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Water shortage risk assessment using 
spatiotemporal flow simulation
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Abstract 

Paddy irrigation practices in Taiwan utilize complicated water conveyance networks which draw streamflows from 
different tributaries. Characterizing and simulating streamflow series is thus an essential task for irrigation risk assess‑
ment and planning mitigation measures. It generally involves modeling the temporal variation and spatial correla‑
tion of streamflow data at different sites. Like many other environmental variables, streamflows are asymmetric and 
non-Gaussian. Such properties exacerbate the difficulties in spatiotemporal modeling of streamflow data. A stochastic 
spatiotemporal simulation approach capable of generating non-Gaussian ten-day period streamflow data series at 
different sites is presented in this paper. Historical flow data from different flow stations in southern Taiwan were used 
to exemplify the application of the proposed model. Simulated realizations of the spatiotemporal anisotropic multi‑
variate Pearson type III distribution were validated by comparing parameters and spatiotemporal correlation charac‑
teristics of the simulated data and the observed streamflow data. Risks of irrigation water shortage were estimated 
and the effect of mitigation measures was assessed using the simulated data.
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Background
Rice is the most important staple food in Taiwan and 
many other countries in East and Southeast Asia. A sig-
nificant proportion of the available water is utilized for 
paddy irrigation. In Taiwan, several irrigation associa-
tions are responsible for the management and operation 
of paddy irrigation. Generally, there are two crops of 
paddy rice in one  year. The summer crop begins in late 
July and is harvested in late November, whereas the win-
ter crop begins in mid-February and is harvested in late 
June. While typhoons can draw rainfalls for irrigation 
of the summer crop, the early stage of the winter crop 
falls in the dry season (from November to April of the 
next year) and is often faced with irrigation water short-
age. The situation can get even worse when prolonged 
droughts occur. For example, in 2004 a severe drought 
which prolonged from January to June led to a fallow 
decision for most of the Jianan Irrigation District (JID) 
in southern Taiwan. Decision on whether mitigation 

practices should be taken or what measures need to be 
implemented must be made in the very early stage of a 
severe drought or even prior to paddy transplanting. 
In coping with droughts, different practices have been 
adopted by irrigation associations including irrigation 
with reduced rate, scheduling rotational irrigation, and 
leaving paddy field fallow. However, due to the random 
nature of rainfall occurrences and their amounts, which 
leads to the spatiotemporal variability of stream flows, 
success of such decisions cannot be guaranteed and gov-
ernment agencies are often criticized for failing to take 
timely and appropriate mitigation practices or, some-
times, for making false-alarm decisions. In particular, the 
same mitigation practice may be effective in one year, yet 
may fail in another year due to different meteorological 
and hydrological conditions.

There exist a few time series models for flow simu-
lations and water resources management (Fernandez 
and Salas 1990; Machiwal and Jha 2006). Most of these 
models or simulations were applied to cases which did 
not involve multi-site correlation and/or spatiotempo-
ral correlation. For example, Fernandez and Salas (1990) 
developed a gamma time series simulation model and 
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applied the proposed model to annual streamflow series 
of several rivers. To the best our knowledge, no models 
which take into account both the spatial and temporal 
variabilities of streamflows are available for planning 
drought mitigation measures in Taiwan. Thus, there is 
an urgent need for developing models or tools that can 
be used for probabilistically assessing and comparing the 
effectiveness of different potential mitigation measures in 
advance.

Water management for paddy irrigation usually 
involves utilization of water available from different 
sources including river flow at different locations and 
water storage in ponds and reservoirs. Within an irriga-
tion district, available irrigation water of different tribu-
taries can also be mutually conveyed to cope with severe 
droughts. Channels, ponds, reservoirs, and other flow 
intake and diversion structures together form a complex 
irrigation network. Success of irrigation management 
during droughts requires characterizing the spatiotem-
poral variation of streamflows at different stations and 
tools which can be used for assessing the effects of miti-
gation measures. Thus, the objectives of this study are 
twofold: (1) to develop a stochastic model which is capa-
ble of characterizing the spatiotemporal variability of 
multi-site streamflows within an irrigation district and 
(2) to demonstrate that a probabilistic risk assessment of 
potential mitigation practices can be conducted using the 
spatiotemporal streamflow simulation model.

This paper is organized as follows. The Background 
section provides a general description of the study area, 
the problems and difficulties in drought mitigation deci-
sion making, and objectives of this study. The Methods 
section gives a detailed account of the theories, including 
standardization of the streamflows, modeling standard-
ized streamflows by an L-moments-based goodness-of-fit 
test, characterizing the spatiotemporal variation of the 
standardized streamflows by an anisotropic semi-vari-
ogram modeling, and sequential non-Gaussian random 
field simulation. The Results and Discussion section gives 
a rigorous assessment of the results of spatiotemporal 
streamflow simulations and also provides an exemplar 
application of irrigation water shortage risk assessment. 
The Conclusions section draws concluding remarks.

