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Copula–entropy theory for multivariate 
stochastic modeling in water engineering
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Abstract 

The copula–entropy theory combines the entropy theory and the copula theory. The entropy theory has been 
extensively applied to derive the most probable univariate distribution subject to specified constraints by applying 
the principle of maximum entropy. With the flexibility to model nonlinear dependence structure, parametric copulas 
(e.g., Archimedean, extreme value, meta-elliptical, etc.) have been applied to multivariate modeling in water engi-
neering. This study evaluates the copula–entropy theory using a sample dataset with known population information 
and a flood dataset from the experimental watershed at the Walnut Gulch, Arizona. The study finds the following: (1) 
both univariate and joint distributions can be derived using the entropy theory. (2) The parametric copula fits the true 
copula better using empirical marginals than using fitted parametric/entropy-based marginals. This suggests that 
marginals and copula may be identified separately in which the copula is investigated with empirical marginals. (3) 
For a given set of constraints, the most entropic canonical copula (MECC) is unique and independent of the marginals. 
This allows the universal solution for the proposed analysis. (4) The MECC successfully models the joint distribution of 
bivariate random variables. (5) Using the “AND” case return period analysis as an example, the derived MECC captures 
the change of return period resulting from different marginals.
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Introduction
A multitude of processes in water engineering involve 
more than one random variable. For example, floods 
are characterized by peak, duration, volume, and inter-
arrival time, which are all random in nature. Droughts 
are described by their severity, duration, inter-arrival 
time, and areal extent, which are also random. Extreme 
precipitation events are represented by their intensity, 
amount, duration, and inter-arrival time, which are all 
random. Inter-basin water transfer involves transfer 
of excess water from one basin (say, donor) to a water 
deficient basin (say, recipient). The transfer involves the 
volume of water, availability of water in both donor and 
recipient basins, duration of transfer, rate of transfer, 

and time interval between water transfers which are all 
random variables. Water quality entails pollutant load, 
duration for which the load is higher than the protec-
tion limits, and peak pollutant concentration, which 
are all random variables. Likewise, erosion in a basin 
may be characterized by sediment yield, number of ero-
sion events, duration of events, intensity of events, and 
time interval between two consecutive events. These 
are all random variables. Flooding in a coastal water-
shed may be caused by the simultaneous occurrence 
of high precipitation and high tides where both pre-
cipitation and tide are random variables. Examples of 
processes involving more than one random variable 
abound in hydrologic, hydraulic, environmental, and 
water resources engineering. There usually exists some 
degree of dependence among the random variables or 
at least among some of the variables. Often we are con-
cerned with multivariate stochastic modeling and risk 
analysis of the systems and processes that involve the 
derivation of probability distributions of the random 
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variables considering the dependence structure among 
them. Nowadays, these stochastic processes can be mod-
eled with the copula–entropy theory that has proven 
to be more flexible and accurate than the traditional 
approaches. The objective of this paper therefore is to 
reflect on some recent advances made in the application 
of the copula–entropy theory and future challenges.

Methods
Copula–entropy theory
The copula–entropy theory (CET) is an amalgam of the 
copula theory and the entropy theory. These two theories 
are now discussed.

Entropy theory
The entropy theory comprises (1) formulation of 
entropy, (2) principle of maximum entropy (POME), 
and (3) theorem of concentration (TOC). Entropy can 
be defined in the real domain or frequency domain. In 
the real domain, the most famous form of entropy is 
the Shannon entropy (Shannon 1948), although Tsallis 
entropy (Tsallis 1988) and Renyi entropy (Renyi 1951) 
have been receiving much attention in recent years. 
Another popular formulation of entropy is the cross-
entropy or relative entropy due to Kullback and Leibler 
(1951) which is a generalization of the Shannon entropy. 
For a continuous random variable X with a probability 
density function (PDF), f(x), and cumulative probability 
distribution function (CDF), F(x), the Shannon entropy, 
H(X) or H[f(x)], can be defined as

where X ∊ [0,∞] but can also vary from − ∞ to + ∞ or 
from a finite lower limit to a finite upper limit. The Shan-
non entropy can also be defined in an analogous manner 
for a discrete variable.

The principle of maximum entropy (POME), pro-
pounded by Jaynes (1957), states that of all the distribu-
tions that satisfy the given constraints, the distribution 
yielding the maximum entropy is the least-biased dis-
tribution and should hence be preferred. If there are no 
constraints then POME says that the resulting distribu-
tion would be a uniform distribution, which is consistent 
with the Laplacian principle of insufficient reason.

The theorem of concentration states that POME yields 
the best constrained probability distribution and is the 
preferred method for inferring this distribution, and 
this distribution best represents our state of knowledge 
about the behavior of the system. This is a consequence 
of Shannon’s inequality and the relation between entropy 
and Chi square statistic.

(1)H(X) = H [f (x)] = −
∞
∫

0

f (x) ln f (x) dx,

Copula theory
The foundation of the copula theory is the Sklar theorem 
(Sklar 1959). The theorem states that the joint (multi-
variate) probability distribution of two or more random 
variables is a function of the probability distributions of 
individual variables (also referred to as marginal distri-
butions which are one-dimensional). In other words, the 
multivariate distribution is coupled to its marginal distri-
butions. It is implied that these random variables are not 
independent of each other. The copula theory does not 
specify the way to derive the marginal distributions and 
does not lead to a unique copula. There are different ways 
to construct copulas and different ways to select the best 
copula.

Methodology for application of copula–entropy theory
The copula–entropy theory can be applied in different 
ways: (1) the marginal distributions are derived using the 
entropy theory and the joint distribution using the copula 
theory (e.g., Hao and Singh 2012; Zhang and Singh 2012). 
Since there can be more than one joint distribution fit-
ted to the multivariate random variables, the best distri-
bution is then selected from either visual goodness-of-fit 
plot (e.g. Q–Q plot) or formal goodness-of-fit test statis-
tics (Genest et al. 2009). (2) With the marginal distribu-
tions derived using the entropy theory, the best copula 
is selected as the copula function yielding the maximum 
entropy. (3) Both marginal and joint distributions are 
derived using the entropy theory (e.g., Chu 2011; Chen 
et  al. 2013; Aghakouchak 2014). The methodology for 
application of the copula–entropy theory will depend 
on the way it is applied. Each of the three ways is now 
outlined. First, the methodology for application of the 
entropy theory is outlined, since entropy is needed in all 
three ways.

