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Benchmark analysis of forecasted 
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areas
G Giunta1, R Salerno2, A Ceppi3*, G Ercolani3 and M Mancini3

Abstract 

From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatol-
ogy, could provide a new capability for the management of energy resources in a time scale of just a few months. This 
paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, compar-
ing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System–National Centers for Environmen-
tal Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statisti-
cal indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective 
of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves 
the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-
performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby 
obtaining a competitive advantage in the European energy market.
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Introduction
The advent of computer technology has led scientists to 
developing complex models to forecast natural gas con-
sumption by improving calculation algorithms and using 
different statistical methods (Smith et  al. 1996; Gorucu 
and Gumrah 2004; Sánchez-Úbeda and Berzosa 2007; 
Forouzanfar et  al. 2010; Soldo 2012). An efficient man-
agement of energy distribution system often requires out-
look prediction in relation to energy demand (Mirasgedis 
et  al. 2006; Potocnik et  al. 2007; Dovrtel and Medved 
2011; Oldewurtel et  al. 2012; Petersen and Bundgaard 
2014), which is strictly related to seasonal weather and 
climatic trends. Therefore, meteorological information 
must be primarily seen to have potential positive impacts 
on the socio-economic areas of society (Leviäkangas and 
Hautala 2009).

Energy companies use this connection between mete-
orological variability and energy demand to provide 
effective scheduling in order to be protected against mar-
ket variability during the most critical periods. For this 
reason, they are one of the most active users of seasonal 
climate forecasts, using these products in their long-term 
planning. The prediction of the natural gas is affected 
by residential, commercial, industrial and thermoelec-
tric demands. The balance between offer and demand 
minimizes the risk of a sudden price increase. A weather 
forecast can also optimize processes in combined heat 
and power (CHP) plants and contribute to reducing 
costs concerning imbalance charges on the national 
power grid. Therefore, the possibility of obtaining mete-
orological trends (i.e. temperature, pressure, humidity) in 
advance in a given combined-cycle gas turbine (CCGT) 
power plant is useful to obtain competitive prices on the 
electricity market, and reduced errors in temperature 
forecasts allow a reduction in penalties for exceeding the 
power capacity that can be generated on the electricity 
market in which the company operates.
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By knowing the temperature forecast for a certain geo-
graphical area in advance, and paying particular attention 
to anomalous trends, it is possible to improve the plan-
ning of storage reserves, as well as sales and supplies of 
natural gas. An exceptionally warm winter, for example, 
can leave energy companies with excess fuel reserves or, 
on the contrary, a colder winter creates the necessity of 
purchasing reserves at higher prices. Although the price 
changes in relation to the demand, some price adjust-
ments do not compensate possible losses deriving from 
anomalous weather and climatic conditions; these are 
also crucial aspects according to climate change scenar-
ios (Vidrih and Medved 2008; Franco and Sanstad 2008; 
Isaac and van Vuuren 2009; Zhou et al. 2014).

The degree day value is generally used as a measure to 
indicate the demand for energy to heat or cool buildings. 
Assuming a direct relationship between the volume of 
natural gas demand and the heating degree day (HDD) in 
the winter season in Italy, a hypothetical variation of 2°C 
with respect to climatology could cause:

(i)	� an increase in commercial and residential 
demand of about 20%;

(ii)	 an increase in industrial demand of about 8%;
(iii)	� no increase in the demand for electricity for 

utilities for an overall variation of 10–15% with 
respect to the overall energy demand.

Consequently, operational activities and flexibility on 
the natural gas market could be improved for arbitrage 
opportunities (infra-month activities-unused capacity) of 
trading framework. Similarly, assuming a direct relation-
ship between the volume of natural gas demand related 
to power generation by Electrical Utilities and the cooling 
degree day (CDD) in the summer season, a variation in 
the overall energy demand of about 7% can be estimated 
with a variation of 1°C with respect to climatological val-
ues (Giorgetti et al. 2012). Hence, the primary benefit of 
weather forecasting in the energy services is an advance 
warning for better energy distribution and manage-
ment. For instance, a reliable weather forecast for a few 
days ahead is important for production from renewable 
sources, especially in the wind power generation where 
meteorological forecasts are widely used (Alexiadis et al. 
1998; Pinson et al. 2009; Cassola and Burlando 2012; Car-
valho et al. 2014).