Methods
The Jianan Irrigation District which encompasses an area 
of 758 km2 in southern Taiwan (see Fig. 1) was selected as 
the study area. The Jianan Irrigation Association manages 
a complex irrigation network, which comprises reser-
voirs, irrigation canals, channels, ditches, flow diversion 
works, check dams, intake structures, etc., to regulate 
the amounts of irrigation water to be conveyed to indi-
vidual paddy plots throughout the crop growth period. In 

Taiwan, irrigation scheduling and the practices of irriga-
tion water management are operated on a nominal ten-
day period (TDP) basis (Cheng et al. 2000a, b). Decisions 
on the amounts of water to be supplied to individual 
paddy plots are evaluated at the end of every TDP. Also, 
reservoir water managements are based on TDP-based 
rule curves. Each month is divided into three TDPs, with 
a total of 36 TDPs yearly. Twenty-six years (1975–2000) 
of TDP flow data available at 12 flow stations were col-
lected. The required volumes of irrigation water are 
withdrawn from rivers and reservoirs through intake 
structures. River flow stations upstream of major water 
intake structures are listed in Table 1. TDP streamflows 
exhibit significant seasonal variation with low-flow sea-
son (from November to April of the next year) accounts 
for only approximately 13 % of the annual total flow vol-
ume (Hsieh et al. 2014). For the sake of convenience, TDP 
streamflows will be referred to as streamflows or flows 
hereinafter.

Characterizing spatiotemporal characteristics 
of streamflows
In addition to the seasonal variation, streamflows at dif-
ferent locations also exhibit significant spatial correlation, 
even though most flow stations belong to different rivers 
or tributaries. Spatial correlation of streamflows arose 
from the fact that the amounts of rainfalls falling within 
the tributaries of individual flow stations are correlated. 
Therefore, a complete characterization of streamflows at 
different locations must take into account marginal dis-
tributions of streamflows at individual stations and their 
temporal and spatial correlations.

In addition to the seasonal variation, streamflows are 
higher at stations with larger drainage areas (see Fig. 2). 
In order to remove such seasonal and geophysical effects, 
observed flows at individual sites were standardized with 
respect to site-specific long-term averages and standard 
deviations, i.e.,

where X(i, j, k) and Xs(i, j, k) represent the observed and 
standardized flows of the j-th TDP period (j =  1, 2, …, 
36) in the k-th year at the i-th flow station, and m(i, j) and 
s(i, j) are the long-term average and standard deviation of 
the j-th TDP period flows at the i-th flow station, respec-
tively. Thus, standardized flows at different sites and of 
different TDP periods are considered as random vari-
ables with zero expectation and unit standard deviation. 
Standardization of streamflows removes the heterogene-
ity of the expected value and variance of streamflows in 
the spatial (different sites) and temporal (different TDPs) 
domains.

(1)Xs(i, j, k) =
X(i, j, k)−m(i, j)

s(i, j)
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L-moments-based goodness-of-fit (GOF) tests were 
conducted for selection of appropriate distributions 
for standardized flows of individual TDPs at different 

stations. The L-moments-based GOF tests were based on 
the 95 % acceptance regions of the sample linear moment 
ratios defined as follows.

Fig. 1  The Jianan Irrigation District (JID) and locations of flow stations

Table 1  River flow stations and their properties

a   Upstream of water intake structures
b   Reservoir inflow station

Station ID River Irrigation Management  
District (IMD)

Drainage  
area (km2)

Long-term average 
annual flow (106 m3)

1a Bei-Gun IMD-1 129.38 136.32

2 Bei-Gun IMD-1 597.46 771.05

3a Pu-Tz IMD-1 149.68 246.92

4a Bah-Jon IMD-1 83.15 181.93

5b Bah-Jon IMD-1 101.09 185.16

6 Bah-Jon IMD-1 441.02 654.61

7a Tzi-Shuei IMD-2 226.66 300.01

8a, b Tzeng-Wen IMD-3 481.00 1070.19

9a Tzeng-Wen IMD-3 160.53 315.66

10a Tzeng-Wen IMD-3 121.31 184.36

11a Yen-Shuei IMD-4 146.46 176.00

12 Gao-Ping 812.03 1990.93
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For a random variable X with quantile function x(u), 
the L-moments can be expressed in terms of the prob-
ability weighted moments defined by Greenwood et  al. 
(1979), and the first four L-moments are given by (Hosk-
ing and Wallis 1997)

where βr,r = 0, 1, 2, ··· are probability weighted moments 
defined by

In terms of linear combinations of order statistics, the 
L-moments can also be expressed by