Methodology for application of entropy theory
Fundamental to applying the entropy theory is the speci-
fication of constraints the derived probability distribu-
tion must satisfy. There can be any number of constraints 
which can be defined in different ways but the easiest way 
is to define them in terms of moments. Let g(x) be any 
function of random variable X. Then, the ith constraint, 
Ci, can be expressed as

where E is the expectation operator. If g0(x) = 1, then 
Eq. (1) will lead to the total probability as

(2)Ci =
∞
∫

0

gi(x)f (x) dx = E[gi(x)], i = 1, 2, . . . ,m,

(3)C0 =
∞
∫

0

f (x) dx = 1.
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The next step is to maximize entropy given by Eq. (1), 
subject to Eqs.  (2) and (3). Entropy maximizing can be 
done using the method of Lagrange multipliers where the 
Lagrange function L can be written as

where �i, i = 0, 1, . . . ,m, are the unknown Lagrange mul-
tipliers. Applying the Lagrange–Euler calculus of varia-
tion, Eq. (4) leads to the maximum entropy distribution:

Now the unknown Lagrange multipliers are deter-
mined from the known constraints. The multipliers can 
be determined in two ways: regular entropy method and 
parameter space expansion method (Singh 1998; Singh 
and Rajagopal 1986). Substituting Eq.  (5) in Eq.  (3), we 
get

where Z is called the partition function, and

Equation  (6) shows that λ0 is a function of 
�1, �2, . . . , �m, i.e., �0 = �0(�1, �2, . . . , �m), and the 
function is convex. Differentiating λ0 with respect to 
�1, �2, . . . , �m individually, we get the relations between 
Lagrange multipliers. Substituting Eq. (6) into Eq. (7), we 
obtain

Equation  (8) shows that Ci, i = 1, 2, . . . ,m, are func-
tions of �1, �2, . . . , �m.

(4)

L = −
∞
�

0

f (x) ln f (x) dx − (�0 − 1)





∞
�

0

f (x) dx − 1





−
m
�

i=1

�i





∞
�

0

gi(x)f (x) dx − Ci



,

(5)f (x) = exp

[

−
m
∑

i=0

�igi(x)

]

.

(6)

exp(�0) = Z =
∞
∫

0

exp

[

−
m
∑

i=1

�igi(x)

]

dx

or

�0 = lnZ = ln

{

∞
∫

0

exp

[

−
m
∑

i=1

�igi(x)

]

dx

}

,

(7)

ZCi =
∞
∫

0

gi(x) exp

[

−
m
∑

i=1

�igi(x)

]

dx, i = 1, 2, . . . ,m.

(8)

Ci =

∞
∫

0

gi(x) exp
[

−
∑m

i=1 �igi(x)
]

dx

∞
∫

0

exp
[

−
∑m

i=1 �igi(x)
]

dx

, i = 1, 2, . . . ,m.

Differentiating Eq.  (6) and using Eqs.  (2) and (5), the 
result is as follows:

For obtaining parameters, the derivatives in 
Eq.  (9) are equated to the derivatives obtained from 
�0 = �0(�1, �2, . . . , �m). Similarly, it can be shown that

and

The maximum entropy, Hmax, of the derived POME-
based PDF can be expressed as

Equation (12) shows that maximum entropy is a func-
tion of Lagrange multipliers and constraints, such that 
Hmax is a concave function. Equation  (12) also shows 
that Lagrange multipliers, �1, �2, . . . , �m, are par-
tial derivatives of Hmax with respect to constraints Ci, 
i = 1, 2, . . . ,m, respectively.

If qi and pi, i = 1, 2, . . . , n, are the frequencies com-
puted from POME-based and given fitted parametric dis-
tributions, respectively, for n class intervals, then we have

where χ2 is Chi square distributed with s degrees of free-
dom as

(9)
∂�0

∂�i
= − E[gi(x)] = − Ci, i = 1, 2, . . . ,m.

(10)

∂2�0

∂�2i
= E

[

g2i (x)
]

−
{

E[gi(x)]
}2

= Var[gi(x)], i = 1, 2, . . . ,m

(11)

∂2�0

∂�i∂�j
= E

[

gi(x)gj(x)
]

− E[gi(x)]E
[

gj(x)
]

= Cov
[

gi(x)gj(x)
]

, i, j = 1, 2, . . . ,m, i �= j.

(12)

Hmax = −
∞
∫

0

f (x) ln f (x) dx

= −
∞
∫

0

[

− �0 −
m
∑

i=1

�igi(x)

]

× exp

[

− �0 −
m
∑

i=1

�igi(x)

]

dx

= �0 +
m
∑

i=1

�iE[gi(x)] =
m
∑

i=0

�iCi.

(13)2N�H =
n

∑

i=1

(qi − pi)

pi

2

= χ2,

(14)s = n−m− 1.
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With the Chi square distribution as the limiting distri-
bution, it is shown that 2NΔH is Chi square distributed. 
Hence, the Chi square statistic may be applied to assess if 
the fitted parametric distribution is close to the POME-
based distribution (i.e., the reference distribution of ran-
dom variable).

Methodology for application of copula theory
Definition and main properties for copula
As stated by Sklar (1959), copula couples the multivari-
ate distribution to its marginal distributions which are 
uniformly distributed on [0,1]. In other words, copula is a 
mapping function as [0, 1]d → [0, 1]. For d-dimensional 
continuous random variables, there is a unique copula func-
tion (C) to represent the joint distribution function (H) as

As shown in Eq. (15), ui is the CDF of random variable 
Xi. Representing the joint distribution, the copula func-
tion has the following properties:

1.	 0 ≤ C(u1, . . . ,ud) ≤ 1;
2.	 if any ui = 0, then C(u1, . . . ,ud) = 0;
3.	 if all uj = 1, j = 1, . . . , d and j �= i; then 

C(1, . . . ,ui, . . . , 1) = ui;
4.	 C is bounded by the Fréchet–Hoeffding bounds as
	

In Eq.  (16), W represents the perfectly negative 
dependence, while M represents the perfect posi-
tive dependence. For independent random variables, 
the corresponding copula function is simply given as 
Π = u1u2 · · · ud = F1(x1)F2(x2) · · · Fd(xd); and

5.	 C is d-increasing, that is, the C(u1, . . . ,ud) volume for 
any given d-dimensional interval is non-negative.

Copula families and parameter estimation
The major copula families are Archimedean copulas, meta-
elliptical copulas, extreme value copulas, vine copulas, and 
entropic copulas. The Archimedean copula (2-dimensional) 
is symmetric and easy to construct through the generating 
function as

where φ is the generating function which is non-increasing. 
Based on the choice of Archimedean copulas, different cop-
ulas within the family may cover different ranges of depend-
ence (Nelsen 2006). For example, the Gumbel–Hougaard 
copula may only model the positive dependence, while 

(15)
H(x1, x2, . . . , xd) = C(u1, u2, . . . , ud);

ui = Fi(xi) ∼ uniform (0, 1), i = 1, . . . , d.