Even if many atmospheric forecast improvements have 
been carried out in the last 20  years, it is important to 
bear in mind what Lorenz, the father of the chaos theory, 
stated in 1963: “It is impossible for long term forecasts, 
those made with a range of 2 weeks or more, to predict the 
state of the atmosphere with certainty, owing to the cha-
otic nature of the fluid dynamics equations involved” (Cox 

2002). Therefore, in relation to season timescales, one of 
the most difficult areas of forecasting, the perennial ques-
tion as to whether it will be cold or warm in a given region 
has been a major challenge (Palmer and Hagedorn 2006). 
Customers would certainty like easier decision-making, but 
this is normally impossible due to the effect of the above-
mentioned chaos theory and processes we cannot resolve. 
Hence, in order to predict with any certainty, a good start-
ing point is climatology, which provides the best available 
guidance to a customer when no other predictive elements 
are available. Historical data provide the frequency of an 
event, but, since climatology is static and representative of 
an average over a period of time, it is not capable of fore-
casting variations using these averages. Therefore, a good 
forecasting system can be defined as one that is superior to 
climatology (Palmer and Hagedorn 2006).

In relation to the above-mentioned issues, this paper 
shows the results of an innovative proprietary meteoro-
logical model for seasonal term temperature forecasting 
(from 1 to 12 weeks), developed by eni S.p.A in collabo-
ration with the Epson Meteo Centre, mainly to predict 
the demand for energy and improve the management 
of natural gas stocks, their purchase and sale in differ-
ent regions of Europe, i.e. Italy (north, centre and south), 
Belgium, Germany (north and centre-south), and France 
(north and south) (Giunta and Salerno 2013).

In particular, the proposed study includes a benchmark 
analysis for long-term temperature forecasts in Italy in 
the year 2010, comparing two meteorological models:

(i)	 the eni-kassandra meteo forecast (e-kmf®);
(ii)	� the CFS-NCEP (Climate Forecast System–

National Centers for Environmental Prediction) 
model developed by the National Atmospheric 
and Oceanographic Administration (NOAA).

The metrics for temperature forecast evaluation include 
standard skill scores commonly used in scientific litera-
ture (Wilks 2006; Jolliffe and Stephenson 2003; WWRP-
WGNE Joint Working Group on Verification 2015) to 
assess the reliability of air temperature forecasts at 2  m 
for a lead time of 12  weeks in three geographical areas 
in Italy (north, centre and south). The statistical analysis 
has been computed for the two models and for the cli-
matological mean (the reference period is 1984–2008) in 
comparison with the observed data for each month of the 
year 2010. The results show how the best performance 
is achieved by the e-kmf® model in comparison with the 
CFS-NCEP model which, especially for northern Italy, 
shows a significant underestimation of temperatures. The 
use of the e-kmf® model, instead of the common climato-
logical reference, may improve the long-term forecasting 
reliability by 35% as computed in the data analysis for the 
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year 2010. This forecasting tool provides an alternative 
solution to statistical systems based on historical values.

The forecasting models and observed temperature 
database
In this section, the Italian area where the performance 
of 2 m-air temperature forecasts of the two models have 
been verified against climatology and observed data is 
described. A short description of the models and the 
characteristics of weather stations whose temperature 
data have been considered both for climatology and for 
the year 2010 daily observations are also provided.

The area of study
The area of study is the Italian peninsula divided into 
three sub-regions (macro-areas), north, centre and south 
(Figure 1), in order to reflect the main climate variations 
over the country together with the differences in energy 
demand. In fact, most of the north of Italy shows a humid 
continental climate due to the presence of the Po Valley, 
while a Mediterranean climate can be assigned to the 
central and southern Italy, as well as the coastal area of 
the north of the country. Moreover, the presence of the 
Alps and the Apennines, two important mountain chains, 
also plays a main role in the Italian climate. Finally, the Po 
Valley is the most populated and industrialized area with 
high energy consumptions, while central and southern 
Italy are less populated and show a lower energy demand.

The Kassandra Meteo forecast model
The e-kmf® global forecast system uses a multi-model 
and ensemble technique (Goddard et  al. 2001; Mason 
et  al. 1999) to develop the meteorological prediction of 
temperature from the short-medium term (typically 
1–10  days) to the long-term (~2–12  weeks) forecasts 
(Reichler and Roads 2004). Short and medium-term fore-
casts are provided by using regional and limited-area 
models with a grid size ranging from 5.5  km to 18  km, 
while long-term forecasts, as in this case study, are pro-
duced using two global models with 20 perturbed initial 
conditions (plus one control member) each, in order to 
obtain a multi-model with 40 ensemble forecasts.

