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Abstract 

In Taiwan, research and education of solar terrestrial sciences began with a ground-based ionosonde operated by 
Ministry of Communications in 1952 and courses of ionospheric physics and space physics offered by National Central 
University (NCU) in 1959, respectively. Since 1990, to enhance both research and education, the Institute of Space Sci‑
ence at NCU has been setting up and operating ground-based observations of micropulsations, very high-frequency 
radar, low-latitude ionospheric tomography network, high-frequency Doppler sounder, digital ionosondes, and total 
electron content (TEC) derived from ground-based GPS receivers to study the morphology of the ionosphere for 
diurnal, seasonal, geophysical, and solar activity variations, as well as the ionosphere response to solar flares, solar 
wind, solar eclipses, magnetic storms, earthquakes, tsunami, and so on. Meanwhile, to have better understanding on 
physics and mechanisms, model simulations for the heliosphere, solar wind, magnetosphere, and ionosphere are also 
introduced and developed. After the 21 September 1999 Mw7.6 Chi–Chi earthquake, seismo-ionospheric precursors 
and seismo-traveling ionospheric disturbances induced by earthquakes become the most interesting and challeng‑
ing research topics of the world. The development of solar terrestrial sciences grows even much faster after National 
Space Origination has been launching a series of FORMOSAT satellites since 1999. ROCSAT-1 (now renamed FORMO‑
SAT-1) measures the ion composition, density, temperature, and drift velocity at the 600-km altitude in the low-lati‑
tude ionosphere; FORMOSAT-2 is to investigate lightning-induced transient luminous events, polar aurora, and upper 
atmospheric airglow, and FORMOSAT-3 probes ionospheric electron density profiles of the globe. In the near future, 
FORMOSAT-5 and FORMOSAT-7/COSMIC-2 will be employed for studying solar terrestrial sciences. These satellite mis‑
sions play an important role on the recent development of solar terrestrial sciences in Taiwan.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
Ionospheric observation and investigation in Taiwan 
were initiated in 1951 when a manual ionosonde was 
first operated by National Taiwan University. The routine 
observation of the ionosphere in Taiwan was started in 
1952 by the Radio Research Laboratory of the Ministry 
of Communications. In 1966, the ionospheric sounding 
station was moved from Taipei to Chung-Li, about 40 km 
southwest of Taipei, and the routine ionogram observa-
tions have continued without interruption. Usually, the 

observations were made every 15  min. The characteris-
tics of the ionosphere have been routinely reduced in 
accordance with the “URSI (International Union of Radio 
Science) handbooks of ionogram interpretation and 
reduction.” Meanwhile, Lungping magnetic observatory 
was established and operated by Ministry of Communi-
cation since 1965. Later, routine sunspot, total electron 
content, and HF Doppler frequency shift observations 
were also carried out at the observatory. However, all 
the observations were gradually terminated due to 
severe damage by the 21 September 1999 M7.6 Chi–Chi 
earthquake.

Meanwhile, after the International Geophysical Year 
(IGY) in 1957–1958, solar terrestrial education in Taiwan 
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was initiated by Institute of Geophysics, National Central 
University (NCU) at Maio-Li in 1959. NCU was moved 
from Maio-Li to Chung-Li in 1970, and the solar terrestrial 
education was then taken over by Department of atmos-
pheric physics. Both micropulsation and HF Doppler fre-
quency shift observations were conducted in late 1980s. 
The very high-frequency (VHF) radar was set up Prof. 
Chao-Han Liu and has been operating since 1985 to probe 
the lower and middle atmosphere mainly, and the lower 
ionosphere. Institute of Space Science (ISS) at NCU was 
established for MS and Ph.D. program for the solar terres-
trial education in 1990. Hereafter, educations for under and 
graduate programs as well as researches with observations, 
theoretical developments, and model simulations related to 
the solar, interplanetary space, magnetosphere, ionosphere, 
and upper neutral atmosphere have been mainly carrying 
out by NCU/ISS. In 1994, a laboratory-type advanced iono-
spheric sounder, Digisonde Portable Sounder (DPS), was set 
up on NCU campus, and later, a Dynasonde was also added.

