km Advanced Very 
High Resolution Radiometer (AVHRR) data spanning a 
12-month period (April 1992–March 1993) (USGS GLCC 
2015). The data are divided into different levels according 
to the land use details. There are 24 categories of different 
land use in level 2 of this dataset which have been classi-
fied based on Anderson et al. (1976). The 24 category land 
use data are the default land use dataset in WRF model.

MODIS‑based land use data (MODIS)
The MODIS land cover type product is derived from 
observations spanning a year input of Terra and Aqua 
data. The land cover scheme used in WRF identifies 20 
land cover classes defined by the International Geosphere 
Biosphere Programme (IGBP). The dataset that comes 
with WRF is based on year 2001 (Ran et al. 2010). It has a 
resolution of 1 km and can be used only with Noah land 
surface model. Recently, with WRF version 3.6 release, 
MODIS land use dataset is also available at resolution of 
15 s (~ 500 m).

Modified USGS land use data (Modified)
The major differences, especially in terms of urban land 
cover, have been observed in USGS data and present 
LULC. Though MODIS land use data are comparatively 
more recent than USGS, it has been designed to couple 
with only Noah land surface model (LSM). Thus, it has 
limitations in terms of compatibility with various land sur-
face model schemes in WRF model, while USGS land use 
data can be used with all LSM schemes. Hence, in the pre-
sent study, the USGS data set has been modified according 
to the recent or actual land use scenario. The source of the 
present land use data includes surveys in field study during 
the field campaign carried out for urban heat island analy-
sis in the study domain in May 2008 (Mohan et al. 2012) 
and March 2010 (Mohan et  al. 2013), classified satellite 
data (Mohan et al. 2011) and satellite data of the commer-
cial mapping and GIS program, Google Earth.

Modified land use data coupled with urban canopy model 
(UCM)
This is essentially simulation with modified USGS cou-
pled with urban canopy model. A single-layer urban 
canopy model (UCM) developed by Kusaka and Kimura 
(2004) has been coupled with WRF for better representa-
tion of surface energy balance in urban areas. The UCM 
consists of two-dimensional, symmetrical street canyons 
with simplified geometry of the buildings. The model 
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estimates the surface temperature of roof, wall and road 
surfaces as well as the fluxes from these surfaces (Tewari 
et  al. 2004). UCM requires inputs of urban canopy fea-
tures such as building height, width and street width and 
thermal properties of building material.

Model description
The weather research and forecasting model is developed 
for mesoscale modeling. Its development is led by NCAR, 
NOAA/ESRL, and NOAA/NCEP/EMC with partner-
ships and collaborations with universities and other gov-
ernment agencies in the US and overseas. The advanced 
research WRF (ARW) dynamical core has an equation set 
which is fully compressible, Eulerian and non-hydrostatic 
with a run-time hydrostatic option. It is conservative for 
scalar variables. The model uses terrain-following, hydro-
static-pressure vertical coordinate with the top of the 
model being a constant pressure surface. The horizontal 
grid is the Arakawa-C grid. The time integration scheme 
in the model uses the third-order Runge–Kutta scheme, 
and the spatial discretization employs 2nd- to 6th-order 
schemes. The model supports both idealized and real-
data applications with various lateral boundary condition 
options. The model also supports one-way, two-way, and 
moving nest options (UCAR 2014).

Domain and simulation period
The simulation design consists of three domains (Fig. 1). 
The parent domain (D1) covers the Indian subconti-
nent with a spatial resolution of 18 km. The domain is a 

peninsular region flanked by Himalayan Mountains in the 
north. The first nested domain (D2) constitutes northern 
India region with resolution of 6 km. The second nested 
domain (D3), which is the area under analysis, covers the 
city of National Capital Region of Delhi and surroundings 
with a domain resolution of 2 km centered at 28.52°N and 
77.12°E. D3 lies in the sub-tropical climate zone (Köppen 
classification: Cwa). Geologically, this region is bounded 
by the Indo-Gangetic alluvial plains in the North and 
East, by Thar Desert in the West and by old Aravalli hill 
ranges in the South. There is a ridge trending along NNE–
SSW direction which constitutes a small area of Delhi’s 
terrain which is otherwise generally flat. Seasonally, the 
year can be divided into four main periods. Summer is 
experienced in the months of March–June followed by 
monsoon months of July, August, and September. Post-
monsoon months are October and November while the 
period of December–February constitutes the winter sea-
son. The maximum temperature ranges from 41 to 45 °C 
in peak summer season and the minimum temperature in 
winter season is in the range of 3–6 °C in coldest period 
of December–January.

