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Abstract

The impact of a changing climate is already being felt on several hydrological systems both on a regional and
sub-regional scale of the globe. Southeast Asia is one of the regions strongly affected by climate change. With
climate change, one of the anticipated impacts is an increase in the intensity and frequency of extreme rainfall
which further increase the region’s flood catastrophes, human casualties and economic loss. Optimal mitigation
measures can be undertaken only when stormwater systems are designed using rainfall Intensity-Duration-Frequency
(IDF) curves derived from a long and good quality rainfall data.

Developing IDF curves for the future climate can be even more challenging especially for ungauged sites. The current
practice to derive current climate’s IDF curves for ungauged sites is, for example, to ‘borrow’ or ‘interpolate’
data from regions of climatologically similar characteristics. Recent measures to derive IDF curves for present climate was
performed by extracting rainfall data from a high spatial resolution Regional Climate Model driven by ERA-40 reanalysis

promising.

dataset. This approach has been demonstrated on an ungauged site (Java, Indonesia) and the results were quite

In this paper, the authors extend the application of the approach to other ungauged sites particularly in Peninsular
Malaysia. The results of the study undoubtedly have significance contribution in terms of local and regional hydrology
(Malaysia and Southeast Asian countries). The anticipated impacts of climate change especially increase in rainfall
intensity and its frequency appreciates the derivation of future IDF curves in this study. It also provides policy makers
better information on the adequacy of storm drainage design, for the current climate at the ungauged sites, and the
adequacy of the existing storm drainage to cope with the impacts of climate change.
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Background

Lack of sufficiently long and good quality rainfall records
is common in most Southeast Asian countries or devel-
oping countries. This leads to improper designs of urban
drainages and stormwater infrastructure systems.

For the past twenty years, the development in analyzing
rainfall data for ungauged sites focused on the identification
of homogenous regions. Several researchers (e.g. [1,2]) have
developed methods for determining homogenous regions
characterized by the same statistical distribution. Mikkelsen
et al. [3], for example, selected the regional historical
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rainfall time series as input to urban drainage simula-
tions at ungauged locations. The results showed that (1)
extreme rainfall is often very different even for minor
physiographic differences, (2) the uncertainty related to
the use of point rainfall data at ungauged locations
where no regional model of extreme rainfall properties
is available, is generally underestimated. Nguyen et al.
[4] proposed regional frequency analysis method for
sites where rainfall records are limited or unavailable. In
the study, a homogeneous region was defined as the region
in which all annual maximum rainfall series at different
sites must have similar properties of rainfall occurrence
within a given concurrent time period. If the occurrence
of rainfalls at different rain gauges within a given con-
current period is similar (e.g. high correlation of the
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Figure 1 Study domain (93° - 120°E, 12°S - 13°N).

numbers of rainy hours within a given one-day interval),
these gauges are thus considered as members of a homoge-
neous group. Principal component analysis (PCA) is per-
formed using the series number of rainy hours observed at
each rain gauge in order to assess the similarity of rainfall
occurrences between these gauges. A case study is carried
out using annual maximum rainfall series (AMS) from a
network of 10 rain gauges in Quebec (Canada). To assess
the scaling behaviour of these AMS, the log-log plots of
the first three rainfall non-central moments (hereafter,
NCMs) against duration are prepared for all 10 stations.
This study demonstrated that regional frequency analysis,
which uses data from many sites, has been shown to be
able to reduce the uncertainties in the estimation of ex-
treme events. However, one of the main difficulties in the
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use of this technique is related to the definition of “homo-
geneous” regions. Past approaches which mainly focused
on identification of homogenous rainfall zones often in-
dicated uncertainty related to homogeneity assumptions
of gauged and ungauged regions. Various methods have
been proposed for determining the homogeneous re-
gions, but there is no generally accepted procedure in
engineering practice.

