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Abstract 

Ship height positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecast-
ing great tsunamis. We first examined GNSS height-positioning data of a navigating vessel. If we use the kinematic 
precise point positioning (PPP) method, tsunamis greater than 10−1 m will be detected by ship height positioning. 
Based on Automatic Identification System (AIS) data, we found that tens of cargo ships and tankers are usually identi-
fied to navigate over the Nankai Trough, southwest Japan. We assumed that a future Nankai Trough great earthquake 
tsunami will be observed by the kinematic PPP height positioning of an AIS-derived ship distribution, and examined 
the tsunami forecast capability of the offshore tsunami measurements based on the PPP-based ship height. A method 
to estimate the initial tsunami height distribution using offshore tsunami observations was used for forecasting. 
Tsunami forecast tests were carried out using simulated tsunami data by the PPP-based ship height of 92 cargo ships/
tankers, and by currently operating deep-sea pressure and Global Positioning System (GPS) buoy observations at 71 
stations over the Nankai Trough. The forecast capability using the PPP-based height of the 92 ships was shown to be 
comparable to or better than that using the operating offshore observatories at the 71 stations. We suppose that, 
immediately after the occurrence of a great earthquake, stations receiving successive ship information (AIS data) 
along certain areas of the coast would fail to acquire ship data due to strong ground shaking, especially near the epi-
center. Such a situation would significantly deteriorate the tsunami-forecast capability using ship data. On the other 
hand, operational real-time analysis of seismic/geodetic data would be carried out for estimating a tsunamigenic fault 
model. Incorporating the seismic/geodetic fault model estimation into the tsunami forecast above possibly compen-
sates for the deteriorated forecast capability.

Keywords:  Tsunami forecast, Ship height, Global navigation satellite system (GNSS), Precise point positioning (PPP), 
Automatic identification system (AIS)

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Background
Great megathrust earthquakes with moment magnitude 
(Mw) greater than about 8.5 have generated great tsuna-
mis that caused disastrous damages with significant wave 
height (>100 m) and inundation for near-field coastal 
communities during tens of minutes after the earthquake 
occurrence (Paris et al. 2010; Mori et al. 2011; Fujii and 
Satake 2013; Joint Editorial Committee for the Report on 

the Great East Japan Earthquake Disaster 2014). It is nec-
essary to develop and operate practical tsunami warning/
forecast systems for coastal disaster mitigation (Bernard 
and Titov 2015).

Seismic wave monitoring systems enable us to rapidly 
estimate earthquake source (Okada et  al. 2004; Hayes 
et  al. 2009; Ekström et  al. 2012). The simplest forecast 
method is to select a possible tsunami scenario from a 
precomputed database based on the estimated seismic 
magnitude with its hypocenter location (Tatehata 1997; 
Kamigaichi 2009; Lauterjung et al. 2010; Abe and Imam-
ura 2010; Igarashi et al. 2015), requiring only minutes to 
obtain a forecast result after the earthquake occurrence. 
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Tsunami calculation using the seismically estimated 
earthquake mechanism (i.e., moment tensor) probably 
provides more reliable estimation (Reymond et al. 2012; 
Gusman and Tanioka 2014). Such methods are incor-
porated into operational systems of the Pacific Tsunami 
Warning Center (PTWC) (Wang et al. 2012; PTWC/ITIC 
2014), the French Polynesian Tsunami Warning Center 
(CPPT: Centre Polynésien de Prévention des Tsunamis) 
(Clément and Reymond 2015; Jamelot and Reymond 
2015), and the National Research Institute for Earth Sci-
ence and Disaster Resilience (NIED), Japan (Inazu et  al. 
2016). These systems require 10–20 min to obtain a reli-
able seismic moment tensor solution of a tsunamigenic 
earthquake, and additional time to calculate the tsunami.