The simulation was carried out for a time period of 
5  days, that is, 24 May 2008 0000 UTC—29 May 0000 
UTC. First 24  h in each simulation was considered as 
spin-up and remaining hours were used for analysis. As 
per Mohan and Sati (2016), simulations for shorter dura-
tion (2–5  days) produce better results in comparison 
to longer duration. Physical parameterization schemes 
implemented in the model include Lin scheme (Lin et al. 

Fig. 1  Model domains (Bhati and Mohan 2016)
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1983) for microphysics, rapid radiative transfer model 
(RRTM) scheme for long wave radiation (Mlawer et  al. 
1997), Dudhia scheme for short wave radiation (Dudhia 
1989), Noah land surface model (Tewari et  al. 2004), 
Pleim-Xiu surface layer (Pleim 2006), asymmetric con-
vection model (ACM2) planetary boundary layer (Pleim 
2007), and Kain–Fritsch cumulus parameterization (Kain 
2004). These options were selected based on earlier stud-
ies over the Delhi region (Mohan and Bhati 2011; Bhati 
and Mohan 2016). Final analysis data (FNL) from the 
National Centers for Environmental Prediction (NCEP) 
were used as input for initial and boundary conditions to 
the model. FNL data are operational global analysis data 
available on 1° × 1° grids at six-hourly time steps (Banks 
et al. 2016).

Description of field campaign and data for model 
validation
Field campaign
In May 2008, a field campaign was conducted in National 
Capital Region of Delhi to understand the existing urban 
heat island scenario. The field campaign was conducted 
from 25 May–28 May 2008 (Mohan et  al. 2012) which 
belongs to summer season in Delhi. As per the Climate-
Normals of Delhi (IMD 2017), the average maximum 
temperature during the month of May is about 40  °C 
while the average minimum temperature is about 26 °C. 
During the period of field campaign, the minimum 
temperatures ranged from about 20 to 22  °C while the 
maximum temperatures ranged from 33 to 37  °C. The 
morning hours of 26th May experienced rainfall for dura-
tion of roughly two hours from 9:00 a.m. to 11:00 a.m. 
The rest of the period of field campaign did not witness 
any event of precipitation within the study area.

27 micrometeorological stations were set up at various 
sites throughout the Delhi region for continuous meas-
urement of air temperature and relative humidity. These 
stations included 19 urban stations (sites with > 40% 
built-up fraction) and 8 non-urban stations (natural and 
cultivated green areas, open areas and riverside areas). 
In addition, 3 weather stations were also installed to give 
information about various other meteorological param-
eters such as wind speed and direction, atmospheric 
pressure, and solar radiation. Measurements from field 
campaign have been utilized as data for validation and 
evaluation of WRF model in the present study.

Evaluation of model performance
Model performance has been evaluated using statistical 
parameters such as mean bias (MB), mean absolute error 
(MAE), root mean squared error (RMSE) and index of 
agreement (IoA). While MB, MAE and RMSE measure 
the error or deviation between observed and simulated 

values, index of agreement determines the degree to 
which magnitudes and signs of the observed value are 
related to the predicted values and, in other words, the 
trend relationship. Hit rate has been computed as per-
centage of simulated UHIs with a value within ± 2 °C of 
corresponding observed value (Cox et  al. 1998). Thus, 
hit rate serves as an indicator of models’ ability to cap-
ture in  situ UHIs (Bhati and Mohan 2016). Emery et al. 
(2001) discussed that evaluation benchmarks of a mete-
orological model should be based on typical perfor-
mance of meteorological models that have been accepted 
and used in the past studies. Based on their simulation 
experiments and literature review, they proposed a sta-
tistical benchmark which is MAE ≤ 2  °C and IoA ≥ 0.8. 
These benchmarks have subsequently been used in many 
model performance evaluation studies (Borge et al. 2008; 
Gilliam and Pleim 2010, Shimadera et  al. 2011; Kumar 
et al. 2012; Hernández-Ceballos et al. 2013; Vázquez et al. 
2014; Bhati and Mohan 2016).