(16)

W ≤ C ≤ M; W = max

(

1− d +
d
∑

i=1

ui, 0

)

,

M = min (u1, . . . ,ud)

(17)C(u, v) = φ−1(φ(u) + φ(v)),

Frank copula may model the entire range of dependence 
structure. Given its easy construction, the Archimedean 
copulas have been extensively applied in bivariate hydro-
logical frequency analysis (e.g., Sraj et al. 2015; Salvadori and 
Michele 2015; Requena et al. 2016a, b).

Meta-elliptical copulas (Fang et  al. 2002), as the name 
suggests, is derived from the elliptical joint distribution. The 
popularly applied meta-elliptical copulas are meta-Gauss-
ian and meta-Student t copulas. Unlike the Archimedean 
copulas, the meta-elliptical copulas can model the entire 
range of dependence structure and can be easily applied to 
high-dimensional multivariate modeling. Comparing the 
two popularly applied meta-elliptical copulas, there exists 
the symmetric tail dependence for meta-Student t copula, 
while no tail dependence exists for meta-Gaussian copula 
(e.g. Genest et al. 2007; Song and Singh 2010).

The extreme value copula is derived in accordance with 
the extreme value theory which may be applied to model 
the rare events. As stated by Gudendorf and Segers 
(2009) and Joe (2014), the following relation exists:

In Eq. (18), C denotes the extreme value copula, and CF 
denotes that the copula fulfills the limiting relation.

In other words, the extreme value copula must be max-
stable. For the bivariate case, the extreme value copula 
may be written as

In Eq.  (19), A denotes the Pickands dependence func-
tion (Pickands 1981; Falk and Reiss 2005) that is convex as 
A : [0, 1] → [1/2, 1] and max (t, 1− t) ≤ A(t) ≤ 1 for t ∈ [0, 1] .

The Gumbel–Hougaard copula (Archimedean copula 
family) is the only Archimedean copula that belongs to 
the extreme value family. Hence, the Gumbel–Hougaard 
copula has been popularly applied in bivariate flood fre-
quency analysis, storm analysis, drought analysis, etc.

Vine copula is constructed, based on the probability 
density decomposition. The vine copula is applied for 
high-dimensional analysis (i.e., d ≥  3). It is usually cat-
egorized into Canonical (C)-Vine copula, D-Vine cop-
ula, and Regular R-Vine copula (Aas et  al. 2007). Using 
3-dimensional analysis as an example, we can write the 
joint probability density function as

In Eq.  (20), c denotes the copula density function. As 
seen in Eq. (20), the vine copula is very flexible, since the 

(18)CF (u
1/n
1 , . . . ,u

1/n
d ) → C(u1, . . . ,ud); ∃ n → ∞.

(19)C(u, v) = uv exp
[

A
(

log(v)
log(uv)

)]

, u, v ∈ [0, 1].

(20)

f (x1, x2, x3) =
3
∏

i=1

fi(xi)c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))c13|2

×
(

F1|2(x1|x2), F3|2(x3|x2)
)

.



Page 5 of 17Singh and Zhang ﻿Geosci. Lett.  (2018) 5:6 

bivariate copula is applied at all the levels. The vine cop-
ula has also been applied in high-dimensional hydrologi-
cal frequency analysis (e.g., Pham et  al. 2016; Arya and 
Zhang 2017; Verneiuwe et al. 2015)

The parameters of the parametric copula functions 
constructed above may be estimated with one of the fol-
lowing three approaches:

(i)	 Full-Maximum Likelihood Estimation (Full-MLE): In 
this method, the parameters of the marginal distribu-
tions and copula functions are estimated simultane-
ously.

(ii)	 Two-Stage Maximum Likelihood Estimation (Two-
Stage MLE): In this method, one first estimates the 
parameters of marginal distributions and then the 
parameters of the copula function are estimated 
using MLE with the marginals computed from the 
previously fitted marginal distributions.

(iii)	 Semi-Parametric (or Pseudo) Maximum Likeli-
hood Estimation (Pseudo-MLE): In this method, 
the parameters of the copula function are esti-
mated from the empirical marginals (i.e., empirical 
CDF computed from the plotting position formula 
or kernel density function).

Of the three estimation methods for parametric copula 
functions, the Pseudo-MLE is considered least impacted by 
the possible misidentification of marginal distributions. The 
advantage of Pseudo-MLE is the separate parameter esti-
mation of marginal distributions and the copula function.

The most entropic canonical copula may be derived using 
the entropy theory, similar to the application of entropy 
theory to the univariate random variables. The Shannon 
entropy of the copula function for two variables is written as

and the joint density function is given through the copula 
function as

Substituting Eq. (22) into Eq. (21), one may conclude, with 
some simple algebra, that the negative copula entropy [i.e., 
Eq. (21)] denotes the mutual information of random varia-
bles X and Y through the Kullback–Leibler cross-entropy as

(21)H(u, v) = −
∫

[0,1]2
c(u, v) ln c(u, v) dudv

(22)f (x, y) = fX (x)fY (y)c(u, v).

(23)

HC (u, v) = −
∫

[0,1]2
c(u, v) ln[c(u, v)] dudv

= −
∫ ∫

f (x, y)

fX (x)fY (y)
ln

(

f (x, y)

fX (x)fY (y)

)

fX (x)fY (y) dxdy

= −
∫ ∫

f (x, y) ln

(

f (x, y)

fX (x)fY (y)

)

dxdy

= −KLCE(fX :fY ) = − I(X;Y ).

According to the information theory, the mutual infor-
mation [i.e., I(X;Y )] is a measure of the total correlation 
between random variables, that is, the mutual depend-
ence between random variables X and Y. From the cop-
ula theory [e.g., Eq. (22) for bivariate random variables], 
the copula density [i.e., c(u, v)] also denotes the mutual 
dependence between variables X and Y. Thus, the infor-
mation maintained in the copula function is the mutual 
information (i.e., total correlation) between X and Y 
which results in the copula entropy being negative. 
In other words, a higher absolute value of the copula 
entropy represents higher mutual dependence (or total 
correlation) among the random variables.