After ROCSAT-1 (or FORMOSAT-1), FORMOSAT-2, 
and FORMOSAT-3/COSMIC (F3/C) were launched 
in 1999, 2004, and 2006 by National Space Organiza-
tion, model developments and observations for iono-
spheric plasma structures, dynamics, and space weather 
have been significantly advanced. In this paper, recent 
progresses in VHF radar, solar–solar wind-magneto-
sphere, earthquake anomalies and disturbances, iono-
spheric space weather, and FORMOSAT satellites are 
summarized.

Chung‑Li radar VHF radar
The Chung-Li VHF radar situated on the NCU campus 
(Fig. 1) has been operating since 1985 to probe the lower 
and middle atmosphere mainly, and the lower iono-
sphere. In the recent 5-year, for the lower atmosphere, 

multi-receiver coherent radar imaging and multi-fre-
quency range imaging are applied to observe small-
scale structures in the troposphere and the field-aligned 
plasma irregularities in the ionosphere (Chen et  al. 
2014a, b, 2015).

A physical process is proposed to account for the rela-
tion between gravity wave-perturbed neutral wind and 
height variation of the Doppler velocity shear of the 3-m 
Es field-aligned irregularities (Chu et  al. 2011). A tech-
nique of measuring aspect angle of radar returns from 
3-m Es field aligned irregularities is developed. A long-
term statistical analysis shows that the mean aspect angle 
of the 3‐m Es field‐aligned irregularities for the layer‐type 
plasma structures is about 0.05° smaller than that (0.3°) 
for the clump‐type plasma structures (Wang et al. 2011). 
Interferometry measurements provide compelling evi-
dences that the mechanisms responsible for the genera-
tions of the layer-type and clump-type plasma structures 
are, respectively, very likely ion convergence of tidal wind 
shear in a thin region and the wind shear associated with 
propagating gravity wave (Chu et  al. 2013). F3/C meas-
urements and model simulations both show that the 
summer maximum (winter minimum) in the Es layer 
occurrence is very likely attributed to the convergence 
of the Fe+ concentration flux driven by the tidal wind in 
ionosphere (Chu et al. 2014). A new method is proposed 
to correct the phase bias in using range imaging tech-
nique to resolve fine atmospheric structure from pulse 
radar echoes (Chen et  al. 2014b). With the Chung-Li 
VHF radar observation, it is found that the amplitudes of 
the mean wind, diurnal, and semidiurnal tides in height 
range 82–100  km are systematically larger than those 
of the model-predicted winds by up to a factor of 3 (Su 
et  al. 2014). An algorithm for improving F3/C-retrieved 
E region electron density is proposed. After removing 
the IRI model-simulated GPS RO (radio occultation) 
retrieval errors from the original F3/C measurements, 
the average values of the annual and monthly mean per-
centage errors of the F3/C-measured RO retrieval errors 
of the E region electron density can be substantially 
reduced (Wu et al. 2015).

Solar–solar wind‑magnetosphere
While it is generally believed that the presence of mag-
netic field can modify the thermal properties of solar 
structure and that solar eruptions can reform the coro-
nal magnetic field, little is known whether any relation-
ship may exist between the subsurface thermal structure 
and the solar eruption. Lin (2014) investigates whether 
any detectable relationship exists between the productiv-
ity of solar eruptions and the thermal properties of the 
subsurface structures. The results indicated that some 
subsurface thermal disturbances are seen to increase 

Fig. 1  Antenna arrays for the Chung-Li VHF radar on the NCU 
campus
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with eruptivity indices among active regions with high 
eruptivity. On the other hand, Yang et al. (2014) attempt 
to characterize the flare initiation based on the pro-
cessed Helioseismic and Magnetic Imager vector mag-
netograms, Atmospheric Imaging Assembly 1600 Å, and 
RHESSI hard X-ray observations.

The existence of non-thermal radiations from planets 
is common in the solar system, e.g., the decameter radia-
tion from Jupiter and the auroral kilometric radiation 
from the Earth. The problem of non-thermal radiation 
from planets remained unsolved until cyclotron maser 
instability being proposed as the radiation mechanism 
(Wu and Lee 1979; Lee and Wu 1980). It not only pre-
dicts the growth of the X- and O-mode waves but is also 
an efficient mechanism for direct amplification of waves. 
This mechanism have also been applied to the generation 
of Z- and whistler-mode waves, in which these waves can, 
in turn, further accelerate electrons from a few hundreds 
of keV to MeV (Lee et al. 2012a, 2013a).