Given a random sample {x1, x2, ···, xn}, an unbiased esti-
mator of βr is given by

(2)�1 = β0

(3)�2 = 2β1 − β0

(4)�3 = 6β2 − 6β1 + β0

(5)�4 = 20β3 − 30β2 + 12β1 − β0,

(6)βr =
∫ 1

0

x(u)urdu

(7)�1 = E(X1:1)

(8)�2 =
1

2
E(X2:2 − X1:2)

(9)�3 =
1

3
E(X3:3 − 2X2:3 + X1:3)

(10)�4 = 1

4
E(X4:4 − 3X3:4 + 3X2:4 − X1:4)

(11)τr = �r

/

�2(r = 3, 4)

(12)
br =

1

n

n
∑

j=r+1

(

j − 1
)(

j − 2
)

· · ·
(

j − r
)

(n− 1)(n− 2) · · · (n− r)
xj:n

where xj:n is the j-th order statistic from a random sam-
ple of size n. The sample L-moments (ℓr) and sample 
L-moment ratios (tr) can then be calculated by

In the above equation, t3 and t4 are known as the sam-
ple L-skewness and L-kurtosis, respectively. The sample-
size-dependent 95  % acceptance regions of the sample 
linear moment ratios (t3, t4) for different probability dis-
tributions including the Gaussian, Gumbel, and Pearson 
type III (PT3) distributions have been established (Liou 
et  al. 2008; Wu et  al. 2012). The null hypothesis that 
{x1,  x2,  ···,  xn} originated from the specified distribution 
(for example, the Pearson type III) is rejected if and only 
if (t3, t4) falls outside of their acceptance region of the 
specified distribution.

For each flow station, sample linear moment ratios (t3, 
t4) of the standardized flows of individual TDPs were cal-
culated. Using Station 3 and Station 8 as examples (see 
Fig. 3), for most TDPs, (t3, t4) of the standardized flows 
fall within the 95  % acceptance region (with respect to 
sample size n = 26) of L-moment-ratio diagram (LMRD) 
of the Pearson type III distribution. It is apparent that the 
Gumbel and Gaussian distributions are not good choices 
for standardized flows. A few TDP-specific standardized 
flows which do not fall within the Pearson type III accept-
ance region are associated with very high (exceeding 3.0) 
coefficients of skewness. Through stochastic simulation, 
Wu et al. (2012) demonstrated that random samples from 
Pearson type III distributions with high coefficients of 
skewness tend to fall above the 95 % acceptance regions 
in the L-moment-ratio diagram. Hence, in this study the 
standardized flows at different sites are modeled by a 
common Pearson type III distribution having a marginal 
density with zero expectation and unit variance.

The Pearson type III distribution has the following 
probability density:

where α, β, and ɛ are, respectively, the scale, shape, and 
location parameters. Parameters of the Pearson type III 
distribution of the standardized flows were estimated by 
the method of L-moments.

(13)ℓ1 = b0

(14)ℓ2 = 2b1 − b0

(15)ℓ3 = 6b2 − 6b1 + b0

(16)ℓ4 = 20b3 − 30b2 + 12b1 − b0

(17)tr = ℓr
/

ℓ2(r = 3, 4)

(18)

fX (x;α,β , ε) =
1

αΓ (β)

(

x − ε

α

)β−1

e−(x−ε)/α
, ε ≤ x < +∞

Fig. 2  Empirical relationship between the average annual flows (FV) 
and drainage areas (DA) of the 12 flow stations used in this study
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Hosking and Wallis (1995, 1997) showed that, for the 
Pearson type III distribution, the L-moments and distri-
bution parameters (α, β, and ɛ) are related by the follow-
ing equations:

where Ix(p, q) denotes the incomplete beta function ratio. 
By substituting the sample L-moments (ℓ1, ℓ2, t3) for (λ1, 
λ2, τ3) in the above equations, the methods of L-moments 
estimates of the three parameters were calculated as 
α̂ = 1.11, β̂ = 0.745 and ε̂ = −0.826. The spatial and 
temporal variations of the standardized flows were then 
investigated through the semi-variogram analysis.

A semi-variogram is a function that describes the spa-
tial correlation structure of a random field. Let Z(x) be 
a random variable at location x and {Z(x),  x ∊  Ω} be a 
homogeneous random field over a spatial domain Ω. In 
geostatistics, the spatial variation of a random field is 
often expressed in terms of the semi-variogram γ(x, x′) 
defined as

where E(Z(x)) represents the expected value of the ran-
dom variable Z(x). For a homogeneous random field, the 
semi-variogram is independent of the locations of x and 
x′ and can be expressed by γ(h) with h being the distance 
between x and x′.