Results and discussion
Difference in land use/land cover
As stated earlier in “Description of land use datasets” 
section, there has been a significant change in land use/
land cover (LULC) over many areas in Delhi owing to 
progressive urbanization. Figure  2 compares the four 
LULCs (USGS, MODIS, modified and UCM) as simu-
lated in model runs. Similar colors have been given to 
similar land use. Built-up and urban category are clearly 
dominant in MODIS land use and include vast swathes of 
Delhi and surrounding region.

Mohan et  al. (2011) evaluated the LULC changes and 
urban expansion in Delhi city from 1997 to 2008 based 
on the analysis of LISS-III satellite images. In 2008, built-
up area in Delhi was found to occupy about 52% followed 
by cultivated vegetation (20%), natural vegetation (14%), 
sandy area (12%) and water bodies (2%). Distribution of 
different LULC types in different terrestrial datasets is 
given in Table 1. It can be seen that modified and UCM 
LULC is closest to that observed by Mohan et al. (2011) 
based on LISS3 image of study area. Urban areas are 
under-represented in USGS LULC and grossly over-rep-
resented in MODIS LULC.

Near surface temperature
Figure  3 displays time series of temperature at 2  m 
derived from model simulations carried out with the 
four different land use inputs. Here, urban areas include 
stations of field campaign with built-up infrastructure 
while non-urban areas include green areas (natural and 
cultivated), open areas (sandy/barren/sparsely vegetated) 
and riverside areas. In general, the model shows over-
estimation of temperature with MODIS temperatures 
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exhibiting highest overestimation for urban and non-
urban areas. Temperatures with modified LULC are 
closer to observed temperatures in comparison to USGA 
and MODIS. However, introduction of urban canopy in 
the model significantly improves the model performance.

Table  2 shows statistical evaluation of different sites 
clubbed as per their land use. Both modified land use 
and UCM simulations perform better than USGS and 
MODIS simulations. It is noteworthy that the inclusion 
of urban canopy features improves the performance 
of the model not only for urban areas but also for non-
urban areas (green, open and riverside).

Importance of updated land use can be better under-
stood from Fig.  4 which shows two statistical param-
eters viz. mean error and index of agreement for 2-m 
temperature at some individual monitoring stations 
of the field campaign. Names in gray shade indicate 

non-urban stations. The maximum desirable error 
and the minimum desirable index of agreement are 
indicated by straight lines. It can be seen that there is 
substantial improvement for both MAE and IoA for sta-
tions which have been modified for their actual land use 
based on ground truth in comparison to USGS as well 
as MODIS. Urban canopy features in the model lead 
to improvement of model performance for all stations. 
However, even with UCM the model performance is 
not as per recommended benchmarks of Emery et  al. 
(2001). This could partly be attributed to unusual low-
ering of temperatures due to unseasonal showers on 
26th May 2008. The rainfall was not represented in the 
input 1° FNL data and thus was not captured by the 
model. Figures 5 and 6 show performance of model for 
relative humidity. The model has a tendency for under-
estimation of relative humidity which has earlier been 

Fig. 2  Representation of different land use/land cover in four model simulations

Table 1  Distribution of different land use types in input terrestrial data sets for WRF model

Type USGS (%) MODIS (%) Modified 
and UCM (%)

Satellite (Mohan 
et al. 2011) (%)

Urban (built-up/high-low residential/commercial/industrial) 25.17 90.66 49.83 52

Non-urban

 Cultivated green (cropland and pastures) 59.03 6.08 27.43 20

 Natural green (grassland/scrubland/woodland) 14.58 0.83 18.92 14

 Water 1.22 2.43 3.13 12

 Barren/sparsely vegetated/sandy 0.00 0.00 0.69 2
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observed for the study region for other time periods 
as well (Mohan and Bhati 2011). This can be linked to 
tendency of model to over-estimate the near surface 
temperatures. Even though inclusion of UCM improves 
the statistical performance of model (Fig. 5), statistical 
benchmarks for error and index of agreement are still 
not achieved. However, as mentioned earlier, gaps in 
model performance for humidity could be due to the 

local presence of high moisture levels pre- and post-
precipitation event which was probably not captured in 
global FNL data.