Similar to the POME-based univariate distribution, the 
common constraints are the constraints of total prob-
ability of marginals (i.e., for uniform distributed vari-
able on [0,1]), and a measure of dependence (also called 
association):

Applying f (x) =
∫∫

f (x, y) dy, we can evaluate 
Eq. (25a) as

In Eq. (25b), f (u) = 1 since u ~ uniform (0,1). Similarly,

In Eq.  (27), Spearman’s rho is commonly applied 
as the constraint to measure the dependence with 
aj(u, v) = uv ⇒ E(uv) = ρs+3

12 . One can also apply other 
dependence measures discussed in Nelsen (2006) and 
Chu (2011).

Using the constraints [Eqs.  (24)–(27)], the Lagrange 
function for the most entropic canonical copula (MECC) 
can be written as

(24)
∫

[0,1]2
c(u, v) dudv = 1

(

total probability
)

(25a)

∫

[0,1]2
urc(u, v) dudv = E(ur) =

1

r + 1
,

r = 1, 2, . . . (constraints of u = FX (x)).

(25b)

∫

[0,1]2
urc(u, v) dudv =

∫ 1

0

ur du

∫ 1

0

c(u, v) dv

=

∫ 1

0

urf (u) du =

∫ 1

0

ur du = E(ur) =
1

r + 1
.

(26)

∫

[0,1]2
vrc(u, v) dudv = E(vr) =

1

r + 1
,

r = 1, 2, . . .
(

constraints of v = FY (y)
)

.

(27)

∫

[0,1]2
aj(u, v)c(u, v) dudv = E[aj(u, v)] = Θj ,

j = 1, 2, . . . (constraints of dependence measure).
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In Eq.  (28), �0, . . . , �n, γ1, . . . , γn, �n+1, . . . , �n+k 
are the Lagrange multipliers. More specifically for 
MECC, �r = γr , r = 1, . . . , n. The Lagrange multipliers 
�n+1, . . . , �n+k are pertaining to the constraints in rela-
tion to the rank-based dependence measures.

Differentiating Eq. (28) with respect to c(u, v), we have

(28)

L = −
∫

[0,1]2
c(u, v) ln[c(u, v)] dudv − (�0 − 1)

[∫

[0,1]2
c(u, v) dudv − 1

]

−
n

∑

i=1

�i

[∫

[0,1]2
uic(u, v) dudv − 1

i + 1

]

−
n

∑

i=1

γi

[∫

[0,1]2
vic(u, v) dudv − 1

i + 1

]

−
k

∑

j=1

�n+j

[∫

[0,1]2
aj(u, v)c(u, v) dudv −Θj

]

.

In Eq.  (31), b is a generic constant, c̃(u, v) is the given 
reference copula. It is seen that the MECC is obtained by 
setting b = 0. In what follows, we will focus on the appli-
cation of MECC for bivariate cases through examples.

Copula–entropy for multivariate modeling
Following the discussion of Shannon entropy and copula 
theory in the previous sections, we will outline the cop-
ula–entropy theory for stochastic modeling in this sec-
tion. In general, we can apply the copula–entropy theory 
in three ways:

(i)	 The marginal distributions are derived using the 
entropy theory, while the joint distribution (i.e., 
copula function) is modeled through the paramet-
ric copula function with its parameter estimated 

(29)c(u, v) =
exp

(

−
∑n

i=1 �iu
i −

∑n
i=1 γiv

i −
∑k

j=1 �n+jaj(u, v)
)

∫

[0,1]2 exp
(

−
∑n

i=1 �iu
i −

∑n
i=1 γiv

i −
∑k

j=1 �n+jaj(u, v)
)

dudv
.

Based on the principle of maximum entropy, maximiz-
ing Eq.  (21) is equivalent to minimizing the objective 
function

(30)

Z(Λ) = ln





�

[0,1]2
exp



−
n

�

i=1

�iu
i −

n
�

i=1

γiv
i −

k
�

j=1

�n+jaj(u, v)



 dudv





+
n

�

i=1

�i
1

i + 1
+

n
�

i=1

γi
1

i + 1
+

k
�

j=1

�n+j Θ̂j .

In Eq. (30), Λ = [�1, . . . , �n, γ1, . . . , γn, �n+1, . . . , �n+k ].
The most entropic canonical copula (MECC) may be 

generalized to most entropic copula (MEC) with respect 
to a given parametric copula (Chu 2011). In the case of 
MEC, Eqs. (29)–(30) can be re-written as

(31a)c(u, v) =
exp

(

−
∑n

i=1 �iu
i −

∑n
i=1 γiv

i −
∑k

j=1 �n+j aj(u, v)− bc̃(u, v)
)

∫

[0,1]2 exp
(

−
∑n

i=1 �iu
i −

∑n
i=1 γiv

i −
∑k

j=1 �n+j aj(u, v)− bc̃(u, v)
)

dudv
,

(31b)

Z(Λ) = ln





�

[0,1]2
exp



−
n

�

i=1

�iu
i −

n
�

i=1

γiv
i −

k
�

j=1

�n+j aj(u, v)− bc̃(u, v)



 dudv





+
n

�

i=1

�i
1

i + 1
+

n
�

i=1

γi
1

i + 1
+

k
�

j=1

�n+j Θ̂j .

using the Full-MLE, Two-Stage MLE, or Pseudo-
MLE. In this approach, the goodness-of-fit of the 
copula function may be assessed either graphically 

through the K–K plot or statistically with the for-
mal goodness-of-fit test statistics (Genest et  al. 
2009).
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(ii)	 The difference of this second approach from (i) 
above is that the parametric copula function is 
selected such that it yields the maximum entropy 
among all copula candidates.

(iii)	 The approach (iii) takes full advantage of the 
entropy theory. Both marginal and joint distribu-
tions are derived using the entropy theory. The 
Lagrange multipliers are estimated by maximizing 
entropy or minimizing the corresponding objec-
tive function which is the dual problem of maxi-
mizing entropy. The Lagrange multipliers of the 
MECC (joint distribution) may be optimized from 
the fitted POME-based marginal distributions 
or from the empirical marginal distribution. The 
approach (iii) is further adopted for the applica-
tions.