(19)�1 = ε + αβ

(20)�2 =
π−1/2α · Ŵ(β + 1

2
)

Ŵ(β)

(21)τ3 = 6I1/3(β , 2β)− 3

(22)γ (x, x′) = 1

2
E
[

(Z(x)− Z(x′))2
]

, x, x′ ∈ Ω

A semi-variogram is a monotonic increasing function 
of the distance between x and x′, and can be character-
ized by its sill and range. The sill represents the asymp-
totic value of the semi-variogram and is numerically 
equal to σZ

2, the variance of Z(x). The range is the mini-
mum distance of h beyond which two random variables 
Z(x) and Z(x′) become independent. A commonly used 
exponential semi-variogram model has the following 
form (Journel and Huijbregts 1978; Cheng et al. 2003):

where ω represents the sill and 3a is the practical range. 
For a homogeneous random field, the covariance func-
tion and semi-variogram are related by the following 
equation:

where C(h = |x−x′|) = Cov(Z(x), Z(x′)) is the covariance 
function. In our study, the spatiotemporal random field 
{Z(x), x ∊ Ω} represents the standardized flows at differ-
ent locations or TDPs. Readers are referred to Journel 
and Huijbregts (1978) and Cheng et al. (2003) for details 
of the properties and modeling of the semi-variogram.

The spatiotemporal data structure of the standard-
ized flow data, which are available at twelve stations for 
a period of 26  years (1975–2000), is demonstrated in 
Fig.  4. In our study, the spatiotemporal random field of 
the standardized flows is defined at 12 flow stations in 
the spatial domain and 36 TDPs in the temporal domain. 
Thus, a set of TDP-specific standardized flows (from the 
first TDP to the 36th TDP) observed at 12 flow stations 
represent a single realization of the spatiotemporal ran-
dom field. Our stochastic spatiotemporal simulation of 

(23)γ (h) = ω

[

1− e−(h/a)
]

(24)γ (h) = C(0)− C(h),

Fig. 3  L-moments-based goodness-of-fit tests for TDP-specific standardized flows of Station 3 and Station 8. Ellipses centered at the points of the 
theoretical (L-skewness, L-kurtosis) pairs of the normal and Gumbel distributions represent their 95 % acceptance regions with respect to the sample 
size (n = 26)
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multi-site streamflows which will be described in the 
next section yielded a large set of such realizations.

The spatiotemporal variation of standardized flows 
is characterized by two semi-variograms: (1) the spatial 
semi-variogram γS(h) in the spatial domain and (2) the 
temporal semi-variogram γT(t) in the temporal domain 
(in units of TDPs). For a specific TDP of any given year, 
there are 66 (C(12, 2)) spatial pairs of (Z(x), Z(x′)) within 
the spatial domain. Similarly, at each station there are 
630 (C(36, 2)) temporal pairs of (Z(x), Z(x′)) within the 
36-TDP temporal domain. It should be noted that, when 
considering a spatiotemporal random field, the variable x 
can represent the locations of flow stations or the ten-day 
periods depending on the types (spatial or temporal) of 
semi-variogram modeling.

The spatial semi-variogram γS(h) was constructed 
using a total of 61,776 (C(12, 2) ×  36 ×  26) same-TDP 
spatial pairs of standardized flows. Similarly, the tempo-
ral semi-variogram γT(t) was constructed using a total of 
196,560 (C(36, 2) × 12 × 26) same-station temporal pairs 
of standardized flows. The following exponential semi-
variogram models were fitted to the empirical spatial and 
temporal semi-variograms:

Both the spatial and temporal semi-variograms were 
fitted with an asymptotic value (the sill) of one since the 
standardized flows have a unit standard deviation. How-
ever, the ranges are numerically quite different. The spa-
tial semi-variogram has a range of approximately 165 km 

(25)γS(h) = 1− e−h/54.6

(26)γT (t) = 1− e−t/2.38

which implies that standardized flows of the same TDP 
at two flow stations are independent only if the two flow 
stations are more than 165  km apart from each other. 
Similarly, same-station standardized flows of different 
TDPs are independent only if the time lag is longer than 
seven TDPs.