Improvement of model estimates with bias correction
As shown in “Near surface temperature” section, WRF 
has shown a consistent tendency to overestimate tem-
perature and underestimate relative humidity. This 

Fig. 3  Time series of near surface temperature 25–28 May 2008 for WRF simulations with different input LULC
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behavior has been observed in other studies too for Delhi 
region for varying simulation time periods. Gunwani and 
Mohan (2017) reported a bias of 3.1–4.9  °C using vari-
ous PBL schemes in WRF. Sati and Mohan (2017) also 
observed a major trend of overestimation of temperature 
with mean bias ranging between 0.2 and 1.9  °C. Mohan 

and Gupta (2018) applied WRF-Chem over Delhi region 
and found RMSEs of the range 2.5–4 °C in the overesti-
mation of temperature by model. These case studies pro-
vide a ground for considering simulation outputs after 
correcting the inherent bias in them. Thus, a preliminary 
post-processing correction in model results was done by 

Table 2  Statistical evaluation of WRF model performance for temperature for different types of observation sites

Sites Input LULC MB MAE RMSE COR IoA

Urban USGS 5.16 5.17 5.44 0.95 0.69

MODIS 6.13 6.13 6.30 0.97 0.64

Modified 4.48 4.49 4.81 0.95 0.73

UCM 3.38 3.41 3.87 0.95 0.81

Green USGS 6.02 6.03 6.31 0.91 0.66

MODIS 7.82 7.82 7.99 0.93 0.58

Modified 6.00 6.01 6.28 0.92 0.67

UCM 4.99 5.02 5.29 0.94 0.73

Open USGS 4.83 4.86 5.18 0.93 0.73

MODIS 6.60 6.60 6.77 0.94 0.64

Modified 4.16 4.23 4.62 0.92 0.77

UCM 3.41 3.50 4.05 0.91 0.82

River USGS 4.90 4.92 5.20 0.94 0.72

MODIS 6.49 6.49 6.65 0.96 0.63

Modified 4.35 4.38 4.73 0.94 0.76

UCM 3.66 3.71 4.10 0.92 0.79

Fig. 4  Index of agreement (top) and mean absolute error (bottom) for some individual sites for near surface temperature. Shaded names indicate 
non-urban stations
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Fig. 5  Index of agreement (top) and mean absolute error (bottom) for some individual sites for relative humidity. Shaded names indicate 
non-urban stations

Fig. 6  Time series of relative humidity 25–28 May 2008 for WRF simulations with UCM
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eliminating an average error. A detailed sensitivity analy-
sis and performance evaluation for WRF model were car-
ried out for the study region in both summer and winter 
conditions in an earlier study (Mohan and Bhati 2011) 
in which an average RMSE of 2.78  °C for temperature 
and 11.23% for relative humidity was observed. Hence, 
an average overestimation error of 2.78  °C for tempera-
ture and underestimation error of 11.23% for relative 
humidity was corrected in model results. Table 3 displays 
improvement in model performance statistics after cor-
rection in model bias.

Intra‑city temperature variation: urban heat island effect
It has been discussed in “Near surface temperature” sec-
tion that land use–land cover has significant influence on 
WRF model performance of near surface temperatures. 
Therefore, it is expected to have similar influence on tem-
perature variation and consequently urban heat island 
intensity distributions within the study area. Recently, 
intra-city temperature variations have been garnering 
more attention (Martin et  al. 2014; Bhati and Mohan 
2016) in comparison to classical approach of estimating 
UHI where comparisons were carried out against a rural 
area near the city. In the present study, Buddha Jayanti 
Park (station no. 8 of field campaign) which lies within 
Delhi ridge area has been considered as reference point 
for computing heat island intensity. Figures 8, 9, 10, and 
11 display spatial distribution of heat island intensity. 
The heat island intensity has been represented as relative 
urban heat island intensity. Relative UHI helps in deter-
mining whether the model was able to capture high UHI 
zones or not or how good is the distribution pattern of 
simulated UHI when compared with the observed hot-
spots. Relative UHI is defined as (Bhati and Mohan 2016):

Relative UHI
(

x, y
)

=
UHI

(

x, y
)

D

where the relative UHI of a point x, y in a domain is esti-
mated by dividing UHI at that point with a standardizing 
factor D. D is the maximum of absolute values of UHIs of 
all points (xi, yi) in the given domain.