The presence of neutral particles may modify the wave 
frequency and cause damping of Alfvén waves. The effects 
on Alfvén waves depend on the ratio collision frequency 
to the Alfvén wave frequency. The dispersion relation of 
Alfvén waves for all values of first time that there is a “for-
bidden zone” in the parameter space, where the real fre-
quency of Alfvén waves becomes zero (Weng et al. 2013).

The first statistical study on repetition periods of whis-
tler-mode rising-tone chorus waves using data from the 
THEMIS satellite is preformed (Shue et  al. 2015). It is 
found that the repetition periods observed on the night-
side and dawnside are larger than those observed on the 
dayside and duskside. Based on the THEMIS data, Shue 
and Chao (2013) reported that the total pressure just 
outside the magnetopause is larger than that just inside 
the magnetopause, the magnetopause moves earthward, 
and vice versa, and Shue et al. (2011) study a ratio of the 
compressed magnetic field just inside the magnetopause 
to the purely dipolar magnetic field at the same position. 
They also found that the ratio is linearly proportional 
to the subsolar standoff distance of the magnetopause. 
Continuous efforts have been made on the structure and 
dynamics of earth’s magnetopause by reconstructing the 
two-dimensional plasma and magnetic field configura-
tion from satellite data. In particular, it has identified a 
few reconnection events with significant field aligned 
flow from THEMIS spacecraft which exhibit X lines and 
magnetic island signatures (Jao and Hau 2015). Both fluid 
theory and particle simulations are adopted to infer the 
role of fluid theory in the evolution process of electro-
static solitary waves (Wang and Hau 2015). Meanwhile, 
Kan et  al. (2011) present a new M-I coupling model of 
substorm during southward IMF based on the THEMIS 
observations of two events on 1 March 2008.

Precursors and disturbances of large earthquakes
Many observations possibly related to seismo-lith-
ospheric precursors of the earth’s surface magnetic field 
(Liu et  al. 2006a) and the GPS surface deformation, 
seismo-atmospheric precursors of the infrasound sig-
nal (Xia et al. 2011), and seismo-ionospheric precursors 
(SIPs) in the electron density profile (Liu et  al. 2009), 
the electron temperature (Oyama et  al. 2008), ion den-
sity (Oyama et  al. 2011), and neutral temperature (Sun 
et al. 2011) probed by satellites have been reported. The 
total electron content (TEC) in the global ionosphere 
map (GIM) routinely published allows us to monitor 
temporal SIPs at a specific location and discriminate the 
observed SIPs (Liu et al. 2001, 2009, 2010a) from global 
effects, such as solar flares, magnetic storms, and so on. 
(Liu et  al. 2004a). Statistical analyses for detecting both 
temporal and spatial precursors in the ionospheric TEC 
are developed (Liu et al. 2004b, 2010b). Meanwhile, iono-
spheric model simulations are also introduced to find 
causal mechanisms explaining the observed SIPs (Liu 
et al. 2011a).

The ionospheric density variations can be caused by 
earth surface charges/currents produced from electric 
currents associated with the stressed rock, leading to the 
lithosphere–atmosphere–ionosphere electric coupling. 
A model for the lithosphere–atmosphere–ionosphere 
system is formulated (Kuo et al. 2011, 2014), and a three-
dimensional ionosphere simulation code is then used to 
study the ionospheric dynamics. The results can explain 
the density anomalies at different magnetic latitudes.

Doppler sounders and ionosondes have been used to 
detect seismo-traveling ionospheric disturbances (STIDs) 
triggered by earthquakes and tsunami (Liu et  al. 2006b; 
Liu and Sun 2011). STIDs in the total electron content 
are first reported during the Indian Ocean tsunami trig-
gered by the 26 December 2004 M9.3 Sumatra-Andaman 
earthquake (Liu et al. 2006c). On the other hand, the ori-
gin of the tsunami is also for the first time being observed 
by dense ground-based GPS receivers in Taiwan and 
Japan during the 11 March 2011 M9.0 Tohoku earth-
quake (Liu et al. 2011b).