The first global model has a horizontal spectral triangu-
lar truncation of 126 waves (T126) and 42 sigma pressure 
hybrid layers (L42), while the second one is a global modi-
fied version of the WRF-ARW (weather research and fore-
casting–advanced research WRF) model using 42 vertical 
levels and a horizontal grid of about 90 km. The final output 
of the whole ensemble is on a regular latitude-longitude grid 
spaced by 1°, as shown in Figure 1, with a temporal output 
every 6 h and a forecast horizon of 90 days. Initial condi-
tions are derived from the global forecasting system (GFS) 
initial condition model which comes from the gridpoint sta-
tistical interpolation (GSI) global data assimilation system 
(GDAS) and it incorporates a 3D-Var (Three Dimensional–
Variational Data Assimilation) method to continuously 
update the background fields used for the initial condition. 

Figure 1  Grid points of the two climate models for the three areas of Italy (north, centre and south) represented by green rectangles; the e-kmf® 
model grid is shown with orange dots while the CFS-NCEP model grid with blue dots; geographical location of Italian weather stations (68 in total) 
below 500 m a.s.l. used for observed data of the year 2010 and for computing the climatological mean (1984–2008) in the three reference areas are 
shown with red dots. The horizontal grid point for both models are on a regular latitude–longitude grid spaced by 1°.
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The model uses global sea surface temperature (SST) 
boundary conditions (Reichler and Roads 2003) based on 
the SST anomaly simulated by a mixed-layer model. For 
each ensemble simulation, both the models make use of dif-
ferent physical and dynamical schemes for micro-physics 
(Lim and Hong 2010; Hong et al. 2004), Planetary Boundary 
Layer and Surface Layer (Hong et al. 2006, 2008; Bretherton 
and Park 2009; Pleim 2006, 2007; Beljaars 1994), cumulus 
parameterization (Kain 2004; Han and Pan 2011), radiation 
(Iacono et al. 2008; Dudhia 1989; Mlawer et al. 1997), and 
land surface physics (Niu et al. 2011; Yang et al. 2011; Noilan 
and Planton 1989; Pleim and Xiu 1995).

Finally, to obtain a single value to compare with 
observed and climatological data in the proposed bench-
mark, a selection procedure of the ensembles is applied 
to these two models. This selection process is applied for 
each time period defining a measure based on the distance 
between each member and the best member ensemble 
which is determined by using several normalized model 
variables; this measure is used for excluding all values 
outside of a defined range. The overall final value is com-
puted by a weighted average of the remaining members.

The CFS‑NCEP model
The CFS-NCEP Climate Forecast System (Saha et  al. 
2014) was designed and executed as a global, high-reso-
lution, coupled atmosphere–ocean–land surface-sea ice 
system. The CFS data was developed by NOAA’s National 
Centres for Environmental Prediction (NCEP). The 
data for this study are freely accessible in GRIB2 (Grid-
ded Binary) format from NOAA’s National Operational 
Model Archive and Distribution System (NOMADS) 
which is stored at NOAA’s National Climatic Data Centre 
(NCDC).

The atmospheric model has a horizontal spectral trian-
gular truncation of 126 waves (T126, equivalent to nearly 
a 100  km grid resolution, which is directly comparable 
to the resolution of e-kmf® global models), a finite differ-
encing vertically with 64 sigma pressure hybrid layers, a 
time resolution of 6 h and a forecast horizon of 4 months 
which can be compared with the e-kmf forecast which 
has a similar overlapping period of 12 weeks as lead time. 
The Noah land surface model (Ek et al. 2003) is employed 
in the CFS in both the coupled land–atmosphere–ocean 
model to provide land-surface prediction of surface 
fluxes (surface boundary conditions), and in the global 
land data assimilation system (GLDAS) to provide the 
land surface analysis and evolving land states. For further 
details about this model please refer to Saha et al. (2010).

Observations and climatology
The basic temperature observation data used for both the 
comparison with models and the climate history regard 

Italian weather stations and are taken from SYNOP 
(surface SYNOPtic observations) and METAR (METe-
orological Aerodrome Report). In this study 68 weather 
certified stations below 500 m above sea level have been 
taken into account (Figure 1; Table 1). Temperatures are 
collected on an hourly and daily basis and stored in data 
base to produce all the observed data. For a long-term 
comparison between forecasts and observations, temper-
ature data have been aggregated into weekly mean values 
for each reference area (north, centre and south of Italy, 
considering only the continental areas without the two 
main islands). The same weekly mean values have been 
used both for comparing observed and forecasted data 
and for arranging the climatology for each reference area. 
A 25-year reference period for climate data has been con-
sidered (1984–2008). For each week of the year, a mean 
temperature value (based on 25-year data) has been 
obtained and used as the climatological reference for a 
comparison with observations and forecasts.