Spatiotemporal model building and stochastic simulation 
of TDP flows
We have demonstrated that the standardized flows at 
different flow stations can be represented by a Pearson 
type III random field with spatial and temporal semi-
variograms. However, the standardized flows of differ-
ent TDPs at different stations (for example, standardized 
flows of the first TDP at Station 1 and standardized flows 
of the second TDP at Station 3 may also be correlated. 
Such correlation involves variations in both the spa-
tial and temporal domains and cannot be characterized 
by either the spatial or temporal semi-variogram alone. 
Therefore, it is necessary to develop a spatiotemporal 
semi-variogram in order to fully characterize the spa-
tiotemporal variation of the standardized flow random 
field. This is achieved by considering an anisotropic semi-
variogram model.

In geostatistics, a random field is said to be aniso-
tropic if the spatial variation structures or the semi-var-
iograms vary in different directions. Cheng et al. (2000a, 
b) developed an anisotropic spatial modeling approach 
for remote sensing image rectification. Since the ranges 
of the spatial and temporal semi-variograms of standard-
ized flows are numerically different, the spatiotempo-
ral random field of standardized flows is anisotropic. By 

Fig. 4  Illustration of the spatiotemporal data structure of TDP flows
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considering the anisotropic variation in the spatial and 
temporal domains, a unique spatiotemporal semi-vario-
gram can be expressed by

where k =  0.0436, the anisotropic ratio, is the ratio of 
ranges of the temporal and spatial semi-variograms. By 
rescaling variations in the spatial domain using the ani-
sotropic ratio, the multi-site standardized flows can be 
treated as an isotropic Pearson type III random field with 
a unique spatiotemporal semi-variogram γ(h, t). It is also 
noted that the spatiotemporal covariance function C(h, t) 
can also be expressed as

Although random field simulation has been widely 
applied to many studies (Franco et al. 2006; Guillot 1999; 
Herrick et  al. 2002), many of such applications used 
Gaussian random field generators to generate large sets 
of realizations which can be characterized by the desired 
Gaussian distribution and spatial variation structure 
(or semi-variogram). However, many hydrological and 
environmental variables are asymmetric and cannot be 
modeled as Gaussian random fields. Liou et  al. (2011) 
proposed a covariance matrix transformation method 
for an isotropic non-Gaussian random field simulation 
in a 2D spatial domain. This study deals with variations 
of streamflows in both the temporal and spatial domains. 
Thus, an anisotropic spatiotemporal semi-variogram 
model was introduced into the method of Liou et  al. 
(2011) to achieve the anisotropic stochastic simulation 
of multi-site streamflows. Figure 5 illustrates the concep-
tual process for stochastic simulation of a Pearson type 
III random field. The whole process is composed of three 
sequential components:

1.	 converting the covariance function (CZ(h)) of a Pear-
son type III random field Z(x) to the covariance func-
tion (CW(h)) of a corresponding standard Gaussian 
random field W(x),

2.	 generating realizations of the standard Gaussian ran-
dom field with covariance function CW(h) using a 
sequential Gaussian simulation (SGS), and

3.	 transforming realizations of W(x) to corresponding 
realizations of the Pearson type III random field Z(x).

In a sequential random field simulation process, the 
covariance function appears as a covariance matrix Σ 
which involves a target point for random number gen-
eration and its neighboring points having simulated 
data. Thus, conversion between the covariance functions 

(27)γ (h, t) = 1− e−
√

k2h2+t2

2.38

(28)C(h, t) = e−
√

k2h2+t2

2.38

CZ(h) and CW(h) is equivalent to conversion between the 
covariance matrices ΣZ and ΣW (Liou et  al. 2011). Since 
the multi-site standardized flows are modeled as a Pear-
son type III random field, conversion between covariance 
matrices of the Pearson type III random field and the 
standard Gaussian random field (i.e., ΣZ and ΣW, respec-
tively) is needed for subsequent sequential Gaussian sim-
ulation. It is emphasized that an element in ΣZ represents 
the covariance of two random variables of standardized 
flows in the spatiotemporal domain. For example, let Z1 
and Z2 be, respectively, the standardized flows of the i-th 
TDP at station s1 and the standardized flows of the j-th 
TDP at station s2. Covariance between Z1 and Z2 is then 
calculated as

(29)
Cov(Z1,Z2) = CZ(h = |s1 − s2|, t =

∣

∣i − j
∣

∣) = e−
√

k2h2+t2

2.38

Given a Pearson type III random field Z(x) 
with known density function parameters 
and covariance function CZ(h) or semi-
variogram Zγ (h).

Converting CZ(h) to CW(h) where W(x) is a 
standard Gaussian random field with a 
covariance function CW(h). 

Generating a realization of W, i.e. ),,({ jiw
},,1;,,1 mjni ==  where (i,j) 

represents a spatial location and n and m
defines the extent of the spatial domain. 