In general, the rapid estimation of tsunami size using 
seismic observations alone becomes relatively difficult 
for greater earthquakes (Mw  >  8.0). This is because the 
source time function of greater earthquakes is relatively 
longer than that of smaller earthquakes, and thus source 
estimation of greater earthquakes requires longer-period 
seismic wave analysis (up to a couple of hundreds of 
seconds) than smaller ones (Katsumata et  al. 2013). In 
addition, greater earthquakes may involve tsunami earth-
quakes (Satake 1994; Dutykh et  al. 2012) and seafloor 
failures due to strong seafloor shaking which can gener-
ate additional tsunamis (Kawamura et  al. 2014; Løvholt 
et al. 2015).

We prefer to use information that strongly reflects the 
tsunami rather than earthquake for robust and reliable 
tsunami forecasting.

Onshore Global Navigation Satellite System (GNSS) 
observations have detected coseismic land deformation 
due to great tsunamigenic earthquakes. Real-time GNSS 
data with high sampling (e.g., 1 Hz) possibly enable us to 
rapidly estimate the earthquake size and its expansion 
(i.e., coseismic fault model) that can more directly relate 
to the generated tsunami than the conventional point 
source estimation based on seismic wave analysis alone 
(Blewitt et al. 2006; Ohta et al. 2012; Wright et al. 2012; 
Colombelli et  al. 2013). For the case of near-coast great 
tsunamigenic earthquakes, these GNSS analyses possibly 
work well to obtain a reliable fault model within about 
10  min. Using the estimated fault model with the latest 
supercomputing systems can facilitate real-time tsunami 
forecasting with suitable inundation (Oishi et  al. 2015; 
Baba et al. 2016).

Deep-sea pressure and Global Positioning System (GPS 
or GNSS) sea-surface buoy observations which have been 
proven established technologies (Kawai et al. 2013; Rabi-
novich and Eblé 2015) can directly measure offshore tsu-
namis. Tsunami forecast systems using deep-sea pressure 
and/or GPS buoy observations have been developed and 
are operated by the National Oceanic and Atmospheric 

Administration (NOAA) (Tang et al. 2009, 2012) and the 
Japan Meteorological Agency (JMA) (Tsushima et  al. 
2009, 2011, 2012). These forecast systems are suitably 
reliable but require substantially longer time, because 
it typically takes tens of minutes for a tsunami to reach 
to the nearest offshore stations (Tsushima et  al. 2011; 
Tang et  al. 2012; Wei et  al. 2013). Several studies have 
suggested the combined use of seismic/geodetic obser-
vations as well as offshore tsunami observations will 
facilitate rapid and reliable forecasting (Melgar and Bock 
2013, 2015; Tsushima et al. 2014; Wei et al. 2014).

On the other hand, we may also detect offshore tsunami 
signals using other measurements. One possible method 
is ship-borne GNSS positioning. The GNSS-based ship 
height positioning for navigation purposes should reflect 
the sea-surface height at the ship location, which is in 
principle the same as the GPS buoy observation. Off-
shore tsunami of 0.1  m due to the 2010 Maule, Chile, 
earthquake was successfully detected by GNSS-based 
height of a research vessel (Foster et  al. 2012). A fine 
spatial-scale geoidal variation was possibly captured by 
GNSS height of a navigating commercial ship (Roggen-
buck et al. 2014). Routine recording of GNSS height of a 
navigating ferryboat may be useful for monitoring of sea-
surface height spatiotemporal variations that reflect the 
Tsushima Warm Current (Ichikawa et  al. 2013). These 
reports show that GNSS-based ship height observations 
have become useful for geophysical applications.

The ship’s GNSS information during navigation has 
been increasingly aggregated as Automatic Identifica-
tion System (AIS) data. Due to the International Mari-
time Organization (IMO) regulation, ships exceeding 300 
gross tonnage engaged on international voyages, cargo 
ships exceeding 500 gross tonnage not engaged on inter-
national voyages, and all passenger ships must send their 
AIS information including their location during naviga-
tion (IMO 2002). The AIS information sent via very-high-
frequency (VHF) radio signals from ships is received 
successively by terrestrial AIS stations within a range of 
about 100 km from the stations, and by low Earth orbit 
(LEO) satellites when the ships are within footprint of 
the satellites which is a couple of thousands of kilometers 
(Bekkadal 2009; Earles et  al. 2010; Eriksen et  al. 2010). 
The number of such recognized ships was 60,000 over 
the global ocean in 2009 (Herbert-Burns et al. 2009), and 
is increasing year by year with the increase in seaborne 
trade (Barki and Rogers 2015).