Near surface UHI
Diurnal range of maximum UHI for simulations with 
four different LULC has been shown in Fig.  7. Magni-
tudes of maximum UHI are least for MODIS and UHIs 
computed from modified and UCM simulations perform 
well. UCM UHIs are lower than modified UHIs during 
daytime due to shading effects of urban canopy. How-
ever, they get closer to observed UHIs during nighttime 
as the phenomenon of heat trapping by urban canopy 
is not captured in other simulations. Daytime observed 
UHIs in the city are higher than simulated UHIs probably 
due to anthropogenic heat which has not been accounted 
for in present study. Influence of change in LULC on 
model performance for estimation of intra-spatial tem-
perature gradients is further explored in Table  4 which 
displays statistical evaluation parameters for maximum 
heat island intensities for among urban areas as well as 
non-urban areas with respect to the reference site. Modi-
fied and UCM UHIs have lowest errors and highest cor-
relations and hit rate for both urban areas and non-urban 
areas.

Figure 8 displays distribution of UHI based on air tem-
peratures for nighttime for the study area based on air 
temperatures from simulations with all four different 
land use. The maximum UHI as computed has also been 
indicated in the figure. In terms of absolute magnitude of 
maximum UHI, modified and UCM coupled simulations 
perform better than USGS and MODIS simulations. There 
is the presence of large cool zones in USGS distribution. 
In MODIS distribution, a large extent of study area comes 

D = max
∣

∣UHI
(

xi, yi
)∣

∣

Table 3  Statistical evaluation of UCM simulations after bias improvement

Temperature Relative humidity

Urban areas Non-urban areas Urban areas Non-urban areas

Mean bias

 Pre-bias correction 2.97 °C 4.22 °C − 18.87% − 24.89%

 Post-bias correction 0.29 °C 1.46 °C − 7.64% − 13.66%

RMSE

 Pre-bias correction 3.87 °C 4.48 °C 21.98% 27.46%

 Post-bias correction 2.09 °C 2.52 °C 11.77% 16.64%

IoA

 Pre-bias correction 0.81 0.78 0.49 0.45

 Post-bias correction 0.87 0.82 0.62 0.56
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under similar relative UHI range which is because of dom-
inance of the urban LULC in the land use data. Though 
absolute magnitude of maximum UHI in UCM is closer to 
observed UHI, in terms of hotspot distribution, modified 
pattern is closer to observed distribution. Daytime distri-
bution of heat island intensities can be seen in Fig. 9.

Surface UHI
Figures  10 and 11 display spatial distribution of rela-
tive surface heat island intensity from four LULC-based 
simulations along with observed distributions for night-
time and daytime, respectively. Observed UHIs have 
been estimated from land surface temperatures (LST) 
derived from MODIS-Terra satellite available as 8-day 
average LSTs in Monsoon Asia Integrated Regional 
Study (MAIRS) database (Giovanni 2014). As in case 

of near surface UHI, both modified and UCM distri-
butions are in better agreement with satellite-derived 
distribution. The maximum spatial UHI is highest for 
modified distribution (3.98  °C) but UCM maximum 
(3.19 °C) is closest to observed maximum UHI (3.22 °C) 
during nighttime. However, the relative UHI distri-
bution does not match during daytime and there is 
prevalence of a cool island in UCM distribution. None-
theless, modification in land use and representation of 
urban canopies has improved model performance for 
LST-based UHIs also. 

Urban areas and thermal comfort
The urban heat island effect has a direct relation with 
thermal comfort. The urban heat island has the poten-
tial to prevent the city from cooling down, maintaining 

Fig. 7  Time series of hourly maximum UHI

Table 4  Statistical evaluation of maximum UHI for urban and non-urban sites

Sites Input LULC MB MAE RMSE COR IoA Hit rate (%)

Urban USGS − 1.384 1.432 1.616 0.595 0.635 52.1

MODIS − 2.501 2.506 2.877 − 0.237 0.412 34.0

Modified − 1.243 1.311 1.650 0.613 0.579 57.2

UCM − 1.004 1.259 1.474 0.795 0.704 63.4

Non-urban USGS − 0.678 0.951 1.304 0.317 0.527 66.0

MODIS − 1.540 1.570 1.917 − 0.126 0.437 48.5

Modified − 0.382 0.878 1.104 0.481 0.668 67.0

UCM − 0.318 0.875 1.072 0.529 0.677 71.1
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nighttime temperatures at a level that affects human 
health and comfort (Tan et  al. 2009; Lo and Quattrochi 
2003; Tomlinson et  al. 2011; Mavrogianni et  al. 2011). 
Especially at night, stress caused by heat exhaustion can 
impact a wide number of diseases which may become 
worse, particularly in the elderly and children (Laaidi 

et  al. 2012). Further, thermal stress is most relevant to 
people who spend a substantial time outdoors during a 
day. These include pedestrians, cyclists, vendors, shop-
keepers near roadside and most people from the lower 
strata of society who live in makeshift houses which can 
form a significant proportion of population in developing 