Lin and Wu [5] performed Self-Organizing Map (SOM)
approach to estimate the design hyetograph for ungauged
sites. SOM, which is a special kind of artificial neural
networks (ANNS5s), is a powerful technique for extracting
and visualizing salient features of data and for solving
classification problems. The results show that the pro-
posed approach performs better than methods based on
conventional clustering techniques.

Lin et al. [6] has successfully developed Adaptive-
Network-based Fuzzy Inference System (ANFIS) to
forecast a long-term discharges in Manwan Hydropower.
The process of fuzzy inference involves membership func-
tions, fuzzy logic operators, and if-then rules. This system
has been successfully applied in fields such as automatic
control, data classification, decision analysis and computer
vision. The results, when compared to the ANN model,
the ANFIS model has shown a significant forecast im-
provement. It showed that the model is an effective al-
gorithm to forecast the long-term discharge in Manwan
Hydropower. Several comparison studies were done by
Chau et al. [7] and Wu et al. [8] on different types of
data-driven models. The results showed that different
model may need different computational time as well as
additional modeling parameters.

El-Sayed [9] used isopluvial map approach to develop
rainfall IDF curves for ungauged sites. The author first ob-
tained the maximum annual precipitation series at each
station for different durations, fitted with General Extreme
value (GEV), and determined the value of each of the 3
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Figure 2 (3-step) DCD approach to develop IDF curves regions with short or no rainfall data.
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GEV parameters to find depth-duration-frequency (DDF)
values for different return periods. From these parameters,
isopluvial maps were generated. The DDF values were
then spatially interpolated to obtain isopluvial maps for
all durations and return periods. The parameter contour
maps were used to estimate the 3-parameters GEV of
ungauged sites.

All past works have successfully obtained rainfall data
for ungauged sites within the homogenous regions.
However, the approaches fail for sites which lie outside
the area of gauged sites. Recently Liew et al. [10] pre-
sented an approach to overcome it. The approach de-
rives IDF curves, for present climate, with rainfall data
extracted from a high spatial resolution Regional Cli-
mate Model driven by ERA-40 Reanalysis dataset. This
approach was demonstrated on an ungauged site (Java,
Indonesia); the results were quite promising. The proof-
of-concept analyses showed that the IDF curves derived
from Weather Research and Forecasting Model (WREF)
driven by ERA40 fairly consistently underestimate each
existing IDF curves ranging from 38% to 45%. The range
of the bias correction showed reasonable results when
applied to and compared with a validation site in Jakarta.
Liew et al. [10] also employed the RCM WRF to gener-
ate climate projection for the studied domain and then
derived future climate’s IDF curves. The emission scenario
A2 and Global Climate Model/European Centre Hamburg
Model (GCM/ECHAMS5) were used in the study.

In this paper, the authors extend the applications of the
aforementioned approach to other ungauged sites in the
Peninsular Malaysia. The study is performed by first iden-
tifying the nearest meteorological stations where IDF
curves exist. Biases resulting from these meteorological
sites are captured and serve as very useful information in
the derivation of present day IDF curves for ungauged
sites. The present day climate’s derived IDF curves at the
ungauged sites fall within the suggested bias correction
range. This range allows designers to decide on a value
within the lower and upper bounds, normally subjected to
engineering, economic, social and environmental con-
cerns. Approach discussed in this study presents policy
makers better information on the adequacy of storm
drainage design, for the current climate, at the ungauged
sites as well as the adequacy of the existing storm drainage
to cope the impacts of climate change.