The benchmark analysis
Temperature forecasts produced by the two models 
(e-kmf® and CFS-NCEP) have been compared on the 
basis of statistical indexes that allow the evaluation of the 
performance of the two models. The aim of this study is 
to quantify how temperature forecasts from meteoro-
logical models and climatological behavior perform in 
respect to the observed data for the three Italian macro-
areas at different forecast time horizons. For both mod-
els, the forecasted data are the air temperatures at 2  m 
above the ground on a regular latitude-longitude grid 
spaced by one degree (Figure  1) with a time interval of 
6  h to be compared with the observed and climatologi-
cal data. The benchmark analysis is performed on the 
forecasted data at weekly time resolution and at three 
macro-area spatial resolution with a forecasted horizon 
of 12  weeks according to the following equations that 
provide the macro-area weekly forecast:
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where Tj,i,d,k is the air temperature in the grid point j for 
the 6 h-time interval i of the simulated day d correspond-
ing to the model initialization k; Ti

j,k ,d is the mean daily 
temperature of the day d in the grid point j correspond-

ing to the model initialization k; Ti
k

j,d is the mean daily 
temperature of the day d in the grid point j averaged over 
the model initializations reported in Table  2; Twj is the 
mean weekly temperature in the grid point j; and Taj is 
the mean weekly temperature averaged over the N grid 
points within the macro-area.

Since data are available every 6 h and resolutions are 
not extremely high, it is more appropriate to use daily 
mean temperatures rather than extremes. Moreover, 
using several runs with different model initialization 
may reduce uncertainties associated with individual 
runs. The multi-model ensemble of the e-kmf® global 
forecast system may also have an improved accuracy 
by reducing uncertainties associated with individual 
models. The same procedure (Figure  2) used for the 
e-kmf® model data output is applied for the CFS-NCEP 
model.

Table 1  Italian weather stations below  500  m a.s.l. used for  observed data of  the year 2010 and  for the climatological 
mean (1984–2008)