The location information of current AIS data include 
only latitude and longitude (excluding height), and mostly 
involves relatively low-precision (meter-order) accu-
racy due to the use of GNSS single positioning with code 
pseudorange observable, because the AIS data are mainly 
used for maritime traffic safety and trade statistics. On 
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the other hand, higher-precision positioning has become 
required for safe berthing of large vessels (e.g., liquefied 
natural gas (LNG) tankers) (Oda et  al. 2009). The pre-
cise point positioning (PPP) method (Zumberge et  al. 
1997; Kouba and Héroux 2001) has been widely used for 
onshore geophysical positioning (Ohta et al. 2006; Yama-
moto et al. 2013; Li et al. 2013a, b), and recently for off-
shore buoy positioning (Terada et al. 2015; Takahashi et al. 
2015). PPP facilitates centimeter-accuracy positioning 
using carrier phase observable with precise satellite orbits 
and clock data as external information. PPP requires no 
reference station or baseline, which is different from other 
precise positioning methods such as the real-time kin-
ematics (RTK) or differential GPS methods. This is a great 
advantage in offshore positioning because large amounts 
of telemetry of raw GNSS data at a reference station are 
not practical under poor offshore Internet connectivity. 
We expect in the near future that AIS data will possibly 
include successive time series of ship positioning includ-
ing height derived from such high-precision GNSS.

In the present study, GNSS height data of a navigat-
ing ship are first investigated for the tsunami detection. 
We carry out tsunami forecast tests for the great tsu-
nami scenario at the Nankai Trough, southwest Japan, 
using offshore tsunami pseudo observations. The pseudo 
observation data at the Nankai Trough region are gen-
erated based on currently operating offshore tsunami 
observatories, and GNSS height data of multiple ships 
derived from AIS data. We discuss future application of 
GNSS ship height data and tsunami forecast system.

GNSS‑based height record of a navigating ship
We investigate the quality of GNSS height-positioning 
records of a navigating ship. The ship was the Dai-San 
Kaiyo Maru which was used for seafloor geodesy by 
Tohoku University, Japan, from 24 February to 3 March 
in 2014 (Fig.  1a) (Kido et  al. 2015). The kinematic PPP 
method (Ohta et  al. 2006; Yamamoto et  al. 2013) was 
adopted for the high-precision position determination. 
In the GNSS data processing, we used RTKLIB v.2.4.2 
(RTKLIB, An open source program package for GNSS 
positioning, http://www.rtklib.com). For comparison 
between different positioning methods, we also used typ-
ical single-positioning method (hereafter SINGLE) and 
differential GPS method (hereafter DGPS) using code 
pseudorange data.

Ship height records for every 1  s were estimated as the 
ellipsoidal height for all the positioning solutions (Fig. 1b). 
Moving average during a 1-min time window was carried 
out for removing wind-wave effects in order to easily find 
long-wave signals (e.g., tsunami and tide). Possible geo-
physical corrections were carried out on the height records. 
Static geoidal height which depends on location (~101 m) 

was primarily removed using the EGM 2008 model (Pavlis 
et al. 2012). Ocean tides (<100 m) were removed using the 
NAO.99Jb model (Matsumoto et al. 2000).