FORMOSAT satellites
FORMOSAT-1, -2, and -3 have been in orbits, while 
FORMOSAT-5, and -7 will soon be launched in 2016 and 
2017 for studying solar terrestrial sciences, respectively.

FORMOSAT‑1
FORMOSAT-1 (was named ROCSAT-1) is a low-earth-
orbit scientific experimental satellite. Lockheed Mar-
tin’s  Athena-1  successfully launched the satellite from 
Cape Canaveral, Florida, to its final orbit on January 27, 
1999 (Fig. 2). After launched into an altitude of 600 km 
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with 35° inclination, it circulates around the Earth every 
97 min, transmitting collected data to Taiwan’s receiving 
stations approximately six times a day. The ionospheric 
plasma and electrodynamics instrument (IPEI) onboard 
ROCSAT-1 is designed to measure the ion composition, 
density, temperature, and drift velocity at the 600-km 
altitude along the ROCSAT-1 orbit within the latitude 
band of  ±  35° of the low-latitude ionosphere (Fig.  2). 
It is a very successful mission, and more than 100 arti-
cles have been published in scientific journals with data 
from ROCSAT-1/IPEI. The main studies are classified as 
(1) ionospheric irregularities with high-resolution data 
(Chen et al. 2001, 2005; Su et al. 2001) (2) global distri-
butions of ionospheric irregularities (Lee et al. 2005a, b; 
Su et  al. 2006, 2007a, b, 2008, 2009, 2010), (3) low and 
mid-latitude ionospheric response to magnetic storm 
(Yeh et al. 2001, 2002, 2003, 2004, 2005a; Lee et al. 2004), 
and (4) models in the low- and mid-latitude ionosphere 
(Chao et al. 2003, 2004, 2010; Su et al. 2005b). To exam-
ine the low-latitude ionosphere dynamics, theoretical 
simulations of the disturbance dynamo mechanism are 
conducted by the TIEGCM (Huang et  al. 2005; Huang 
and Chen 2008; Huang 2013), and the model simulations 
are cross compared with ROCSAT-1/IPEI and GIM TEC 
observations (Huang et al. 2008, 2010).

FORMOSAT‑2
The FORMOSAT-2 satellite is launched on 16 Janu-
ary 2004 and is still in continuous operation. The  sci-
entific  payload ISUAL (imager of sprites and upper 
atmospheric lightnings) onboard FORMOSAT-2 satel-
lite is shown in Fig. 3). The scientific goals of this mission 
are to investigate lightning-induced transient luminous 
events (TLEs), polar aurora, and upper atmospheric air-
glow. The ISUAL  scientific results include first global 
distributions and occurrence rates of TLEs (Chen et  al. 
2008), optical diagnose of energy in TLEs (Kuo et  al. 
2008), new category of gigantic jet (GJ) with negative and 
positive polarity (Chou et  al. 2010), first finding of new 
sprites induced by the secondary GJs (Lee et al. 2013b), 

an evidence of identifying N2  Lyman–Birge–Hopfield 
emission as dim elves (Chang et al. 2010), and a positive 
correlation of TLEs response to ENSO in the coastal and 
the oceanic regions (Wu et al. 2012).

FORMOSAT‑3/COSMIC
FORMOSAT-3/COSMIC (F3/C) consists of six micro-
satellites being successfully launched into a circular low 
Earth orbit at 0140 UTC on 15 April 2006. Each satellite 
houses a GPS occultation experiment (GOX) payload for 
the first time deriving the radio occultation (RO) verti-
cal profile of electron density in the ionosphere uni-
formly and globally. By accumulating GOX observations, 
unprecedented detail of the three‐dimensional (3D) ion-
ospheric electron density structure can be constructed 
(Fig. 4) (Liu et al. 2010c).

Since 2009, an empirical and global ionospheric 
electron density (Ne) model, the TaiWan Ionospheric 
Model (TWIM), has been proposed (Tsai et  al. 2009), 
which exhibits vertical-fitted α-Chapman-type layers 
with distinct F2, F1, E, and D layers and surface spheri-
cal harmonic approaches for the fitted layer parameters, 
including peak density, peak height, and scale height. To 
improve the TWIM into a real-time model, a time series 
autoregressive model to forecast short-term TWIM coef-
ficients is also developed (Tsai et al. 2014a). The TWIM 
has been applied to determine ionospheric delay correc-
tions for GPS positioning and for modeling performance 
evaluations and comparisons (Macalalad et  al. 2012, 
2014), locate a ground-based high-frequency (HF) radio 
transmitter using a numerical ray-tracing method (Tsai 
et  al. 2014b), and improve the vertical ionospheric Ne 
profile retrieval of GPS radio occultation (RO) observa-
tions (Tsai et al. 2011).