The Peninsular Malaysia has approximately a total area
of 131,000 km* and consists of rugged forested mountain-
ous interiors descending to coastal plains. The climate is
hot and humid with rainfall experienced throughout the
year, between 150 and 200 wet days and an annual
amount of 2000-4000 mm. The seasonal wind flow
patterns coupled with the local topographic features
determine the rainfall distribution patterns over the coun-
try. During the northeast monsoon season, the exposed
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Figure 4 Mean seasonal Northeast Monsoon (NDJF, left panel) and Southwest Monsoon (JJA, right panel) surface winds, m/s,
1961-1990 (a) ERA40 (b) WRF/ERA40 (c) WRF/CCSM.
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Figure 5 Mean annual precipitation (mm/day), 1961-1990 (a)
CRU (b) WRF/ERA40 (c) WRF/CCSM.
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areas like the east coast of Peninsular Malaysia experience
heavy rain spells. On the other hand, inland areas or areas
which are sheltered by mountain ranges are relatively free
from its influence. The Peninsular Malaysia was seriously
hit with heavy floods between December 2006 and January
2007. The floods were caused by above average rainfall.
With changing climate, it is of serious concern to investi-
gate whether Peninsular Malaysia will experience even
more intense rainfall. Should the intensity of the projected
rainfall significantly increase, it is imperative to derive fu-
ture IDF curves to check the adequacy of the current
drainage designs.

Model, data and methodology

Model

Weather Research and Forecasting Model (WRF)

WRE, used in this study, is a regional climate model deve-
loped at the National Center for Atmospheric Research
(NCAR) in the USA. It is suitable for a broad spectrum of
applications across scales ranging from meters to thousands
of kilometres. The WRF model (http://www.wrf-model.org)
also contains a multitude of physical parameterizations
and supports high resolution climate simulations. Due
to its sophisticated model physics and its capability to be
tuned to user needs, this model not only finds wide ap-
plication in real time Numerical Weather Prediction
(NWP), but also in climate research, where the model
can be run for long term climate simulations.

Data

The ERA-40 reanalysis

The ERA-40 reanalysis, developed by the European
Centre for Medium range Weather Forecasts [11], provide
information about a suite climate variable (e.g. precipita-
tion, humidity, temperature and pressure) every six hours,
at a horizontal resolution of 2.5° x 2.5°. The ERA40 reana-
lysis products (http://www.ecmwf.int/research/era/) use a
global spectral grid model and assimilate part of the
observational data from a wide variety of observed
sources.

Climatic Research Unit

Developed at the Climatic Research Unit (CRU; Univer-
sity of East Anglia, UK), the CRU TS version 3.0 (http://
www.cru.uea.ac.uk/cru/) dataset is used in this study. It
comprises monthly grids of observed climate, for the
period 1901-2006 covering only the global land surface
at 0.5°x 0.5° horizontal spatial resolution. Precipitation
and Temperature variables from the simulations of the
WRF are compared against this data over the period of
1961-1990.


http://www.wrf-model.org
http://www.ecmwf.int/research/era/
http://www.cru.uea.ac.uk/cru/
http://www.cru.uea.ac.uk/cru/
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Station used for VALIDATION:

1. Seremban (within the boundary)
(located about 55km South of
Kuala Lumpur, and 80km North of Melaka)
2. Johor Bahru (outside the boutdary)

220 km from Melaka
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Figure 6 Location of rainfall stations in the study; Peninsula Malaysia.

Community climate system model

The components of Community Climate System Model
(CCSM) include an atmospheric model (Community
Atmosphere Model), a land-surface model (Community
Land Model), an ocean model (Parallel Ocean Program),
and a sea ice model (Community Sea Ice Model). The
atmospheric component of CCSM is the Community
Atmosphere Model which has a 256 x 128 regular longi-
tude/latitude global horizontal grid (giving a 1.4°x 1.4°
resolution). A detailed description of the model is given
in Collins et al. [12].

Table 1 Distance (km) of rainfall stations applied in the
study: Peninsula Malaysia

Distance in Ipoh Kuala Seremban Melaka Johor Raub
kilometers (km) Lumpur Bahru
(approximation)

lpoh

Kuala Lumpur 200

Seremban 270 155

Melaka 350 120 80

Johor Bahru 570 370 300 220

Raub 153 72 118 229 333

Methodology

Dynamical downscaling

In this study, the dynamical downscaling is performed
over the Southeast Asia region. The WRF was driven at a
30 x 30 km resolution by ERA-40 Global Reanalysis for
current climate as well as under the A2 greenhouse gas
emission scenario for the future climate. The domain con-
sidered in this study is 93°E - 120°E, 12°S - 13°N (Figure 1).