We assess the noise level of the ship height time series 
from the SINGLE, DGPS, and PPP methods (Fig.  1d). 
While the noise levels are meters for the SINGLE and 
DGPS methods, but are effectively <10−1 m for the PPP 
method at a frequency of 0.01–0.1  cpm that is mostly 
involved in great tsunamis (Mw  >  8.5) (Rabinovich and 
Eblé 2015). Great megathrust earthquakes (Mw  >  8.5) 
have involved tsunami amplitude greater than 10−1 m in 
deep seas near the epicenters (Inazu and Saito 2013). We 
expect such large amplitude tsunamis will be detected by 
ship height positioning using PPP.

Although ship attitudes generally change due to ship 
motion (Reinking 2010; Reinking et  al. 2012), we could 
find no remarkable noises related to the ship movement 
(i.e., velocity/acceleration) in the PPP ship height record 
(Fig. 1b, c). We consider that detailed assessment of the 
attitude change effects on the ship positioning is beyond 
the scope of the present study, and so do not discuss this.

Nankai Trough great earthquake
We assume that PPP ship height data of multiple ships 
are available in real time. In the present study, we exam-
ine usefulness of the PPP ship height for great tsunami 
forecasting. The Nankai Trough great earthquake tsu-
nami is used as an example for the evaluation of the tsu-
nami forecast capability. The Tokai-Tonankai-Nankai 
great earthquake tsunami scenario with Mw 8.7 (Central 
Disaster Prevention Council 2003) is considered for the 
tsunami forecast test (Fig. 2).

There are currently operating offshore tsunami obser-
vatories in the Nankai Trough region (Fig. 3a). Deep-sea 
pressure gauges are operating at 63 stations, and GPS 
sea-surface buoys are operating at eight stations (Tsush-
ima and Ohta 2014). The pressure gauges are connected 
to land via seafloor cables, which are operated by the 
Japan Agency for Marine-Earth Science and Technol-
ogy (JAMSTEC) (Momma et al. 1997; Kasaya et al. 2009; 
Kaneda et  al. 2015), JMA (Isozaki et  al. 1980; Fujisawa 
et  al. 1986; Saito et  al. 2007), and NIED (Eguchi et  al. 
1998). The GPS buoys are operated by the Port and Air-
port Research Institute (PARI) (Kawai et al. 2013).

Based on AIS data, we find that there are usually a 
number of ships navigating over the Nankai Trough. 
There were 64 cargo ships and 28 tankers navigating off-
shore (sea depth >300 m) in the Nankai Trough region on 
1 January 2015 (Fig. 3b). The locations of these ships were 
successively monitored by terrestrial AIS data-receiving 
stations within the AIS VHF transmission range (i.e., 
<  ~100  km). In addition to real-time data retrieval of 
the deep-sea pressure and GPS buoy observations, we 

http://www.rtklib.com
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Fig. 1  Time series and power spectra. a Ship track, b height, and c velocity of the Dai-San Kaiyo Maru from 24 February to 3 March in 2014. d Power 
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assume that PPP height data of these ships are available 
in real time via terrestrial AIS stations.

Tsunami forecast tests
Procedure
The procedure of the tsunami forecast is described. The 
tsunami forecast method is based on the tsunami Fore-
casting based on Inversion for initial sea-Surface Height 
(tFISH) (Tsushima et  al. 2009, 2011, 2012). The follow-
ing procedure was introduced by Inazu and Saito (2014). 
Based on a linear inversion, we use offshore tsunami 

observation data to estimate the initial tsunami height 
as the tsunami source for the forecasting. The observa-
tion here is pseudo observation explained later in this 
subsection. The initial tsunami height is configured by a 
linear superposition of the unit sources. The unit sources 
are assigned in the Nankai Trough region with a 20-km 
interval (Fig.  2). The total number of the unit sources 
is 376. Each unit source is given by a Gaussian-shaped 
function:

where φ and θ are longitude and latitude, respectively. 
Rφ and Rθ are both set to correspond to 12.5 km. Green’s 
functions (or basis functions) at the assumed observa-
tion points are calculated by tsunami simulations initial 
conditions of which are the respective unit sources. The 
tsunami simulation is based on a linear long-wave model. 
The weights on the unit sources are the model param-
eters that are optimized based on a well-known linear 
equation:

where A is a matrix produced by the Green’s functions; m 
is the model parameter vector of the unit source weights 
of dimension 376; and d is a vector filled by the pseudo 
observation data used for the forecasting. In short, we 
assume that the pseudo observation is represented by 
a linear superposition of the Green’s functions from 
the unit sources, and estimate the weights of the unit 
sources (m) by this linear inversion. The tsunami heights 
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anywhere are also synthesized or forecasted from the 
estimated m. In addition, I is a unit matrix, and an opera-
tion of damping using a scalar factor λ is incorporated to 
penalize the L2 norm of m in order to avoid overfitting of 
the model (Menke 1989; Bishop 2006).

Pseudo observation data (d) are made for the tsunami 
forecast test. The tsunami signals at the observation 
points are calculated by the linear long-wave simulation of 
the Tokai-Tonankai-Nankai earthquake tsunami scenario 
(Fig. 2). Random noises are added to the tsunami signals, 
which are used as the pseudo observations. The random 
noises are generated by inverse Fourier transform with 
phase randomization of the power spectra of Fig. 1d. The 
noises based on PPP are added to the tsunami time series, 
which is used as the ship height pseudo observation. 
Since the ship velocities are 100 m/s (Fig. 1c), ship move-
ments during the tsunami passing over the offshore ships 
(~30 min) are expected to be <10 km, which is not consid-
ered in the present study. The pseudo observation data of 
the ships are thus generated at fixed points (Fig. 3b). GPS 
buoy noises (Fig. 1d) are added to the GPS buoy observa-
tion. No noise is added to the deep-sea pressure observa-
tion which is sensitive to subcentimeter tsunamis (Filloux 
1982; Hino et al. 2001; Inazu and Saito 2014).

The data interval for the forecast in the present study is 
taken as 3–10 or 3–20 min after the tsunami generation, 
as shown later. The first 3-min data are omitted because 
the sea surface and bottom are expected to be signifi-
cantly affected by elastic wave effects immediately after 
the earthquake (Nosov and Kolesov 2007; Saito 2013). In 
the tsunami forecast tests, λ is empirically fixed, respec-
tively, for using the data from the operating offshore 
observatories, and for using the PPP ship height data 
(Inazu and Saito 2014).

Deep‑sea pressure and GPS buoy
The tsunami forecast using the pseudo observations of 
both deep-sea pressure and GPS buoy (Fig. 3a) is carried 
out, and is used as reference of the forecast capability. 
The forecast results using the 3–10-min and 3–20-min 
data are shown in Fig.  4. Although the forecast result 
using the 3–10-min data provides good estimation in 
terms of the maximum coastal tsunami height along the 
coast, the estimated source shows false subsidence region 
in the south of the Nankai Trough. The correlation coef-
ficients between the tsunami scenario (Fig.  2) and the 
forecast are 0.88 for the maximum coastal height, and 
0.63 for the source. When the 3–20-min data are used, 
the forecast result is improved in terms of the maximum 
coastal height and the source. The correlation coeffi-
cients become 0.94 and 0.77 for the maximum coastal 
height and the source, respectively. The time interval of 
3–10  min used for the forecast is probably insufficient 

for reliable forecast using the deep-sea pressure data in 
the epicentral region because the tsunami and the per-
manent seafloor vertical deformation are hardly distin-
guished during this short-term observation (Tsushima 
et al. 2012).

PPP ship height
The tsunami forecast is carried out using the pseudo 
observations of 92 ships (Fig.  3b). The tsunami signals 
at the offshore ships are greater than tens of centim-
eters, showing a high ratio of the tsunami signal to the 
PPP noise (Fig.  5). Then, the forecast results using the 
PPP ship height data are relatively comparable to or 
better than those using the deep-sea pressure and GPS 
buoy observations (Figs.  4, 5). The ship height primar-
ily reflects the sea-surface height or the tsunami height. 
This is an advantage over the deep-sea pressure in the 
epicentral region just after the tsunami generation. The 
observation distribution of the ships (Fig. 3b) is broader 
and more uniform than that of the deep-sea pressure 
and GPS buoy observations (Fig. 3a). Broad and uniform 
observation distribution would be also favorable for good 
forecasting.