Fig. 8  Nighttime (0300 h local time) distribution of relative heat island intensity
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countries (Mohan et al. 2014). A large section of this pop-
ulation does not have air conditioning facilities and, thus 
is most affected by thermal stress-induced discomfort 
during day as well as night.

There are many indices devised for assessing thermal 
comfort such as physiological equivalent temperature 
(PET) (Höppe 1999), Universal Thermal Climate Index 
(UTCI) (Blazejczyk et  al. 2012), and wet bulb globe 

Fig. 9  Daytime (1500 h local time) distribution of relative heat island intensity



Page 13 of 19Bhati and Mohan ﻿Geosci. Lett.            (2018) 5:27 

temperature (Yaglou and Minard 1957). Heat Index, also 
known as apparent temperature of Steadman (1979), is 
one of the earliest and most commonly used indicators 

of thermal comfort and incorporates the effect of tem-
perature and relative humidity. Heat Index is basically 
the temperature that a human body ‘feels’ under given 

Fig. 10  Nighttime distribution of relative surface heat island intensity
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Fig. 11  Daytime distribution of relative surface heat island intensity
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meteorological conditions. Heat Index is calculated as 
(Rothfusz 1990):

where HI is the Heat Index (in °Fahrenheit), T is the ambi-
ent dry bulb temperature in degrees Fahrenheit and 
R is the relative humidity (%). Heat Index has been used 
in many studies for temperature impact assessment in 
human morbidity, heat waves and urban heat island effect 
(Mohan et al. 2014; Hartz et al. 2012; Silva et al. 2010; Yip 
et al. 2008).

Numerical weather prediction models like WRF help 
in assessing thermal comfort by means of providing a 
continuous distribution of spatial data which is limited 
in case of observations. Further, it is difficult to assess 
the role of urban canopy in influencing thermal comfort 
within a city using observational database only. Therein 
lies the utility of models such as UCM which can be cou-
pled with WRF to analyze thermal comfort without and 
with canopy effect.

In the present study, Heat Index has been estimated 
based on the temperature and humidity as simulated 
using USGS and UCM simulations. Hence, USGS repre-
sents WRF simulation with default terrestrial simulations 
and without urban canopy effect, while UCM represents 
simulation with updated LULC and incorporation of can-
opy features. Figure 12 shows spatial distribution of Heat 
Index at 0400  h which corresponds to minimum tem-
perature epoch for Delhi during the study period. Con-
ceptually, thermal comfort is applicable for areas where 
human presence is either norm or can be expected for 
some time. Hence, all model grids corresponding exclu-
sively to water surface as shown in LULC in Fig. 2 have 
been excluded from calculation for Heat Index. However, 
near water grids are considered.

Urban vs non‑urban areas
Figure  12a shows distribution of Heat Index based on 
USGS simulations while UCM-based Heat Index is dis-
played in Fig. 12b. It can be seen that non-urban areas (8, 
11, 21, 23, 25, 28) have comparatively lower Heat Index 
than other urban stations in Fig.  12a. The heat island 
effect in urban areas leads to higher Heat Index leading 
to an increase of 1.5–2  °C in perceived temperature in 
comparison to non-urban areas.

Similarly, all these non-urban stations experience lower 
Heat Index in Fig.  12b showing heat index distribu-
tions in UCM simulations with the exception of stations 

HI =− 42.379+ 2.04901523 ∗ T + 10.14333127 ∗ RH

− 0.22475541 ∗ T ∗ RH− 0.00683783 ∗ T 2

− 0.05481717 ∗ RH2 + 0.00122874 ∗ T 2 ∗H

+ 0.00085282 ∗ T ∗ RH2 − 0.00000199 ∗ T 2 ∗ RH2

11 and 21 which are riverside stations. As explained in 
“Modified-USGS land use data (Modified)” and “Field 
campaign” sections, terrestrial data input to the model 
was revised to incorporate closer to actual representa-
tion of different LULCs. Hence some water bodies were 
also introduced in UCM simulations. The differential 
heating of land and water affects the temperature at river 
side stations. Water bodies, owing to higher heat capacity 
than land, cool down slowly during nighttime and hence 
river side stations have higher Heat Index as compared to 
other non-urban stations.