Site Latitude Longitude Site Latitude Longitude

Bolzano 46°28′N 11°20′E Pisa/S. Giusto 43°41′N 10°23′E

Aviano 46°02′N 12°36′E Firenze/Peretola 43°48′N 11°12′E

Udine 45°59′N 13°02′E Arezzo 43°28′N 11°51′E

Torino/Caselle 45°13′N 7°39′E Perugia 43°05′N 12°30′E

Novara/Cameri 45°31′N 8°40′E Falconara 43°37′N 13°22′E

Milano/Malpensa 45°37′N 8°44′E Grosseto 42°45′N 11°04′E

Bergamo/Orio Al Serio 45°40′N 9°42′E Viterbo 42°26′N 12°03′E

Milano/Linate 45°26′N 9°17′E Rieti 42°25′N 12°51′E

Piacenza 44°55′N 9°44′E Vigna Di Valle 42°05′N 12°13′E

Brescia/Ghedi 45°25′N 10°17′E Pescara 42°26′N 14°12′E

Verona/Villafranca 45°23′N 10°52′E Termoli 42°00′N 15°00′E

Vicenza 45°34′N 11°31′E Guidonia 42°00′N 12°44′E

Treviso/Istrana 45°41′N 12°06′E Roma/Urbe 41°57′N 12°30′E

Treviso/S. Angelo 45°39′N 12°11′E Roma/Ciampino 41°47′N 12°35′E

Trieste 45°39′N 13°45′E Roma 41°54′N 12°29′E

Venezia/Tessera 45°30′N 12°20′E Roma Fiumicino 41°48′N 12°14′E

Ronchi Dei Legionari 45°49′N 13°29′E Latina 41°33′N 12°54′E

Trieste 45°39′N 13°45′E Frosinone 41°38′N 13°18′E

Mondovì 44°23′N 7°49′E Pratica Di Mare 41°39′N 12°27′E

Govone 44°48′N 8°06′E Campobasso 41°34′N 14°39′E

Novi Ligure 44°46′N 8°47′E Grazzanise 41°03′N 14°04′E

Passo Dei Giovi 44°38′N 8°56′E Amendola 41°32′N 15°43′E

Genova/Sestri 44°25′N 8°51′E Bari/Palese Macchie 41°08′N 16°47′E

Albenga 44°03′N 8°07′E Napoli/Capodichino 40°51′N 14°18′E

Sarzana/Luni 44°05′N 9°59′E Capo Palinuro 40°01′N 15°17′E

Ferrara 44°50′N 11°37′E Gioia Del Colle 40°46′N 16°56′E

Bologna/Borgo Panigale 44°32′N 11°18′E Brindisi 40°39′N 17°57′E

S. Pietro Capofiume Bologna 44°39′N 11°37′E Grottaglie 40°31′N 17°24′E

Punta Marina 44°27′N 12°18′E Marina Di Ginosa 40°26′N 16°53′E

Forlì 44°12′N 12°04′E Lecce 40°14′N 18°09′E

Cervia 44°13′N 12°18′E Crotone 39°00′N 17°04′E

Rimini 44°02′N 12°37′E S. Maria Di Leuca 39°49′N 18°21′E

Capo Mele 43°57′N 8°10′E Lamezia Terme 38°54′N 16°15′E

Imperia 43°53′N 8°02′E Reggio Calabria 38°04′N 15°39′E
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Data analysis
Different statistical performances are used to understand 
the predictability and reliability of temperature forecasts 

for each month in a perspective of 12 weeks ahead. The 
statistical analysis is computed for both forecast models 
and climatology mean (based on 1984–2008 data), by 
comparing them to the observations for each month of 
2010. The indexes used and discussed in the following 
section are: the forecast error (FE) at given observed tem-
perature values, the mean absolute error (MAE), the cli-
matological Skill Score (SSclim), the anomaly correlation 
coefficient (ACC).

The forecasted error
The calculated forecasted error (Eq. 5) for each observed 
data is:

where: Oi = observed value; Fi = forecasted value.
Figures  3, 4, and 5 show the forecasting error in com-

parison with observed values for all the forecasted weeks 
of the year for the north, centre and south of Italy, respec-
tively. These plots are used to illustrate the errors between 
forecasts and observation data according to a given tem-
perature; in this way, we are able to control possible under/
overestimation of the model depending on temperature 

(5)FEi = Fi − Oi

Table 2  Starting date of the weekly forecast for each ana-
lyzed month of the year 2010

Starting date of the weekly 
forecast for each month

Dates of model initialization k

10 January 2010 1st, 2nd, 3rd, 4th, 5th of January 2010

7 February 2010 1st, 2nd, 3rd, 4th, 5th of February 2010

7 March 2010 1st, 2nd, 3rd, 4th, 5th of March 2010

4 April 2010 30th, 31st of March; and 1st, 2nd, 3rd of 
April 2010

9 May 2010 1st, 2nd, 3rd, 4th, 5th of May 2010

6 June 2010 1st, 2nd, 3rd, 4th, 5th of June 2010

11 July 2010 1st, 2nd, 3rd, 4th, 5th of July 2010

8 August 2010 1st, 2nd, 3rd, 4th, 5th of August 2010

5 September 2010 31st of August; 1st, 2nd, 3rd, 4th of 
September 2010

10 October 2010 1st, 2nd, 3rd, 4th, 5th of October 2010

7 November 2010 1st, 2nd, 3rd, 4th, 5th of November 2010

5 December 2010 30th of November; 1st, 2nd, 3rd, 4th of 
December 2010

Figure 2  Diagram of each step of the procedure for calculating the weekly temperature forecast T(ai); Ini date is the date of the forecast initializa-
tion; Fct date is the date of the forecast day.
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values and it is possible to evaluate the performance of the 
forecasting model in different climate seasons.

Figure 3 highlights how the CFS-NCEP model underes-
timates temperature forecasts in the north of Italy (about 
4°C), while only a slight overestimation is provided by the 
e-kmf® model.

On the contrary, for the centre of Italy, the CFS-
NCEP model shows an overestimation of temperature 
forecasts with values of less than 10°C (colder months) 

and an underestimation for temperatures greater than 
10°C (warmer months); a similar trend, although less 
enhanced, was found for the e-kmf® model (Figure 4).

In the south of Italy, there is a significant temperature 
forecast overestimation below 12–13°C and an underesti-
mation above 23°C by the CFS-NCEP model. The e-kmf® 
model shows an overestimation when the observed tem-
peratures are under 10°C and no errors greater than 
±3°C for warmer temperature values (Figure 5).

Figure 3  Forecast error vs. observed temperature values for the e-kmf® (blue rhombi) and the CFS-NCEP (red squares) model in the north of Italy; the 
two polynomial regressions are shown with a blue and red line, respectively for the e-kmf® and CFS-NCEP model.

Figure 4  Forecast error vs. observed temperature values for the e-kmf® (blue rhombi) and the CFS-NCEP (red squares) model in the centre of Italy; 
the two polynomial regressions are shown with a blue and red line, respectively for the e-kmf® and CFS-NCEP model.
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The mean absolute error
The MAE for the three macro-areas is shown in Tables 3 
and 4 and calculated as follows (Eq. 6):

where Oi =  observed value; Fi =  forecasted or climato-
logical value, n = numbers of analyzed data.