Here, the PPP noise was added to the tsunami simu-
lation data used for the tsunami forecast test. When we 
instead used noises of SINGLE and DGPS, it was found 
to be difficult to obtain reliable tsunami forecasts, since 
ratios of the tsunami signals to these noises were rela-
tively low (Additional file 1: Figure S1). However, a pos-
sible source of the great tsunami would be identified 
using a number of such low-precision-positioning data 
by a careful analysis for post-tsunami evaluations. It is 
still important to explore the use of currently available 
data.

We can suppose that terrestrial AIS stations near the 
epicenter may fail to acquire successive ship informa-
tion just after the great earthquake occurrence due to its 
strong ground shaking (Oshima et al. 2011). Such a situ-
ation will significantly deteriorate the tsunami forecast 
capability proposed above. Here we assume that ships 
are not totally recognized in an offshore region from 134° 
to 137°E. The number of the available ships for this case 
becomes 55 (38 cargo ships and 17 tankers) (Fig.  3b). 
The forecast result using the 55 ship data significantly 
underestimates the coastal tsunami height in this region 
(Fig. 6).

On the other hand, operational real-time seismic and/
or geodetic analysis will be carried out independent of 
the tsunami data analysis. A moment tensor or a certain 
fault model would be suitably obtained by routine analy-
sis systems of seismic and/or geodetic data inversions 
(Okada et  al. 2004; Kawamoto et  al. 2015). We assume 
to successfully obtain a rectangular fault model solution 
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(Mw 8.4) in about 5–15 min after the earthquake occur-
rence (Fig. 6c). This fault model solution is incorporated 
as a first guess into the tsunami forecast. The basic con-
cept of this procedure was proposed by Tsushima et  al. 
(2014). The forecast with the fault model shows a notably 
improved result (Fig. 6). It is worth noting that combined 
use of multivariate data (i.e., seismic, geodetic, tsunami, 
and so on) possibly compensates for the weakness of sin-
gle variable data analysis during great events with com-
plex disasters.

Discussion for practical use of ship height data
The tsunami forecast of Fig. 5 is an example based on a 
ship distribution (Fig. 3b). However, the ship distribution 
will not always be spatially uniform. In order to practi-
cally carry out the inversion/forecast, we must prepare a 
dense Green’s function database, and select and/or make 
Green’s functions according to the ship distribution, pos-
sibly considering the ship moving after the earthquake 
occurrence. Optimal damping parameter (λ) probably 
depends on data amount used (number of ships) and 
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ratios of tsunami signals to background noises. It is nec-
essary to beforehand prepare optimal parameters that 
depend on ship distributions used. When the tsunami 
occurs, we will choose an optimal λ that is compatible 
with the ship distribution at the time, and carry out the 
forecasting.

As mentioned above, great earthquakes may prevent 
us from acquiring local ship data close to the epicenters, 
which will sometimes make it difficult to reliably carry 
out inversion-based forecasts. It is important to prepare 
multiple alternatives so that the forecast system becomes 
robust. For example, local coastal communities may 

prepare a simplified forecast method such as that based 
on the Green’s law (Baba et al. 2004, 2014; Hayashi 2010) 
using their navigating ships.