Application to multivariate data of known 
population
Here, we will first show the application of copula–
entropy theory to the bivariate sample dataset with the 
known true population. In this sample study, the sample 
dataset (N =  1000) is generated from the known Gum-
bel–Hougaard copula (θ =  4.5) with the true marginal 
distributions:

Study of univariate variates
In Singh (1998), it was shown that E[X], and E[ln(X)] 
should be applied as constraints to derive the POME-
based gamma distribution; while E[ln (x)] and E

[

(ln x)2
]

 
are the constraints to derive the POME-based lognor-
mal distribution. Following Singh (1998), we have the 
following:

Gamma distribution
The POME-based gamma distribution may be written as

X ∼ Gamma (10.5, 4.3):
1

10.5Γ (4.3)

( x

10.5

)3.3
e−(x/10.5)

Y ∼ Lognormal (4, 0.72): 1

y(0.7)
√
2π

exp

(

− (ln y− 4)2

2(0.72)

)

.

(32a)f (x) = exp(−�0 − �1x − �2 ln x)

(32b)
∂�0

∂�1
= �2 − 1

�1
= −E(X) ≈ − x̄

The relation of Lagrange multipliers to the parameters 
of gamma distribution (Singh 1998) is given as

Lognormal distribution
The POME-based lognormal distribution may be written 
as

In Eq.  (33d), y =  ln  (x) and sy2 represents the sample 
variance of y.

Using the bivariate data sampled from the true popula-
tion, Table 1 lists the Lagrange parameters that are esti-
mated for the univariate variables based on both sample 
moments and population moments.

Besides applying the constraints directly related to the 
parametric distribution that may be fitted to the observed 
dataset, one may also directly apply the first three or four 
monocentral moments [i.e., E(X), E(X2), E(X3), E(X4)],  
given that the moments about the origin govern the 
shape and mode of the univariate probability density 
functions (Zellner and Highfield 1988; Cobb et al. 1983). 
The POME-based distribution so derived is given as

(32c)

∂�0

∂�2
= ln �1 − Γ (1− �2)ψ(1− �2)

= −E[ln x]; ψ(t) = d ln[Γ (t)]
dt

.

(32d)

�1 =
1

a
; �2 = 1− b; f (x; a, b)

= 1

aΓ (b)

(x

a

)b−1

exp

(

−x

a

)

.

(33a)f (x) = exp
(

−�0 − �1 ln x − �2(ln x)
2
)

(33b)
∂�0

∂�1
= �1 − 1

2�2
= − E[lnX]

(33c)
∂2�0

∂�21
= (�1 − 1)2

4�22
− 1

2�2
= E

[

(ln x)2
]

(33d)�1 = 1− ȳ

s2y
; �2 =

1

2s2y
.

Table 1  Lagrange multipliers estimated from sample dataset and the true population

Lagrange multipliers X ~ gamma Y ~ lognormal

λ0 λ1 λ2 λ0 λ1 λ2

Sample 7.0881 0.0505 − 1.3190 16.9052 − 6.8616 0.9810

Population 12.2919 0.0952 − 3.3000 17.4612 − 7.1633 1.0204
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(34a)
f (x) = exp(−�0 − �1x − �2x

2 − �3x
3),

if kurtosis is not significantly different from 3

(34b)
f (x) = exp(−�0 − �1x − �2x

2 − �3x
3 − �4x

4),

if the kurtosis is significantly different from 3.

The objective function is written as

To avoid the possible integration problem, the univari-
ate variable is commonly scaled to [0,1] or [− 1,1] (Hao 
and Singh 2012; Zhang and Singh 2014). In this study, the 
univariate variables are scaled to [0,1] to assess its appro-
priateness. The scaled variable xs is given as

In Eq.  (36), d is a small number such that the scaled 
variable will not reach either the lower limit or the upper 

(35)

Z(Λ) = ln

[

∫

exp

(

−
m
∑

i=1

�ix
i

)

dx

]

−
m
∑

i=1

�iai; m = 3, 4;

Λ = [�1, . . . , �m].

(36)xs =
x − (1− d)min(x)

(1+ d)max(x)− (1− d)min(x)
.

Table 2  Lagrange multipliers estimated using the first 
four moments about origin

λ0 λ1 λ2 λ3 λ4

Xs 1.6011 − 29.2444 101.8716 − 125.7947 57.5913

Ys − 1.2604 − 11.6222 103.6613 − 182.3986 101.5606
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Fig. 1  Comparison of the true population and POME-based distributions from given population or from first four moments about origin (i.e., 
entropy scaled)

Table 3  Chi square univariate goodness-of-fit results (comparing to the population parameters)

a  Test statistics computed for the Chi square test
b  Critical value for α = 0.05 of the Chi square distribution with certain degrees of freedom
c  Fitted parametric distribution
d  POME scaled

Type X Y

Sa Crib. P value df S Cri. P value df

Fitted to samplec 3.74 15.51 0.88 8 0.92 15.51 1.00 8

Moments about origind 5.94 12.59 0.43 6
6

6.54 12.59 0.37 6
6
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limit, i.e., avoiding P(X ≤ max  (x)) =  1. Here, we chose 
d = 0.01. Equations (34)–(35) may then be re-organized 
with the use of the scaled variable as

Now applying the first four moments about origin to 
the scaled variable X and the first three moments about 
origin to the scaled variable Y, Table 2 lists the parame-
ters estimated by optimizing the objective function using 
the first four moments about origin [i.e., Eq. (38)].

The POME-based distributions for the original vari-
ables are expressed as

(37)

f (x) = f (xs)

∣

∣

∣

∣

dxs

dx

∣

∣

∣

∣

= 1

(1+ d)max(x)− (1− d)min(x)

× exp

(

− �0 −
m
∑

i=1

�ix
i
s

)

(38)

Z(Λ) = ln





1
�

0

exp

�

−
m
�

i=1

�ix
i
s

�

dx





−
m
�

i=1

�iai; m = 3 or 4.

(39a)

f (x) = 1

153.4792
exp (− 1.6011+ 29.2444xs

−101.8716x2s + 125.7947x3s − 57.5913x4s

)

Furthermore, Fig.  1 plots the relative frequency and 
the frequency computed from the POME-based distri-
butions. As shown in Fig. 1, the POME-based univariate 
distributions derived (using the constraints pertaining 
to certain population, and first four moments about the 
origin) visually fit the observed data very well. Using 
the true population from the reference distribution, 
Table 3 lists the Chi square test for the fitted parametric 
and POME-based distributions constructed. Results in 
Table 3 clearly indicate the POME-derived distributions 
may be applied to model the univariate variables. Thus, it 
is safe to conclude that one may directly use the moments 
about origin as the constraints to model the univariate 
random variables.