Extraction of extremes rainfall and probability

distribution function

The present day’s 6-hourly precipitation datasets at 3
gauged sites (Figure 1; Ipoh, Kuala Lumpur and Melaka

Table 2 Percentage difference between existing and
WRF/ERA40 derived IDF curves: Ipoh Station

Ipoh station (1961-1990)  Duration Return period (year)
(Min) 35 10 20 50 100
[(IDP)existing = (IDF)wre/eragol/ 360 60 51 47 44 41 4
(IDP)eising (%) 720 48 40 39 37 34 35
1080 46 38 37 35 32 32
1440 42 35 36 35 34 34
Average%-age difference 49 41 40 38 35 41




Liew et al. Geoscience Letters 2014, 1:8
http://www.geoscienceletters.com/content/1/1/8

Table 3 Percentage difference between existing and
WRF/ERA40 derived IDF curves: Kuala Lumpur station

Kuala Lumpur (1961-1990)

Duration
(Min)

Return period (year)
2 5 10 20 50 100
[IDF)existing = (IDF)wre/eraaol/ 360 69 59 53 47 38 31
(IPPesing (%) 720 61 50 46 39 27 17
1080 56 47 44 40 30 20
1440 50 43 43 41 34 26
Average%-age difference 59 50 47 42 32 24

Stations) were first extracted from the WRF/ERA40
(WRF model driven by ERA40), for the period 1961-
1990. Data aggregation is based on selected design storm
durations (6, 12, 18 and 24 hours). After the aggregation
of the selected storm duration data, the identification of
the extreme events (annual maximum) was performed.
For the 6-hourly rainfall duration study, a total of 30 an-
nual maximum rainfall depths (1961-1990) were then
extracted from the 6-hourly rainfall data. The same pro-
cesses were repeated for 12, 18 and 24 hour rainfall dur-
ation from their respective precipitation datasets. The
GEV distribution was adopted in this study. Method of
L-moments [13] was used to determine the GEV’s three
distribution parameters.

Derivation of IDF curves for ungauged sites

A 3-step approach; Step 1: Dynamical Downscaling [D];
Step 2: Comparison [C], and Step 3: Derivation of IDF
curves [D] which is also known as 3-step DCD approach
[10] , Figure 2, is used in this paper to develop Intensity-
Duration-Frequency (IDF) curves at ungauged sites.
These 3 steps in the DCD approach are detailed below.

Step 1: Dynamical Downscaling and Performance
Evaluations

Dynamical downscaling was first performed to obtain
high resolution climate outputs. Firstly, the performance
evaluation of WRF/ERA40, for the study region at 30 x
30 km spatial resolution was done by comparing the simu-
lation results with the CRU gridded observation data.
Later, the GCM CCSM3.0 was downscaled for both the
present day (1961-1990) and future climates (2071-

Table 4 Percentage difference between existing and
WRF/ERA40 derived IDF curves: Melaka station

Melaka station (1961-1990)

Duration
(Min)

Return period (year)
2 5 10 20 50 100
[IDP)existing — IDF)wre/eracal/ 360 56 53 52 52 50 51
(DP)exsting (%) 720 48 44 42 43 39 40
1080 50 45 42 43 40 41
1440 49 43 39 41 39 39
Average%-age difference 51 46 44 45 42 46
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2100). Figure 3 shows surface air temperature distribu-
tions, over the domain region, from CRU, WREF/ERA40
and WRF/CCSM3.0. The simulation results compared
well with that of CRU for the entire domain. As there
are no observation data (e.g. CRU) available for land
and ocean and as there are no surface winds available
from the actual GCM CCSM3.0, it has not been possible
to include them in the figures for comparison. Thus, the
simulated surface winds were compared with ERA40
reanalysis data, WRF/ERA40 and WRE/CCSM itself
(Figure 4). The comparisons were done for both monsoon
seasons (northeast, NDJF, and southwest, JJA). As shown
in Figure 5, overall simulated mean daily precipitation of
WRF/ERA40 and WRF/CCSM compared reasonably well
with CRU, aside from WRF/CCSM slightly underestimates
rainfall in some regions of the northern domain compared
to both WRF/ERA40 and CRU. However, the spatial dis-
tributions of rainfall of WRF/CCSM over the regions of
Malaysian Peninsular and Sumatra, Indonesia show rea-
sonably good agreement against WRF/ERA40.