Real-time and stable GNSS data retrieval is essential so 
that we efficiently carry out the proposed tsunami fore-
casting. We should incorporate practical methods to at 
least resolve problems of stable phase ambiguity resolu-
tions and cycle slips (data gaps) for operational real-time 
PPP analyses (Ge et  al. 2008; Li et  al. 2013c, 2014; Guo 
and Zhang 2014). As mentioned above, external informa-
tion of precise satellite orbits and clock data is necessary 
for the real-time kinematic PPP analysis. In the offshore 
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region, it is not easy to acquire this external information 
due to poor Internet connectivity while it is easy for the 
onshore use. However, commercial services (e.g., Star-
Fire™) have provided the external information for PPP 
via geostationary satellites (Sharpe et  al. 2000; Dixon 
2006). The Japan Aerospace Exploration Agency (JAXA) 
has also developed a real-time PPP correction message 
named as Multi-GNSS Advanced Demonstration tool for 
Orbit and Clock Analysis (MADOCA), and began exper-
imental transmission of the MADOCA signal via the Jap-
anese Quasi Zenith Satellite System (QZSS) (Suzuki et al. 
2014). These tools will be increasingly useful for the pre-
cise position determination in the offshore region. When 
the real-time PPP analysis in the offshore region becomes 

practical and robust, a data center will be necessary in 
order to receive successive AIS data and make the data 
available for real-time forecasting.

The present study considered AIS data received by ter-
restrial stations. Meanwhile LEO satellites can also receive 
AIS data of far offshore ships within the satellite footprint. 
If the number of LEO satellites increases, successive ship 
data during whole navigation over quasi-global ocean may 
become available. Although GNSS ship positioning used 
in the current AIS is generally low precision, using high-
precision positioning will give us incentives of geophysical 
applications as well as of safe berthing (Oda et al. 2009). 
If the number of the users of high-precision GNSS posi-
tioning increases as a result of decreasing prices, such a 
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crowdsourced dataset will have wide potentials including 
geophysical applications (Foster et al. 2012; Ichikawa et al. 
2013; Roggenbuck et al. 2014).

Summary and remarks
We investigated GNSS-based ship height-positioning 
data for offshore tsunami detection and its use for fore-
casting. Tsunamis greater than 10−1 m will be detected 
if kinematic PPP method is used for ship height posi-
tioning. We assumed that kinematic PPP is installed for 
the offshore ships derived from AIS data, and examined 
the capabilities of the tsunami forecast of a great tsu-
nami scenario (Mw 8.7) (Central Disaster Prevention 
Council 2003) using the PPP ship heights as well as 
those recorded using the currently operating offshore 
tsunami observatories in the Nankai Trough region. 
The forecast accuracy using the PPP ship heights would 
be comparable to or better than that using the operat-
ing offshore observatories. Terrestrial AIS stations may 
fail to receive successive ship data due to strong ground 
shaking during a great earthquake, which will deterio-
rate the forecast capability. We showed that the lack of 
the tsunami (ship) data would be compensated for by 
employing combined analyses of both the tsunami data 
analysis and the operational seismic/geodetic coseismic 
source estimation.

The present study can be viewed as an ocean version of 
the crowdsourced earthquake warning by US research-
ers (Minson et al. 2015; Kong et al. 2016). Japan has the 
world’s densest earthquake and tsunami observatories 
in both land and ocean (Okada et  al. 2004; Kanazawa 
2013; Kaneda et al. 2015). Rapid earthquake and tsunami 
warning and forecast systems are expected to work well 
for future great Nankai Trough and Japan Trench earth-
quakes and tsunamis (Tsushima and Ohta 2014). How-
ever, there are coastal countries and cities that cannot 
install such dense observatories especially in the deep seas 
due to economic, security, and geographic reasons. These 
countries and cities may consider the concept in the pre-
sent study as a future tsunami warning and disaster miti-
gation system (NRC 2011).

In the present study, the GNSS-based ship height was 
investigated to measure offshore tsunamis. As one of 
other offshore measurements, satellite altimetry has been 
well known to detect significant tsunamis (Gower 2004; 
Hamlington et  al. 2011; Song et  al. 2012), and its near-
real-time use has been also investigated (Hamlington 
et al. 2012). GNSS-reflectometry using numerous GNSS 
satellites and LEO satellites may also be a promising tech-
nique for detecting offshore tsunamis over vast areas of 
ocean in a relatively short time interval (Stosius et  al. 
2010). Real-time use of these satellite measurements and 
applications will hopefully be examined in the future.
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