Study of dependence
As previously discussed, one may apply three different 
approaches to study the dependence using the copula–
entropy theory. Hereafter, each approach is evaluated. 
Within the objective of the study, the Gumbel–Hougaard, 
Clayton, Frank and meta-t copulas (Nelsen 2006) were 
applied as parametric copulas. The MECC copula was 
derived with the constraints of E(U),E

(

U2
)

,E(V ),E
(

V 2
)

 
and E(UV ). According to the discussion in “Univariate 
analysis of peak discharge and flood volume” section for 

(39b)

f (y) = 1

582.2347
exp

(

1.2604 + 11.6222ys

− 103.6613y2s + 182.3986y3s − 101.5606y4s

)

.

Table 4  Parameters, LogL, and entropy estimated from parametric copula

Italic values indicate the best fitted copula function under each condition
a  Entropy computed from the parametric copula using Eq. (40). The copula with the largest absolute value is the best copula candidate

Copula GH Clayton Frank T

POME marginals Parameter 4.8534 4.2251 17.2725 0.9474 ν = 4.4479

LogL 1098.3 712.6209 995.3770 1061.7

Entropya − 1.0983 − 0.7126 − 0.9954 − 1.0617

Empirical marginals Parameter 4.5732 3.1897 16.0426 0.9356 ν = 4.1301

LogL 1106.2 653.8323 973.6298 1040.8

Entropy − 1.1062 − 0.6538 − 0.9736 − 1.0408

Table 5  Parameters estimated for MECC copula

λ0 λ1 λ2 γ1 γ2 λ3

With sample Spearman’s rho as the constraints

 POME marginal − 1.7581 1.2443 35.7275 1.2443 35.7275 − 73.9435

 Empirical marginal − 1.7581 1.2443 35.7275 1.2443 35.7275 − 73.9435

With true Spearman’s rho as the constraints (from the true GH-copula)

− 1.7628 1.2356 36.3731 1.2356 36.3731 − 75.2173
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univariate analysis, we will simply apply the POME-based 
distribution derived using the moments about the origin 
with the use of scaled variables.

POME‑based marginals with parametric copulas
In this approach, the copula parameters were estimated 
with the use of POME-based marginals and by maxi-
mizing the log-likelihood function (it may be also called 
Two-Stage MLE). Table  4 lists the estimated param-
eters as well as the corresponding log-likelihood. In this 
approach, the copula yielding the largest log-likelihood 
was selected for further analysis. As seen in Table 4, the 
Gumbel–Hougaard copula was the best candidate. It was 
in agreement with the sample data actually generated 
from the Gumbel–Hougaard copula discussed earlier in 
the section.

POME‑based marginals with parametric copulas selected 
based on the entropy
In this approach, the parameters of copulas again were 
estimated by Two-Stage MLE. The difference is that the 
copula–entropy was computed for the fitted parametric 
copula. Here, the copula–entropy was estimated using

The computed entropy is also listed in Table  4. From 
the computed entropy using Eq.  (40), it is seen that the 
Gumbel–Hougaard copula yielded the highest mutual 

(40)

HC = −E[ln c(u, v; θ)]

= − 1

n

n
∑

i=1

ln c(u, v; θ); n: sample size.

information (the absolute value of the copula entropy) 
among all the copula candidates.

Parametric copulas estimated using Pseudo‑MLE
In this approach, the parameters of the copula were 
directly estimated using the empirical distribution (e.g., 
empirical distribution using the Weibull plotting posi-
tion formula) which is listed in Table  4. It is seen that 
with the Pseudo-MLE, the Gumbel–Hougaard copula 
again yielded the largest MLE and the highest mutual 
information.

Most entropic canonical copula with POME‑based marginals 
(or empirical marginals)
In this approach, copulas were derived from the entropy 
theory with the constraints of E(U) = E(V ) = 1

2 ,

E(U2) = E(V 2) = 1
3 ; ρspearman = 0.9287 (sample 

Spearman’s rho) with the parameters listed in Table  5. 
In Eqs.  (24)–(31), it is seen that the dependence struc-
ture (i.e., Spearman’s rho in this sample study) was the 
controlling factor to optimize the objective function of 
MECC. Thus, it did not matter how the marginals were 
handled, the MECC would not change for given Spear-
man’s rho which is shown in Table 5. To further evaluate 
the impact of Spearman’s rho correlation coefficient, we 
changed Spearman’s rho to population Spearman’s rho 
as the constraint (i.e., ρ = 0.9298 from the true Gumbel–
Hougaard copula). As seen in Table 5, there was a signifi-
cant difference in the Lagrange multipliers estimated for 
MECC.

To assess whether the MECC so derived fulfilled the 
fundamental properties of copula function:
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Fig. 2  Comparison of empirical and POME-univariate marginals to computed C(u, 1) and C(1,v) computed from MECC
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Figure 2 compares the marginal variables computed using 
Eq. (41) from the MECC with both empirical and POME-
based univariate marginals. As seen in Fig. 2, C(u,1) and 
C(1,v) were in good agreement with their empirical and 
POME-based univariate marginals. This also implied 
the appropriateness of POME-based univariate mar-
ginals derived using the first four and three non-central 
moments for random variables X and Y, respectively.

With the fundamental properties fulfilled with the use 
of MECC derived, one may want to further evaluate the 
goodness-of-fit of the derived MECC. Here, the Kendall 
distribution plots were generated and compared to the 
Kendall distribution of the underlying true Gumbel–
Hougaard copula:

(41)C(u, 1) = u; C(1, v) = v,

(42)Kθ (t) =
t(θ − ln t)

θ
.

The Kendall distribution [K�(t)] for MECC may be 
approximated following the procedure discussed in Gen-
est et al. (2009) as follows:

1.	 Generate random variables [U1,U2] with sample N 
from the MECC derived, where N is greater than the 
sample size of the observed dataset.