The computed values show lower errors for the macro-
area of centre and south of Italy for the two meteoro-
logical models and climatological data. For the northern 

(6)MAE =
1

n

n
∑

i=1

|Fi − Oi|

macro-area, the CFS-NCEP model highly underestimates 
the forecasted temperatures.

The reason for a lower MAE in the centre and south 
macro-area can be related to the forecast predictability 
which is higher in these two areas than in the northern 
one where the orography plays a relevant role; in fact, as 
it is shown in Figure 1, most of the grid points in south-
ern area are over the sea surface and the topography is 
smoother than in the north. In addition to this first com-
parison, the MAE has been calculated as a mean of the 
ith weekly forecast of the 12 months in order to under-
stand the reliability of forecast horizon for each model 

Figure 5  Forecast error vs. observed temperature values for the e-kmf® (blue rhombi) and the CFS-NCEP (red squares) model in the south of Italy; the 
two polynomial regressions are shown with a blue and red line, respectively for the e-kmf® and CFS-NCEP models.

Table 3  Mean absolute error of temperature (°C) for each model (e-kmf®, CFS-NCEP, Climatology) vs. area and month

Initialization month e-kmf® Climatology CFS-NCEP

North Center South North Center South North Center South

January 1.25 0.92 0.69 1.77 1.86 1.58 4.01 2.56 2.39

February 1.80 1.61 1.23 1.84 2.05 1.66 5.29 2.75 1.62

March 1.46 1.24 0.99 1.90 1.66 1.44 6.03 2.42 1.54

April 0.99 0.75 0.66 1.78 1.57 1.60 5.88 2.36 1.81

May 1.58 1.67 1.74 2.26 2.14 1.65 6.35 2.78 1.85

June 1.05 0.68 0.90 2.30 2.15 1.60 5.42 2.57 1.90

July 1.46 1.24 0.99 1.90 1.66 1.44 5.10 2.12 1.40

August 0.86 0.61 0.47 1.41 1.18 1.05 4.23 1.71 1.39

September 0.95 0.56 0.43 1.31 1.15 0.89 5.05 2.01 1.11

October 1.97 1.46 1.57 2.10 1.59 1.66 2.96 1.91 2.18

November 1.57 1.43 1.40 1.78 1.52 1.48 2.43 1.31 2.53

December 1.69 1.48 2.09 1.90 1.65 1.55 3.40 1.29 2.66

Mean 1.39 1.14 1.10 1.85 1.68 1.47 4.68 2.15 1.86
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and macro-area. As can be seen from Table  4, the best 
score is obtained by the e-kmf® model in the first fore-
casting week, with a worsening of the performance 
between the 5th and 8th forecasting week as shown in 
Table 5 and Figure 3 as well. Table 6 shows the percent-
age of cases where the MAE of the temperature forecast 
is in selected ranges. These percentages have been com-
puted on four classes: 0–1°C, 1–2°C, 2–4°C and >4°C. 
A MAE in the first two classes (between 0 and 1°C and 
1–2°C) can be considered an excellent or good result, 
respectively, in terms of weekly prediction; the third 
class with forecast errors between 2 and 4°C may be 
considered a fair to a rather poor result and, finally, an 

error above 4°C may be considered a poor or a very poor 
achievement.

In particular, the e-kmf® model obtains a good per-
formance: only 4% of the cases with a forecasting error 
above 4°C, while the CFS-NCEP model results were less 
satisfactory, especially in northern Italy, where 60% of the 
cases has a MAE above 4°C.

The climatological Skill Score
One of the most important scores used to evaluate the 
performance is the SSclim, which gives an idea of the 
relative improvement (or worsening) of the forecast-
ing model in relation to certain reference values; the 

Table 4  Mean absolute error of  temperature (°C) for  each week of  forecasting between  the e-kmf® and  the CFS-NCEP 
model for each area of Italy