Step 2: WRF/ERA40 vs gauge data derived IDF curves
The annual maximum series resulting from the 6-hourly
WRE/ERA40 simulation were used in the development of
IDF curves. To generate annual maximum series, rainfall
data aggregation followed by determination of a suitable
probability distribution function for annual maximum rain-
fall was performed. Since the main objective of this study is
to develop IDF curves for locations at which IDF curves are
not available, the analyses was first done on locations at
which reliable IDF curves are available. Three metrological
stations (Figure 6 and Table 1) with IDF curves are Ipoh,
Kuala Lumpur and Melaka Station. Their IDF curves were
used for comparison with the IDF curves derived from
WRF/ERA40 data and the required bias correction mea-
sures for each station were noted. The bias correction quan-
tity is used later for deriving IDF curves at ungauged sites
[10]. The idea here is to assess how much the WRF/ERA40
derived IDF curves deviate from observations. The baseline
period over the present day climate considered was 1961—
1990. The percentage differences between both IDF curves
(Existing vs. WRE/ERA40 derived IDF curves) are com-
puted and the upper and lower bounds (i.e. range of bias
correction) from the three stations were recorded. These
were done for 2, 5, 10, 20, 50 and 100 year return periods.
Tables 2, 3 and 4 show consistent underestimation of
WRF/ERA40 derived IDF. It ranges from 40% — 46%;
these form the lower and upper bounds of the bias cor-
rection (Figure 7) of the present day’s IDF curves derived
from WRF/ERA40.

Step 3: derivation of IDF curves for ungauged sites
Three stations, Seremban (within region), located about
55 km south of Kuala Lumpur Station and Johor Bahru
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(outside region), located 220 km from Melaka Station
and Raub (lee back side of Titiwangsa mountain range)
were selected as ungauged sites, thus, they are used
as validation sites (Figure 6 and Table 1). Note that
Seremban, Johor Bahru and Raub stations have rain-
gauge data derived IDF curves; however, they are used
here to demonstrate the performance of the proposed.
The existing IDF curves for both Seremban and Johor
Bahru stations are compared with the upper and lower
bounds (range of bias correction) obtained from the 3
aforementioned locations.

IDF curves for both Seremban and Johor Bahru Stations
was first derived from rainfall data simulated by WREF/
ERA40. The lower (+40%) and upper (+46%) bounds
(range of bias correction) obtained from Step 2 was as-
sumed to be applicable to the region, such as Seremban
and Johor Bahru Station. Figures 8 and 9 compare the
upper and lower WRF/ERA40 derived IDF curves with

the existing IDF curves of Seremban and Johor Bahru
stations respectively. It can be seen that the existing
IDF curve for 10-year return period mainly lies within
the lower and upper bounds resulting from the pro-
posed approach. Due to space limitation, this paper
only focused on 10-year return period; however, results
show that all the return periods fall within the lower
and upper bounds.