2.	 Approximate [K�(t)] using:

(43a)

Vi =
1

N

N
∑

j=1

1
(

U1j ≤ U1i ∩ U2j ≤ U2i

)

; i = 1, 2, . . . ,N

(43b)
K approx(t) = 1

N

N
∑

i=1

(Vi ≤ t); t ∈ [0, 1]
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Fig. 3  Comparison of Kendall distribution from fitted Gumbel–Hougaard copula and MECC to that of the true Gumbel–Hougaard copula
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Comparisons shown in Fig.  3 conclude that (i) both 
fitted Gumbel–Hougaard (GH) copula and MECC 
derived may properly represent the true GH (θ =  4.5) 
population through the comparison of the Kendall 
distribution plots; (ii) visually, there is minimal differ-
ence of GH fitted with empirical marginals (b) and the 
MECC derived based on sample or population Spear-
man’s rho (c and d); (iii) the reason for the minimal dif-
ference is due to the rank-based empirical distribution 
does not impose any external bias on parameter estima-
tion for the parametric copulas; and the MECC derived 
here does not rely on the actual marginal values, but 
the population moments about origin for the uniformly 
distributed variables; and (iv) though the POME-based 
marginals well represent the univariate random vari-
ables, they do introduce external bias to the estimation 
of parametric copulas (a).

Overall, from the bivariate analysis of sample data, 
MECC may be directly applied to model the depend-
ence structure of the random variables. In the case of the 
MECC application, the impact of the marginal distribu-
tions is eliminated. In the next section, we will use the 
real watershed data as a case study to further illustrate 
the copula–entropy theory as well as risk analysis.

Case study with real watershed data
Collected from Flume 1 at Walnut Gulch Watershed in 
Arizona, the annual maximum flood data [i.e., peak dis-
charge (Q) and flood volume (V)] from 1957 to 2012 were 
considered for the case study. Based on the findings from 
analysis of sample data, the case study proceeded as fol-
lows: (i) the POME-based univariate distribution was 
applied to model the univariate peak discharge and flood 
volume; and (ii) the MECC was applied to model the 
dependence between peak discharge and flood volume.

Univariate analysis of peak discharge and flood volume
As discussed in “Univariate analysis of peak discharge 
and flood volume” section, the moments about origin 
for the scaled variables were considered as constraints to 
capture the shape and mode of the univariate flood vari-
ables. Choosing d = 0.1 in Eq. (36), Table 6 lists the sam-
ple statistics for the scaled variables. In Table 6, T and P 
denote the test statistic and the corresponding P value to 
evaluate whether kurtosis was significantly different from 
3 using

(44a)γ ex
2 = γ2 − 3

(44b)G2 =
n− 1

(n− 2)(n− 3)
((n+ 1)γ2 + 6)

(44c)
T = G2

SEK
; SEK = 2

√

6n(n− 1)2

(n− 2)(n+ 5)(n2 − 9)
.

In Eqs.  (44a)–(44c), γ2 and γ2
ex denote the sample kur-

tosis and excessive kurtosis; n is the sample size; SEK is 
the standard error of kurtosis; and T is the test statis-
tic with the underlying distribution of standard normal 
distribution.

Results in Table 6 indicate that the first three moments 
about origin were necessary to derive the POME-based 
distribution for the scaled peak discharge and flood vol-
ume variables. The Lagrange multipliers were optimized 
and listed in Table  7. Figure  4 compares the POME-
based probability density to the histogram, as well as the 
POME-based CDF to the empirical CDF. Comparisons 
confirmed the appropriateness of the POME-based uni-
variate distribution.

Bivariate flood frequency analysis with MECC
Let U and V represent the univariate marginals for 
peak discharge and flood volume, the same con-
straints to construct MECC for sample data [i.e., 
E(U),E

(

U2
)

,E(V ),E
(

V 2
)

,E(UV )] were applied to 
model the dependence of peak discharge and flood vol-
ume. The Lagrange multipliers were optimized by mini-
mizing the objective function of Eq. (31a) with b = 0.

With the observed data, sample Spearman’s rho 
was computed as ρ̂spearman = 0.9419, we approxi-
mated E(UV) from sample Spearman’s rho as 
E(UV ) = ρspearman+3

12 ≈ 0.3285. With these constraints, 
the copula density function for the MECC was obtained 
to model bivariate flood frequency as

Using Eq.  (45), Fig.  5 compares (a) the C(u, 1),C(1, v) 
to the corresponding empirical and POME-based mar-
ginals, and (b) the approximated parametric Kendall 
distribution for MECC to the empirical Kendall distribu-
tion. Comparisons in Fig. 5 indicated that (a) the MECC 
constructed successfully fulfilled the copula properties of 
C(u, 1) = u,C(1, v) = v; and (b) there was a good agree-
ment between the empirical and parametric (i.e., MECC) 
Kendall distributions, which indicated the appropriateness 
of the MECC constructed. Applying the POME-based uni-
variate distribution, Fig. 6 plots the simulated random var-
iates versus the observed random variables. Figure 6 shows 
the dependence structure was well preserved with the 
application of MECC and POME-based marginals. To fur-
ther compare the MECC with the empirical copula, Fig. 7 
compares the copula and the survival copula with different 
contour levels. The plot on the left is for the copula func-
tion, while the plot on the right is for the survival copula. 
As shown in Fig. 7, there is good agreement between the 
contours obtained from the empirical copula (and its 

(45)
c(u, v) = exp(−1.8194 − 1.1352u− 44.9511u2

− 1.1352v − 44.9511v2 + 92.1726uv).
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survival copula) and the MECC (and its survival copula) 
for different probability levels. This finding further assured 
the appropriateness of the MECC.

Risk analysis
With the assurance to apply the MECC to model the 
dependence of annual flood sequences (i.e., peak dis-
charge and flood volume), one may proceed to study the 

associated risk measure, which may be used as an engi-
neering design criterion. In hydrology and water engi-
neering, risk has commonly been assessed through the 
return period. In what follows, the joint return period of 
“AND” case was applied for risk analysis. The joint return 
period of “AND” case is given as

To assess the return period “AND” case, the peak dis-
charge and flood volume with univariate CDF of P = 0.8, 
0.9, 0.96, and 0.98 were used. Given the limitation of the 
sample size (n =  56), P =  0.99 was not chosen for the 
study for comparison purposes. Table  8 lists the joint 

(45)

Tand = µ

P(X ≥ x,Y ≥ y)

= µ

1− FX (x)− FY (y)+ C
(

FX (x), FY (y)
) .