Week of forecast e-kmf Climatology CFS-NCEP

North Centre South North Centre South North Centre South

1 0.89 0.53 1.42 0.00 0.22 0.96 22.62 4.05 4.72

2 3.41 2.14 2.91 7.76 2.04 3.83 23.37 5.88 7.86

3 3.13 3.95 2.25 11.90 1.94 0.63 27.56 8.03 5.06

4 3.88 2.44 1.79 5.69 2.14 1.15 31.27 6.85 3.83

5 4.53 3.63 2.97 3.97 4.09 1.69 26.38 6.50 4.90

6 3.97 3.11 3.21 0.22 4.44 4.93 29.33 8.65 7.57

7 6.62 6.52 3.82 0.96 12.60 5.59 28.81 7.80 3.03

8 4.89 1.68 3.21 0.24 1.84 1.54 25.00 4.40 3.30

9 2.06 0.91 1.50 28.55 11.46 7.06 29.13 6.69 3.32

10 5.05 4.10 2.75 0.05 0.17 1.16 26.97 6.73 7.41

11 1.09 0.85 1.50 6.18 7.41 3.24 30.88 7.11 3.33

12 2.29 1.20 0.94 0.34 3.94 2.10 27.28 6.74 8.03

Mean 3.48 2.59 2.36 5.49 4.36 2.82 27.38 6.62 5.20

Table 5  ACC values for the e-kmf® and CFS-NCEP models for ith forecasting week in the three macro-areas

Week of forecast e-kmf® CFS-NCEP

North Centre South North Centre South

1 0.49 0.69 1.00 4.43 1.67 1.94

2 1.25 0.94 1.37 4.23 2.20 2.22

3 1.47 1.51 0.96 4.81 2.38 1.85

4 1.43 1.15 0.97 4.83 2.16 1.57

5 1.43 1.12 1.07 4.46 2.23 1.96

6 1.51 1.31 1.20 5.09 2.60 2.04

7 1.89 1.52 1.10 5.00 2.43 1.41

8 2.14 1.20 1.44 4.33 1.72 1.47

9 1.13 0.82 0.97 4.57 2.12 1.52

10 1.74 1.58 1.13 4.74 2.13 2.34

11 0.76 0.88 1.08 5.12 2.19 1.50

12 1.38 0.94 0.87 4.51 1.95 2.56

Mean 1.39 1.14 1.10 4.68 2.15 1.86
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climatological mean has been used in this case study. The 
SS is calculated as follows (Eq. 7):

where the MSE forecast, clim, and obs are the mean 
square error for the forecasted, climatological and 
observed data respectively and the MSE equation is cal-
culated as follows (Eq. 8):

As it is shown in Table  7, using the e-kmf® model there 
is a huge improvement for almost all months and for all 
areas: the three scores for the north, centre and south 
of Italy give an average improvement of 35% for the year 
2010; this means that the e-kmf® model increases fore-
casting capability, with better forecasting results for 2-m 
air temperature of 35%, compared to the climatological 
averages. On the contrary, the CFS-NCEP model shows 

(7)

SSclim =
MSEforecast −MSEclim

MSEobs − MSEclim
= 1−

MSEforecast

MSEclim

(8)MSE =
1

n

n
∑

i−1

(Fi − Oi)
2

the opposite for almost all months and all areas, meaning 
that it would be better to use climatology to estimate sea-
sonal temperature trends for the following weeks instead 
of the forecasting model.

The anomaly correlation coefficient
Another important score is the ACC which gives an idea 
of the correlation between models and observed data, 
subtracting the climatological mean. In fact, another way 
to measure the quality of a forecasting system is to calcu-
late the correlation between forecasts and observations. 
However, correlating forecasts directly with observations 
or analyses may give misleadingly high values, due to sea-
sonal variations. It is therefore an established practice to 
subtract the climate average from both the forecast and 
the verification and to assess the forecast and observed 
anomalies according to the ACC.

The ACC is calculated as follows:

(9)

ACC =

∑

n

i=1

(

(Fi − Ci)− (F − C)
)

·
(

(Oi − Ci)− (O − C)
)

√

∑

n

i=1

(

(Fi − Ci)− (F − C)
)2

·
(

(Oi − Ci)− (O − C)
)2

Table 6  Percentage of cases where the mean absolute error of temperature forecasting is between 0–1°C, 1–2°C, 2–4°C 
and above 4°C for each area between the e-kmf® and CFS-NCEP models and the climatological mean for the year 2010

Mean absolute error  
of temperature forecast (%)

e-KMF Climatology NCEP

North Centre South North Centre South North Centre South

between 0–1°C 47.92 59.03 59.72 36.81 30.56 33.33 4.86 25.00 29.86

between 1–2°C 29.86 25.69 25.69 24.31 40.28 39.58 7.64 29.86 29.17

between 2–4°C 17.36 11.11 11.11 29.86 25.69 25.00 27.78 31.25 34.72

between >4°C 4.86 4.17 3.47 9.03 3.47 2.08 59.72 13.89 6.25

Table 7  Climatological Skill Scores for the two models (e-kmf®, CFS-NCEP) and for each area and month