Individually and independently converting 
),( jiw to ),( jiz . The resultant ),,({ jiz

},,1;,,1 mjni ==  is a realization 
of the Pearson type III random field Z(x). 

Fig. 5  Conceptual flowchart for stochastic simulation of a Pearson 
type III random field
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Using Eq.  (29), the covariance matrix ΣZ can be con-
structed. It is important to note that each element in ΣZ 
corresponds to an element in ΣW which represents the 
covariance (or correlation) of a bivariate (W1 and W2) 
standard Gaussian distribution. Conversion between the 
two bivariate covariance matrices (ΣZ and ΣW) can be 
achieved using the following equation (Cheng et al. 2011):

where ρZ1Z2
 and ρW1W2

 are, respectively, the correlation 
coefficients of the bivariate Pearson type III distribution 
and the bivariate standard Gaussian distribution and γ 
represents the coefficient of skewness of the Pearson type 
III distribution. The constants A, B, and C are defined by 

Once the covariance matrix of the standard Gaussian 
random field is obtained, sequential Gaussian simula-
tion is conducted to generate realizations of the standard 
Gaussian random field (Liou et  al. 2011). Our sequen-
tial Gaussian simulation is depicted in Fig.  6. The spa-
tial domain consists of 12 flow stations and the temporal 
domain comprises 36 TDPs. Each simulation run yields a 
set of 432 (12 × 36) standard Gaussian variates. The sim-
ulation is conducted following a column-preference man-
ner, and only points in the spatiotemporal neighborhood 
of the target point defined by the ranges in the spatial 
and temporal domains need to be considered for random 
number generation.

(30)

ρZ1Z2
≈

(

A
2 − 6AC + 9C2

)

ρW1W2
+ 2B2ρ2

W1W2
+ 6C2ρ3

W1W2

(31)A = 1+
(γ

6

)4

,B = γ

6
−

(γ

6

)3

,C = 1

3

(γ

6

)2

Realizations of the standard Gaussian random field 
were then transformed to realizations of the multi-site 
standardized TDP flows through the following equation 
(Cheng et al. 2011):

In the above equation, which is the same as the fre-
quency factor equation of the Pearson type III distribu-
tion, w represents a simulated standard Gaussian variate 
in the 36-TDP and 12-site spatiotemporal random field 
and z is the corresponding standardized flow. Finally, the 
multi-site TDP streamflows were obtained from z using 
Eq. (1).

Results and discussion
In this study, the proposed spatiotemporal simulation 
model was implemented for TDP streamflow genera-
tion at eight flow stations (Stations 1, 3, 4, 7, 8, 9, 10, and 
11) with water intake structures. These stations have 
completely separated tributaries and no station is in the 
upstream of the other. A single simulation run yields 
streamflows of 36 TDPs (in 1 year) at each individual sta-
tion. Since historical flow data are available for a period 
of 26 years, a total of 26 independent simulation runs are 
considered as a block-simulation run. A set of parameters 
including the mean, standard deviation, and coefficient of 
skewness of the site- and TDP-specific streamflows and 
their spatial and temporal correlation structure (P) can 
then be estimated from the results of a block-simulation 
run (see Fig. 7). These parameter estimates can then be 
used for performance assessment of the proposed spati-
otemporal simulation approach. The spatial and temporal 
correlation structure is represented by a spatiotemporal 
correlation matrix P of dimension 288 × 288. The corre-
lation matrix P is defined as

where Pij itself is a sub-correlation matrix of dimension 
8 × 8 which represents the correlation between the i-th 
TDP flows and the j-th TDP flows at any two sites, i.e.,

(32)
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Fig. 6  Illustration of a sequential column-preference generation 
algorithm for stochastic simulation in a spatiotemporal domain. 
Only points in the spatiotemporal neighborhood of the target point 
defined by the ranges in the spatial and temporal domains need to 
be considered for random number generation at the target point 
A. Note that the spatiotemporal neighborhood changes with the 
target point. Parameters (Θ) include mean, standard deviation, and 
coefficient of skewness of site- and TDP-specific TDP flows and the 
spatial and temporal correlation structure (a correlation matrix P of 
dimension 288 × 288) of TDP flows
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In the above equation, ρmn(i, j) represents the correla-
tion coefficient between streamflows of the i-th TDP at 
the m-th station and streamflows of the j-th TDP at the 
n-th station.