Table 6  Sample statistics for scaled peak discharge and flood volume

Variable E(X) E(X2) E(X3) E(X4) T P

Peak discharge 0.1499 0.1712 2.5921 12.0061 12.7843 ≪ 0.05

Flood volume 0.2004 0.1988 1.4922 5.8259 5.0802 ≪ 0.05

Table 7  Lagrange multipliers for  POME-based univariate 
distribution

Variable λ0 λ1 λ2 λ3 λ4

Peak discharge − 1.9340 5.8624 8.3878 − 10.5178 0.0004

Flood volume − 1.6668 5.8557 − 1.7289 0.2827 0.0003
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return period estimated from both empirical copula and 
MECC. Results in Table 8 indicated the following:

(i)	 There was a small difference between the joint 
CDFs computed from empirical copula and the 
MECC. The absolute relative difference was in 
the range from 0.96% for C(0.8,0.8) to 2.17% for 
C(0.8,0.9). Thus, in regard to the joint CDF, the dif-
ferences were insignificant.

(ii)	 Though the difference with joint CDF estimated 
may not be significant, it resulted in larger differ-
ences in regard to the “AND” case return period. It 
is seen that with the increased marginal probabil-
ity, the discrepancy also increased between the Tand 
estimated from empirical copula and the MECC.

(iii)	 There was an interesting finding which was in 
agreement with Tand estimated from empirical 
copula and MECC. Using volume  =  6.44  ×  105 
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m3 corresponding to P = 0.96 as an example, the 
joint return period computed from smaller peak 
discharge (e.g., Q  =  73.2 cms corresponding to 

P =  0.8) was less than that computed with larger 
peak discharge (e.g., Q = 109.9 cms). This was true 
in reality, since it was more likely for (Q ≥  109.9 
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Table 8  Joint CDF and Tand estimated from the empirical copula and MECC

C(u,v) P (discharge)

P = 0.8 P = 0.9 P = 0.96 P = 0.98P (volume)

Empirical P = 0.8 0.7500 0.7857 0.8036 0.8036

P = 0.9 0.8036 0.8750 0.9107 0.9107

P = 0.96 0.8036 0.9107 0.9464 0.9643

P = 0.98 0.8036 0.9107 0.9643 0.9821

MECC P = 0.8 0.7503 0.7861 0.7940 0.7953

P = 0.9 0.7861 0.8649 0.8946 0.9013

P = 0.96 0.7940 0.8946 0.9429 0.9557

P = 0.98 0.7953 0.9013 0.9557 0.9709

Tand (years) Discharge (cms)

73.20 109.90 170.66 230.59Volume (m3)

Empirical 3.18 × 105 6.6667 11.6667 22.9508 42.4242

4.60 × 105 9.6552 13.3333 19.7183 32.5581

6.44 × 105 22.9508 19.7183 37.8378 41.1765

7.71 × 105 42.4242 32.5581 41.1765 45.1613

MECC 3.18 × 105 6.6535 11.6146 29.4142 65.3461

4.60 × 105 11.6146 15.3998 28.9062 46.8990

6.44 × 105 29.4142 28.9062 43.6433 63.4992

7.71 × 105 65.3462 46.8990 63.4992 91.8599



Page 16 of 17Singh and Zhang ﻿Geosci. Lett.  (2018) 5:6 

cms and V ≥ 6.44 × 105 m3) to occur simultane-
ously compared to that for (Q  ≥  73.2 cms and 
V ≥  6.44 ×  105 m3). This finding was also in the 
agreement that higher discharge was most likely 
associated higher flood volume. This scenario also 
happened for large flood volume with relatively 
low peak discharge and vice versa.

Discussion and conclusions
In this study, we investigate the copula–entropy theory in 
bivariate analysis. Using the sample data with the known 
univariate populations (i.e., gamma and lognormal) and 
known dependence (Gumbel–Hougaard), it is concluded 
that the POME-based distribution derived may model 
the univariate distribution well. There is minimal differ-
ence for POME-based distribution based on the moment 
of the observed variable and that derived based on the 
scaled variable (i.e., scaling the observed variable to [0,1]). 
To avoid the improper integrals, the scaled variable is 
suggested to derive the POME-based distribution. Com-
paring to the true Gumbel–Hougaard copula, the MECC 
derived using the constraints of E(U), E(U2), E(V), E(V2), 
and E(UV) can properly model the dependence structure 
of the sample data. The MECC constructed successfully 
fulfills the fundamental properties of the copula, i.e., 
C(u,1) = u; C(1,v) =  v. In addition, the derived MECC 
can well present the true dependence structure repre-
sented with the Gumbel–Hougaard copula.

Using the real watershed data (i.e., Flume 1 at Walnut 
Gulch, Arizona), the case study shows the appropriate-
ness of POME-univariate distribution of scaled variable 
to model the univariate distribution for the observed vari-
ates. With the constraints E(U), E(U2), E(V), and E(V2) 
converging to the population moments of the uniform 
distributed variables as E(Ui) = E(V i) = 1

/

(i + 1) ; 
the MECC constructed only depends on the rank-based 
dependence measure (in this case, Spearman’s rho). The 
derived MECC properly models the dependence of annual 
peak discharge and flood volume, which is independent of 
the marginal distributions (non-parametric or paramet-
ric). The evaluation of the flood risk (using “AND” case 
return period) indicates that the MECC copula reasonably 
represents the change of the return period of “AND” case.

Overall, the study concludes as follows:

(i)		 For the bivariate random variables investigated, 
the MECC may be easily and efficiently applied to 
model the dependence structure. Unlike other cop-
ulas, the MECC is uniquely defined for a given set 
of constraints. Its uniqueness allows one universal 
solution for the proposed frequency analysis.

(ii)	 Similar to other copula families (e.g., Archimedean 
copulas, meta-elliptical copulas, vine copulas, etc.), 

the MECC may be applied for multivariate analy-
sis in hydrology and water engineering, including 
multivariate rainfall analysis, multivariate drought 
analysis, spatial analysis of drainage networks, and 
spatial analysis of water quality as few examples.

(iii)	The bivariate MECC copula may be easily extended 
to higher dimensions. For example, for the d-dimen-
sional variables [X1,X2, . . . ,Xd] with the marginals 
of Ui = Fi(Xi), i = 1, 2, . . . , d; the MECC may be 
constructed using the set of constraints, i.e., mar-
ginal E(Ur

i ) = 1
/

(r + 1), i = 1, 2, . . . , d and 
pair-wise E(UiUj); i, j ∈ [1, d], i �= j estimated 
from rank-based Spearman’s coefficient of correla-
tion. The same optimization procedure applied for 
the bivariate case may be applied to construct the 
MECC for dependence structure in higher dimen-
sions.
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