It may also be noted that some urban stations (such as 
1, 6 and 17) also have much lower Heat Index in Fig. 12a. 
This is because they are represented under non-urban 
LULCs in USGS simulations. As these stations change 
to urban in UCM simulation, Heat Index in and around 
these stations increases in UCM distribution (Fig. 12b).

Canopy effect in thermal comfort
Figure 12b displays Heat Index as a result of canopy effect 
in the city. It is clear that the urban canopy effect which 
intensifies the urban heat island effect also leads to rise 
in thermal discomfort by increasing Heat Index. There 
is an increase in Heat Index of about 2.0–2.5 °C at dense 
built-up stations such as stations 14 and 30. Further, 
while non-urban areas maintain lower Heat Index than 
urban ones, their individual Heat Index values have also 
increased from USGS simulations. Hence, the impact of 
urban canopies is experienced meteorologically by non-
urban areas too.

Urban heat island-induced thermal discomfort affects 
people both with and without access to cooling ameni-
ties. Higher temperatures have a serious impact on the 
electricity consumption due to building sector increasing 
considerably the peak and the total electricity demand. 
Santamouris et  al. (2015) analyzed several past studies 
dealing with the impact of the ambient temperature on 
the peak electricity demand and found out that for each 
degree of temperature increase, the increase of the peak 
electricity load varies between 0.45 and 4.6%. This cor-
responds to an additional electricity penalty of about 21 
(± 10.4) W per degree of temperature increase and per 
person. This increase greatly outweighs the otherwise 
small beneficial decrease in heating demand in winter, 
especially for sub-tropical/tropical cities. Further, heat 
released due to operation of electrical cooling devices 
further exacerbates the heat island effect in the city. This 
leads to a vicious cycle of urban heat island effect and 
thermal comfort.  Hence, analysis of UHI vis-a-vis ther-
mal comfort is essential with regards to both economic as 
well as environmental concerns.
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Conclusions
In the present study, WRF model has been used with 
three different terrestrial data inputs and finally cou-
pled with urban canopy model to assess the impact of 
change in LULC on model performance for estimating 
urban heat island intensities. Major conclusions of the 
study are as follows:

•	 Both modified land use and UCM simulations per-
form better than USGS and MODIS simulations 
for near surface temperature and relative humid-
ity. Model performance improves not just for urban 
observation sites but also for non-urban sites.

•	 Incorporation of urban canopy features really ena-
bles simulation of nighttime urban heat island 
intensity better. However, UCM makes temperature 
cooler during daytime. Hence UHI distributions do 
match with observed distribution during daytime. 
UHI distribution with modified LULC is in closest 
agreement with observed distribution during day-
time.

•	 Inclusion of urban canopy model has more pro-
found impact on model performance in comparison 
to various types of land use land cover features.

•	 The study has revealed the significance of updated 
LULC inputs in the model along with urban canopy 
features for better analysis of urban meteorology.

Fig. 12  Heat Index (HI) distribution at 0400 h. a WRF, b UCM
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•	 A simple and straightforward method of post-pro-
cessing bias correction has been applied in model 
results which have led to significant improvement 
in model performance.

•	 Simulations with urban canopy model have been 
used for spatial assessment of impact of urban can-
opies on thermal comfort in the city. An increase of 
up to 2.5 °C in Heat Index has been found at dense 
built-up areas due to canopy-induced urban heat 
island effect. This is expected to have socio-eco-
nomic as well environmental implications.
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Appendix
Statistical measures for model evaluation (Schlünzen and 
Sokhi 2008).

Following commonly used statistical parameters have 
been used in the present study. Pi indicates predicted or 
model-estimated values while observed/measured values 

are denoted by Oi for each single site and each time (i). N 
refers to the number of values in a dataset.

•	

•	

•	

•	

where Ō = 1
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N
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√
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(

Oi − Ō
)2 σP =

√

1
N
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i=1

(

Pi − P̄
)2
.

•	

	 Willmott (1981).
•	

where DA is desired accuracy used as ± 2  °C in the 
present study.
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∣

∣+
∣

∣Oi − Ō
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