It should be noted, however, that although Raub station
is located very close to Kuala Lumpur, it is on the lee back
side of part of Titiwangsa mountain range (Figure 6).
Thus, it is expected that the rainfall characteristics of
Raub Station differ from that of Kuala Lumpur. Figure 10
shows that existing IDF curve of Raub Station for 10-
year return period does not lie within the lower and
upper bounds resulting from the proposed approach.
The results concluded that the proposed approach is
sensitive to topography.
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Lower Bound
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Existing IDF Curves

WRFERALD

Station: Seremban, Malaysia
10-Year Return Period
W RF/ERALD
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Figure 8 WRF/ERA40 projected present day rainfall intensties anomalies from the existing IDF curve (10-year return period): Seremban
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Future IDF curves under changing climate

Previous sections described the approach, presented in
Liew et al. [10], to derive present climate’s IDF curves
for ungauged sites. For the anticipated changes in rain-
fall intensities due to climate change, this paper con-
tinues to propose the development of future climate IDF
curves for ungauged sites. The approach is easier under-
stood when it first be applied to sites with existing IDF
curves. In the paper, only time slice of 2071-2100 and
the Kuala Lumpur Station are considered for demonstra-
tion of the approach. For ungauged sites, this section
presents future IDF curves for Seremban (within region)
and Johor Bahru (outside region).

Future climate IDF curves for Kuala Lumpur station
A simple “delta” (climate change factor, Ai) method is
adopted in this study. The climate change factor refers

to ‘simulated future rainfall intensities minus present day
rainfall intensities’ [14], This change is added directly to
the existing IDF curves with respect to the return pe-
riods. The projected IDF curves for Kuala Lumpur Sta-
tion are shown in Figure 11. The projected future
climate IDF curves for Kuala Lumpur Station shows that
simulations of WRF/CCSM A2 demonstrated a high
percentage rainfall intensity increase for a 50-year return
period, for the 24-hour duration storm, the increase by
the year 2100 is about 70% relative to present day. A 5-
year return period storm is widely used to design drain-
age system. The results indicate that the current rainfall
intensity (9 mm/hr)of a 50-year return period of 24-
hour duration is projected to occur more frequently, 1
in every 5 years by Year 2100. This implies that the
current drainage system will not be able to cope with fu-
ture extreme events.

2000

0.0

Lower Bound

Rainfall Intensities (mmhr)

Station: Raub, Malaysia

10-Year Return Period
WRF/ERA40
Starion

- -

Jen

Raub station (lee back side of the mountain).

Duration (Mins)

Figure 10 WRF/ERA40 projected present day rainfall intensties anomalies from the existing IDF curve (10-year return period): Johor
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Figure 11 Projected future climate IDF curves (50-year return period, 2071-2100, WRF/CCSM A2 derived): Kuala Lumpur station.
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Projected future climate IDF curves for Seremban and
Johor stations or ungauged stations

For the development of future climate IDF curves for
Seremban and Johor Bahru stations or ungauged stations,
the climate change factor (Ai) is added to the present day’s
lower and upper bounds of WRF/ERA40 derived IDF
curves to form the range for each of the return periods
for future rainfall extremes. For 50-year return period,
2071-2100, Figures 12 and 13 showcase the future
upper and lower bounds of Seremban and Johor Bahru
station respectively.

Conclusions

Development of IDF curves is crucial for undertaking
short-term measures as well as long-term management
and adaptations in water related sectors. This study pro-
vides a solution to derive present climate IDF curves for
ungauged sites outside the domain of gauged stations in

Peninsular Malaysia. While the approach suggested in Liew
et al. [10] is used in this study, the results of the study un-
doubtedly have significance contribution in terms of local
and regional hydrology (Malaysia and Southeast Asian
countries). The anticipated impacts of climate change
especially increase in rainfall intensity and its frequency
appreciates the derivation of future IDF curves in this
study. Lower resolution climate simulations may lead to
underestimation of present and future rainfall intensities;
thus, further research is required to improve the confi-
dence of these results. A larger ensemble of GCMs and
even higher resolution RCM simulations might yield en-
hanced local information that could be used for adapta-
tion. Nevertheless, this study serves to emphasize the
usefulness of the approach suggested by Liew et al. [10].
The most interesting part of the study is that the ap-
proach strikingly departs from the existing approaches;
the approach uses projected rainfall data resulting from
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dynamical downscaling using a regional climate model
driven by Reanalysis data. In the paper, deriving future
IDF curves for gauged and ungauged sites were also dem-
onstrated; the climate change factor approach is adopted.
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