The large amount of F3/C ionospheric observations 
provides an excellent opportunity to study ionospheric 
tidal and planetary wave signatures. The global scale 
dynamics of the ionosphere have been linked to cou-
pling phenomena from the neutral atmosphere below, 
solar and geomagnetic drivers from above, as well as 
in  situ drivers, such as thermospheric winds and com-
position. Analysis of migrating tidal signatures in F3/C 
TECs (Chang et al. 2013a), as well as associated numeri-
cal experiments, yielded insight on the relations between 
ionospheric migrating tidal signatures and the corre-
sponding features of zonal mean ionospheric local time 
variation isolated through such analysis. Such analysis is 
further extended to understanding the inter-annual vari-
ation of ionospheric tidal and stationary planetary waves 
(SPWs) signatures comprising the well-known “wave-4” 
modulation of the equatorial ionization anomalies (EIAs), 
a feature ultimately driven by modulation of the E-region 
dynamo by vertically propagating non-migrating 

Fig. 2  Image of a flying simulation of FORMOSAT-1 and IPEI. IPEI is 
located at the front panel
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atmospheric tides and SPWs (Chang et  al. 2013b). The 
results demonstrated that such atmosphere–ionosphere 
coupling was present during periods of both high and 
low solar activities, forming a persistent feature of iono-
spheric variability. Such tidal/SPW analysis of F3/C iono-
spheric observations was also demonstrated (Chang et al. 
2015a) to be effective in isolating the modes of variability 
comprising the Weddell Sea Anomaly (WSA).

The F3/C data are also useful for studying atmosphere–
ionosphere coupling through the wind dynamo and mix-
ing. Some tidal and planetary wave components are also 
capable of directly propagating into the thermosphere 
(Forbes et al. 2009). Breaking tides, planetary, and grav-
ity waves can also induce changes to thermospheric and 

ionospheric composition through eddy mixing. Using 
TIMED satellite observations, as well as GPS TEC, it 
provided the first observational evidence that the mix-
ing mechanism could produce significant short-term 
decreases in the thermospheric O/N2 density ratio, as 
well as TEC during occurrences of the quasi-two-day 
planetary wave in the mesosphere and lower thermo-
sphere (Chang et al. 2014). This result has highlighted the 
need for such mixing mechanisms to be considered in the 
context of short-term ionospheric variability.

The ionosphere electron density modification with 
wave-4 signature due to upward propagating tides can 
be clearly observed by F3/C (Lin et  al. 2007a, b). The 
coupling goes further when the upper atmosphere 

Fig. 3  Scientific payload ISUAL onboard FORMOSAT-2 satellite. The observed images and global distributions of Elve, Sprite, Halo, and Gigantic jet
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community discovered that the high latitude stratosphere 
sudden warming (SSW) effect could disturb the equa-
torial ionospheric plasma structure. F3/C observation 
shows that the ionosphere modification due to SSW is 
through sun-synchronized atmospheric tides (Lin et  al. 
2012, 2013). Meanwhile, F3/C temperature has been 
employed to investigate Kelvin waves in the stratosphere 
(Pan et  al. 2011) and global temperature in the strato-
sphere (Das and Pan 2014).

Scientists in Taiwan also discover new ionospheric 
plasma structure taking advantage of three-dimensional 
observation. From the first three-dimensional structure 
of ionospheric WSA, it can be realized that WSA is sim-
pler part of a bigger ionospheric anomaly, namely, the 
middle latitude summer nighttime anomaly (MSNA) 
(Lin et  al. 2009, 2010; Chen et  al. 2011, 2013). Mean-
while, the MSNA/WSA eastward movement signature 
have also been comprehensively studied using F3/C 

observations (Lin et al. 2010; Liu et al. 2015; Chang et al. 
2015b) and model simulations (Chen et al. 2011, 2013; 
Sun et al. 2015). Also, a new type of low latitude plasma 
structure located underneath the EIA peaks is discov-
ered, and their corresponding physical mechanism is 
proposed for the first time (Lee et al. 2012b; Chen et al. 
2014c).