In order to assess the uncertainties in parameter esti-
mation, a total of 1000 block-simulation runs were 
conducted in our study. Spatiotemporal variation and 
statistical properties of estimates of the parameters 
(including the mean, standard deviation, and coefficient 
of skewness) of standardized flows are shown in Fig. 8. In 
each panel of Fig.  8, the subpanel at the top represents 
parameter estimates based on one arbitrarily chosen 
block-simulation run, and subpanels in the middle and 
at the bottom represent the mean and standard deviation 
of the parameter estimates based on 1000 block-simula-
tion runs, respectively. Parameter estimates based on a 

particular block-simulation run are considered as sam-
ple estimates and can exhibit higher degree of spatial and 
temporal variations. In contrast, the means of parameter 
estimates based on 1000 block-simulation runs are close 
to their theoretical (or model) values (0, 1, and 2.3167 
for the mean, standard deviation, and coefficient of 
skewness, respectively) with minor variation in the spa-
tial and temporal domains. Figure  8 also demonstrates 
that the uncertainties of parameter estimates, which are 
measured by their standard deviations, are nearly uni-
form across the temporal and spatial domains. The above 
assessments indicate that realizations generated by the 
proposed spatiotemporal simulation approach can pre-
serve the statistical properties of the marginal density.

As for the assessment of the spatiotemporal corre-
lation matrix, Fig.  9 shows the P matrix derived from 

Fig. 7  Illustration of a single simulation run and a block-simulation run. A set of parameters can be estimated from the results of each block-simula‑
tion run. Estimates of parameters of the 1000 block-simulation runs can be used for assessment of uncertainties in parameter estimation



Page 10 of 14Hsieh et al. Geosci. Lett.  (2016) 3:2 

26 years of historical multi-site TDP flows [panel (a)] and 
empirical spatiotemporal correlation matrices based on 
six different block-simulation runs [panels (d)–(i)]. The 
mean and standard deviation of the empirical P matri-
ces of the 1000 block-simulation runs are also shown in 
panels (b) and (c) of Fig. 9, respectively. It demonstrates 
that the proposed spatiotemporal stochastic simulation 
model is capable of generating multi-site TDP flows with 
spatiotemporal correlation pattern similar to that of the 
observed multi-site TDP flows.

From the results of 1000 block-simulation runs, the 
95  % acceptance interval of any element ρmn(i, j) in the 
spatiotemporal correlation matrix (P) can be estimated 
using the 2.5 and 97.5  % quantiles of ρmn(i, j) estimates. 
Three profiles (namely profiles 40, 144, and 200) of 
the spatiotemporal correlation matrix [see panel (a) of 
Figs. 9, 10] were selected to quantitatively assess the spa-
tiotemporal correlation structure of the proposed model. 
Figure  10 depicts that the empirical spatiotemporal cor-
relation coefficients derived from the historical TDP flows 

mostly fall within the 95 % acceptance intervals, with only 
a few exceptions in April and late September. Such results 
indicate that the proposed model can capture the spati-
otemporal variation characteristics of the multi-site TDP 
flows in our study area. Results of TDP flow simulation at 
eight stations with water intake structures can be used for 
assessing the effect of certain water management meas-
ure on reducing the risk of irrigation water shortage. An 
exemplary application is demonstrated below.

The JID is divided into four irrigation management 
districts (IMDs). IMD-1 consists of streamflows from 
Bei-Gun River, Pu-Tz River, and Bah-Jon River. IMD-2 
withdraws water from the Tzi-Shuei River. IMD-3 
receives irrigation water from the Tseng-Wen Reservoir. 
IMD-4 receives water from the Yen-Shuei River. Cur-
rently, water conveyance between the IMD-1 and IMD-2 
is not possible since there are no irrigation channels con-
necting the two districts. The IMD-1 has significantly 
higher flows than IMD-2 and thus it is desired to convey 
additional flows from IMD-1 to IMD-2 in case of drought 

Fig. 8  Spatial and temporal variations of estimates of parameters (mean, standard deviation, and coefficient of skewness) of standardized ten-day 
period flows (STDPF)



Page 11 of 14Hsieh et al. Geosci. Lett.  (2016) 3:2 

occurrences. In this exemplary application, we inves-
tigate changes in the risk of irrigation water shortage, if 
the mitigation measure of establishing water conveyance 
between the two districts is implemented.