Initialization month e-kmf® CFS-NCEP

North Center South North Center South

January 0.55 0.70 0.78 −3.02 −0.91 −1.97

February 0.04 0.14 −0.18 −4.45 −0.62 −0.15

March 0.43 0.41 0.51 −5.18 −0.89 −0.06

April 0.69 0.78 0.79 −7.17 −1.18 −0.39

May 0.13 0.00 −0.37 −5.63 −0.73 −0.35

June 0.76 0.89 0.69 −4.10 −0.51 −0.32

July 0.17 0.26 −0.38 −5.88 −0.69 −0.69

August 0.62 0.75 0.83 −5.62 −1.12 −0.59

September 0.50 0.75 0.84 −9.57 −2.77 −0.10

October 0.13 0.04 0.11 −1.14 −0.21 −0.95

November 0.21 0.12 0.13 −0.42 0.15 −1.42

December 0.21 0.05 −0.53 −1.59 0.40 −1.26

Mean 0.37 0.41 0.27 −4.48 −0.76 −0.69
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where: Oi, Fi, and C are the observed, forecasted and 
climatological values are the average values of the dif-
ferences between observations or forecasts and climato-
logical values for the analyzed data set. n =  number of 
analyzed data.

Table 5 and Figure 6 (left) show how the e-kmf® model 
has a higher reliability for the first and third forecast-
ing month (i.e. from the 1st to the 4th forecasting week 
and from the 9th to the 12th). On the contrary there is a 
worsening for the e-kmf® forecast in the 2nd month (i.e. 
from the 5th to the 8th week). For the CFS-NCEP model 
there is no general trend and very low values of ACC 
are shown in Figure  6 (right), i.e. no correlation at all 
between this model and observed data for every forecast-
ing week, except for the first one.

Conclusions
Reliable meteorological forecasting in specific geographic 
areas could be a suitable support for improving opera-
tions in the energy market. A lot of progress has been 
made in the development of meteorological models and 
downstream applications, as well as forecast planning in 
gas and power supply and renewable energy generation 
in the last decade. From a long-term perspective, a mete-
orological seasonal forecast, which is often based on cli-
matology, will be able to provide capability management 
in a time scale of just a few months.

As a major energy company, with the aim of improving 
the commercial planning of oil, natural gas and power, 
Eni has developed the kassandra meteo forecast (e-kmf®) 
model, i.e. a short to long term (from 1 to 90 days) pro-
prietary meteorological forecast system in collaboration 
with the Epson Meteo centre. These new numerical mod-
els for temperature forecasting trends provide an alterna-
tive solution to statistical systems based on climatological 
data analysis. The e-kmf® meteorological model is based 
on the probabilistic approach of the ensemble technique 
and it will be used for energy resource management in 

different European regions. In fact, an accuracy improve-
ment of forecasted temperature by about 1°C compared 
to values obtained by climatology may have a great ben-
efit in gas supply portfolio management.

In this paper we evaluated the long-term tempera-
ture forecast performance of the e-kmf® and CFS-NCEP 
models in three regions in Italy (north, centre and south, 
excluding the main Italian islands) for the entire year 
2010.

In particular, daily temperature forecasts collected 
from five daily initialization runs were averaged out to 
obtain a weekly forecast for each model grid point related 
to the three Italian macro-areas; afterwards, each tem-
perature forecast of the model grid point was once again 
averaged in order to obtain a single temperature forecast 
value for each week (12 in total for each area). Statisti-
cal indexes have been used to calculate the performance 
analysis by comparing the observed data, the climatologi-
cal mean and the two models that were analyzed.

According to the MAE the e-kmf® model performs bet-
ter than the CFS-NCEP model in almost all areas and 
forecast initialization months. The SSclim index shows 
how the e-kmf® model has an average improvement of 
35% compared with climatology (used as a reference) for 
the year 2010, while the performance of the CFS-NCEP 
is worse, in particular in the northern Italian macro-area 
where there is a significant mean underestimation (4.7°C 
using the mean absolute error).

The ACC provides information that is very useful for 
understanding the reliability of the forecast from the 1st 
to the 12th week for each forecast initialization month. 
In particular, the e-kmf® model shows a good correlation 
between forecasted and observed temperature data in the 
1st and 3rd month of the forecast, while a worsening of 
the model’s performance was observed between the 5th 
and 8th week of prediction. This particular aspect will be 
investigated in more detail in order to improve the fore-
cast for the entire period analyzed.

Figure 6  ACC trends for the e-kmf® (left) and CFS-NCEP (right) models for ith forecasting week in three macro-areas of Italy.
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