FORMOSAT‑5
The pronunciation of “4” in Chinese sounds like “death” 
or “bad luck”, which is somewhat similar to “13” in West. 
Therefore, there is no FORMOSAT-4 mission. FOR-
MOSAT-5 is a remote sensing satellite and scheduled 
to launch in 2016Q2 and anticipated to fly in a 98.28° 
inclination sun-synchronous circular orbit at 720-km 
altitude in the 1030/2230 LT sectors (Fig.  5). Advanced 
ionospheric probe (AIP) is an all-in-one plasma sensor to 
install on the FORMOSAT-5 satellite with sampling rate 

Fig. 4  Three-dimensional electron density structure observed by the F3/C at 0600 UT during April–June 2008 (Liu et al. 2010c)
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up to 8192 S/s to measure ionospheric plasma concentra-
tions (Ni), velocities (Vi), and temperatures (Ti and Te) 
over a wide range of spatial scales in a time-sharing way 
(Fig. 5) (Chao et al. 2015).

AIP is a piggyback science payload developed by NCU 
for FORMOSAT-5 satellite to explore space weather and 
seismic precursors associated with strong earthquakes. 
The AIP is an all-in-one plasma sensor to measure 
ionospheric plasma concentrations, velocities, or tem-
peratures in a time-sharing way. Meanwhile, the AIP is 
capable of measuring ionospheric plasma irregularities 
with sampling rate up to 8192  Hz over a wide range of 
spatial scales. Electroformed gold grids used in the AIP 
can reduce quasi-hysteresis effect on current–voltage 
curves in a plasma injection test and approximate ideal 
electrical potential surfaces for accurate data available in 
the future.

AIP is designed to meet science payload interface 
requirements of FORMOSAT-5 satellite and also to 
maximize geophysical parameters and data rates for sci-
ence research. Under a 5-kg limit in mass, the AIP uses 
an all-in-one sensor configuration to measure ambient 
plasma concentrations, velocities, and temperatures but 
in a time-sharing manner. Most critical components of 
the AIP are redundantly implemented to achieve a 2-year 
mission lifetime. The AIP can continue on duty even if 
some components fail. However, at the beginning, the 

AIP will be routinely operated within ±  75° latitude in 
the nightside sector to meet a 5-W limit in average power 
per orbit due to high power consumption and a heat dis-
sipation issue. Up to 1.5 gigabits per day in data storage, 
the AIP is capable to perform 8192 electric current read-
ings per second with duty cycle under 10 % to resolve fine 
structure of equatorial ionospheric plasma irregularities 
within ± 18° latitude.

FORMOSAT‑7/(COSMIC‑2)
FORMOSAT-6 was designed to have a remote sensing 
mission and, however, terminated after a careful evalua-
tion. FORMOSAT-7/COSMIC-2  (constellation observ-
ing system for meteorology, ionosphere and climate, 
here simplified as FORMOSAT-7) is an international 
collaboration between Taiwan (National Space Organi-
zation; NSPO) and the United States (National Oceanic 
and Atmospheric Administration; NOAA) that will use a 
constellation of twelve remote sensing microsatellites to 
collect atmospheric data for weather prediction and for 
ionosphere, climate, and gravity research. It is a follow-
up mission to the FORMOSAT-3/COSMIC mission. The 
new constellation provides improved performance and a 
five times increase in number of measurements. The pre-
cision will also be improved. FORMOSAT-7 will estab-
lish operational mission of near real-numerical weather 
prediction. It will collect 8000 (threshold) profiles per 
day (the objective number is 10,000). NSPO will design, 
procure, integrate 12 spacecraft, and integrate the GNSS 
payload provided by JPL. The satellites have GPS, GALI-
LEO, and GLONASS tracking capability. NOAA will 
procure the launch vehicles. The U.S. Air Force is part-
nering on COSMIC-2 and will provide two space weather 
payloads that will fly on the first six satellites: RF beacon 
transmitters and velocity, ion density, and irregularities 
(VIDI) instruments. The first launch of six satellites of the 
low inclination constellation is planned for 2016, and the 
second launch into the high inclination orbits will take 
place in 2018. The last launch includes a seventh back-
up satellite. FORMOSAT-7 shall make the ionospheric 
weather monitoring and forecast on three-dimensional 
electron density structure and dynamics being possible 
(Lee et al. 2013c).