One thousand runs of spatiotemporal streamflow simu-
lation were conducted for this example application study. 
Each simulation run yields a spatiotemporal sample con-
sisting of 36 TDP streamflows at each flow station. Using 
the results of each simulation run, an irrigation manage-
ment model calculated the amounts of irrigation water 
that can be provided to individual IMDs under two dif-
ferent situations—(1) existing situation (without water 
conveyance between IMD-1 and IMD-2) and (2) with 
the mitigation measurement implemented. A detailed 

description of the irrigation management is out of the 
scope of this study and readers are referred to Wen et al. 
(2007) for details of the irrigation management. Irrigation 
water demands vary from one TDP to another within crop 
growth periods and the ratio of irrigation water shortage 
(hereinafter referred to as the shortage ratio) is defined as:

where Xd(t) and Xs(t), respectively, represent the amounts 
of irrigation demand and irrigation water supply of the t-
th TDP. Not only does the shortage ratio vary with TDPs 

(35)

r(t) =
{

[Xd(t)− Xs(t)]
/

Xd(t), if Xd(t) > Xs(t)
0, if Xd(t) ≤ Xs(t)

Fig. 9  Spatiotemporal correlation structure of flows. a Spatiotemporal correlation matrix P derived from 26 years of historical multi-site flows. b, c 
Mean and standard deviation of P matrices of 1000 block-simulation runs, respectively. d–i Spatiotemporal correlation matrices of different block-
simulation runs. Details of the three correlation profiles in panel (a) are shown in Fig. 10
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in 1 year but also from 1 year (simulation run) to another. 
Thus, from the results of 1000 spatiotemporal simulation 
runs, average TDP-specific shortage ratios with and with-
out implementation of the water conveyance measure can 

be estimated. Figure  11 illustrates that, with implemen-
tation of the mitigation measure, the shortage ratios of 
IMD-2 can be significantly reduced during the 4–12 TDP 
period (first crop) and the 26–30 TDP period (second 

Fig. 10  Comparison of the theoretical correlation profile and the empirical correlation profile derived from multi-site historical TDP flows. See panel 
(a) in Fig. 9 for locations of three profiles in the empirical correlation matrix
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crop). On average, reductions in the shortage ratios are 
0.13 and 0.25 for the first and second crop periods, 
respectively.

Additionally, for any specific TDP, the probability of the 
shortage ratio being higher than 0 is defined as the risk 
of irrigation water shortage in this study. With this defi-
nition, we could then assess the risks of irrigation water 
shortage for IMD-2 under the current situation and with 
implementation of the mitigation measure. Such assess-
ments can be conducted with regard to individual TDPs. 
Taking the 6th TDP as an example, the probability of 

experiencing irrigation water shortage (shortage ratio >0) 
in IMD-2 is 0.83 and 0.58 for the current situation and 
the situation with proposed mitigation measure, respec-
tively. The mitigation measure is able to reduce the risk 
of irrigation water shortage in IMD-2 for the 6th TDP by 
0.25. We can also consider the risk of more severe irriga-
tion water shortage. For example, shortage ratio exceed-
ing 0.3 is considered as severe water shortage in the JID 
and may prompt reduced water supply. By implementing 
the proposed mitigation measure, the risk of severe water 
shortage in IMD-2 for the 6th TDP can be reduced from 
0.72 to 0.52. Thus, the proposed spatiotemporal simula-
tion approach not only can take into account the spatial 
and temporal variations/co-variations of the multi-site 
streamflows but also facilitates probabilistic assessment 
of effectiveness of drought mitigation measures. As a 
final note, we like to emphasize that it is possible to com-
paratively evaluate the effectiveness of different mitiga-
tion measures by considering the overall reduction in the 
risk of the severe water shortage during the crop growth 
period.

Conclusions
A stochastic simulation model capable of characterizing 
the spatiotemporal variability of multi-site streamflows 
was developed and validated using historical flow data in 
the Jianan Irrigation District. We also demonstrate that 
the spatiotemporal flow simulation results can be used 
for assessing the effect of certain water management 
measure on reducing the risk of irrigation water shortage. 
A few concluding remarks are made as follows:

Fig. 11  Irrigation water shortage ratios of IMD-2, with and without implementation of the mitigation measure. Risks of irrigation water shortage for 
the 6th TDP are illustrated in Fig. 12

Fig. 12  Risks of irrigation water shortage for the 6th TDP with and 
without implementation of the mitigation measure
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1.	 Spatiotemporal random field can be used to char-
acterize streamflows at different locations and their 
temporal variations. A spatiotemporal anisotropic 
semi-variogram is required to fully characterize the 
spatiotemporal variation of the standardized flow 
random field.

2.	 Spatiotemporal flow simulation can generate a large 
number of realizations which preserve not only the 
marginal distributions of streamflows at individual 
stations, but also the spatial and temporal correla-
tions of streamflows. Such simulated realizations 
can be used to assess the effect of certain water man-
agement measure on reducing the risk of irrigation 
water shortage, as demonstrated in this paper.

3.	 For the Jianan Irrigation District, by implementing 
the mitigation measure of conveying additional water 
from IMD-1 to IMD-2, the irrigation water shortage 
ratios can be reduced by 0.13 and 0.25 for the first 
and second crop periods, respectively. The risk of 
severe water shortage can also be effectively reduced.
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