Ionospheric weather
The ionospheric climate, which is usually the overall 
feature, averaged over a period of several years or dec-
ades. In contrast, the ionospheric weather is the short-
term variations in minutes to weeks. The ionospheric is 
becoming more relevant to human society with its reli-
ance on modern technology, since the accuracy of posi-
tioning and navigation, and quality of telecommunication 
are influenced by ionospheric weather conditions from 

Fig. 5  Image of a flying simulation of FORMOSAT-5 and AIP
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space (solar flare, eclipse, solar wind, magnetic storm, 
and so on), earth’s atmosphere (sudden stratosphere 
warming), and lithosphere (earthquake and tsunami).

Liu et al. (2004a) developed the theory and the obser-
vation technique for monitoring ionospheric solar flare 
effects by means of the TEC recorded by ground-based 
GPS receivers. The development resulted in the find-
ing that the ionospheric solar flare effect is a function 
the cosine of the great circle angle between the center 
and flare locations on the solar disk (Liu et  al. 2006d). 
Liu et  al. (2011c) found the solid evidence that Moon’s 
shadow of the solar eclipse can trigger the atmospheric 
gravity waves, which in turn form the bow wave, the 
stern wave, and the stern wake in the atmosphere and 
ionosphere, since the bow wave was predicted in 1970. 
Sun et  al. (2012, 2013) showed the ionospheric plasma 
density irregularities response to magnetic storms. The 
results can help us to hypothesize the possible behavior 
of irregularities after storm onsets. Liu et al. (2016) sur-
veyed the worst-case GPS scintillations on the ground 
estimated from radio occultation observations of F3/C 
during 2007–2014 and are ready to develop an empiri-
cal model for the ionospheric S4 scintillation. Currently, 
the nowcast and forecast data assimilation models with 
the neutral atmosphere have been developed (Lee et  al. 
2012c; Hsu et al. 2014; Sun et al. 2015).

Education of solar terrestrial sciences
Education is a key driver for the scientific development. 
The space division of the Department of Atmospheric 
Sciences and the Institute of Space Science at National 
Central University has been carrying out the undergradu-
ate and MS/Ph.D. graduate programs for solar terrestrial 
sciences since 1990. Currently, 15 full-time professors 
and six adjunct professors at the Institute of Space Sci-
ence incubate 37 undergraduate students per year for 
the Department of Atmospheric Sciences and about 5 
Ph.D./25 MS graduate students per year for its own insti-
tute. Main courses consist of seminar, special topics, 
applied mathematics, classical electromagnetics, space 
physics, ionospheric physics, magnetospheric physics, 
magnetohydrodynamics, space plasma physics, plasma 
measurement (satellite payload engineering), random pro-
cess and spectral analysis, numerical simulation, principle 
of radar remote sensing, and digital image processing. 
In total, 62 Ph.D. and 425 MS students have graduated 
from the Institute of Space Science, and about one-third 
of them are in universities and research institutes. In gen-
eral, the Institute of Space Science has five research direc-
tions of space physics, ionospheric physics, radar science, 
space payload, and remote sensing to provide/support 
Ph.D./MS research works/topics. This results in 123 jour-
nal papers being published in recent 3 years.

Summary
This paper summarizes the development of solar ter-
restrial sciences in Taiwan since 1952. It can be seen 
that since 1985, the modern technology and major 
facilities, such as ground-based GPS receivers, Chung-
LI VHF, and especially FORMOSAT satellites together 
with theoretical and model developments significantly 
boost the solar terrestrial science research in Tai-
wan. Meanwhile, since 1990 (1972), the education of 
NCU/ISS (NCU/ATM), which has incubated about 
500 Masters/Doctors (1000+  Bachelors), should play 
an important role in development of solar terrestrial 
sciences for research areas from the Sun, solar wind, 
magnetosphere, ionosphere, and atmosphere, with 
theoretical developments, numerical simulations, and 
observations.
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