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Abstract 

The mechanism of convective cell initiation and regeneration in the Bandung Basin 
( 107.35◦E− 107.95

◦
E; 6.75

◦
S− 7.25

◦
S ), Indonesia, is investigated using a Weather Research and Forecasting model. 

Based on the Cumulative Distribution Function and Regeneration Index, model simulations were conducted using 
case studies in February–March 2019. Upslope wind flows to the mountain peak in north and south of the basin due 
to solar heating, carrying water vapor from the bottom of the basin. Therefore, low-level convergence is formed due 
to the convergence of winds from the bottom of the basin and from outside the basin. The low-level convergence 
causes the developing updraft, makes atmosphere unstable, and generates convective initiation. The convective 
system will be developed in the mountains region, produced precipitation, and formed cold pools on the surface. 
The cold pool will fall down the slopes and convective activity from the mountains will continue to the bottom 
of the basin. The convective system’s outflow causes the cold pool to move in the west–east direction. The cold 
pool will collide with warmer air from the opposite direction, resulting in an updraft at the cold pool leading edge, 
and convection will be re-initiated (convective regeneration) in the Bandung Basin, with the new convective system 
tending to move eastward.

Keywords Initiation, Regeneration, Convective cell, Bandung Basin, Cold pool

Introduction
Topography and terrain geometry play an important role 
in convective initiation, precipitation, and convective 
regeneration (Jiang 2006; Houze 2012; Watson and Lane 
2012; Smith et al. 2015; Kuo and Wu 2019). A concave-
shape topography produces more precipitation rather 
than straight-shape and convex-shape topography (Wat-
son and Lane 2012) because of the confluence zone in 
the vertex, making upslope ascent stronger, and produc-
ing more precipitation (Jiang 2006; Rotunno and Ferretti 
2001). Cheng and Yu (2019) have explored the orographic 
precipitation over a concave-shape topography in Da-Tun 

Mountain, Taiwan and showed that maximum rainfall is 
caused by the upslope lifting mechanism. A flow splitting 
due to mountain blocking from mountain ridges can pro-
duce strong convergence between the ridges and cause 
lifting, making enhanced precipitation (Yu et al. 2022).

In addition to topographic shape, wind patterns can 
also affect convective initiation (CI) and convective 
regeneration. Kuo and Wu (2019) have been investigated 
the mechanisms of CI and regeneration through the 
ideal case in the Taipei basin and showed that the cold 
pool plays a role in convective regeneration. Low-level 
winds passing through the topography in parallel cause 
the CI, growing into a mature convective system, then 
generating a cold pool that can cause to regenerate new 
convective cell (Soderholm et al. 2014; Jeong et al. 2016; 
Yulihastin et al. 2021).

Mountainous area with the height of more 
than 2000 m in the north, south, and east part 
of the Bandung Basin in West Java, Indonesia 
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( 107.35◦E− 107.95◦E; 6.75◦S− 7.25◦S ) makes con-
cave-shape topography with the lowest height is around 
650 m . Flooding occurs in this lowest height topogra-
phy frequently, despite the height. Flooding is a disaster 
that occurs frequently throughout the year. According to 
BNPB RI (2021), there were 328 (32.06%) floods out of 
963 recorded disasters in the Bandung Basin from 2010 
to 2021. A long-duration flood occurred in the South 
Bandung from February to March 2019 and caused mate-
rial losses and casualties.

Local convective activity influences the precipitation 
in the Bandung Basin (Dewi and Trilaksono 2018; Fitri-
ani et al. 2019; Oigawa et al. 2017), which can be caused 
by anabatic and katabatic winds (Kombara et  al. 2019). 
The northern convective system produces earlier pre-
cipitation rather than the southern convective system 
(Dewi and Trilaksono 2018). The CI initiates in the north 
Bandung Basin and the convective system will propagate 
to the south, causing convective regeneration (Fitriani 
et  al. 2019). However, Oigawa et  al. (2017) conducted 
simulation in West Java and show that convective activ-
ity occurred as a result of reduced static stability due to 
moisture transport from the bottom of the basin to the 
south mountains. The convective system propagates to 
the northern region of West Java, which is different from 
Fitriani et  al. (2019) regarding the location of CI in the 
Bandung Basin.

Though the regeneration of convective cells in Bandung 
Basin has been revealed in the previous studies, there is 
no explanation about the mechanism of initiation and 
regeneration convective in Bandung Basin. Also, the 
impact of the topography surrounding Bandung Basin on 
the initiation and precipitation has been limited. Hence, 
this study aims to investigate the initiation and possible 
regeneration mechanism of convective cells in Bandung 
Basin and examine the impact of topography on the CI.

The remainder of this paper is organized as follows. 
“Case overview” section provides case selection method 
from observation data. “Numerical simulation” section 
describes the numerical model used in this study. “Result 
and discussion” section provides a detailed mechanism 
of convective initiation-regeneration and the effect of 
topography on CI and precipitation. “Summary” section 
presents a summary of our findings.

Case overview
Balai Besar Wilayah Sungai (BBWS) Citarum is part of 
the Ministry of Public Works and Public Housing of the 
Republic of Indonesia, which provides the rainfall obser-
vation data in Bandung Basin. To investigate the rainfall 
characteristics, we use ten precipitation rain gauges data 
from BBWS Citarum with time interval observation of 
10 min during the period 1 February to 31 March 2019. 

We categorize the regeneration and non-regeneration 
cases based on Cumulative Distribution Function (CDF) 
with an upper 20% threshold (P80) and Regeneration 
Index (RegI). We calculate the P80 for each rain gauge 
and calculate the mean and median of all rain gauges. 
The mean and median are used as thresholds and con-
ditions for selecting regeneration and non-regeneration 
cases based on Eq. 1:

where Prdaily is daily mean precipitation, PrP80 is mean 
precipitation of P80, Prmedian is median precipitation, 
and Prmedian_P80 is median precipitation of P80. There are 
eight cases that fulfill the conditions (Table 1). To deter-
mine the regeneration and non-regeneration cases, we 
calculate the RegI (Fitriani et al. 2019) for eight cases that 
pass the condition (Eq. 1). The RegI is given by Eq. 2:

Rain Gaugepeak≥2 is rain gauges that has two or more 
peak in a day, Rain Gaugepeak=1 is rain gauges that has 
one peak in a day. We calculate the ratio between the 
number of stations that has two or more than two peaks 
in a day and the number of stations which has only one 
peak in a day for every day for a 2-month period. Table 1 
shows the RegI for each case.

The regeneration cases must have RegI > 1 . When 
RegI > 1, the number of stations which have two or 
more than two peaks in a day is bigger than the number 
of stations which have one peak in a day. The RegI = 0 
indicates that all rain gauges have one peak of rainfall on 
that day, while 0 < RegI ≤ 1 indicates that the number 
of stations which have one peak in a day is bigger than 
the number of stations which have two or more than two 
peaks in a day. There are two cases, 23 February 2019 and 
26 March 2019, that have RegI > 1. However, we only 

(1)Prdaily ≥ PrP80 and/or Prmedian ≥ Prmedian_P80,

(2)RegI =

∑

Rain Gaugepeak≥2
∑

Rain Gaugepeak=1

Table 1 Date and Regeneration Index (RegI) value for eight 
cases which pass the condition based on Eq. 1

No Date RegI

1 03 February 2019 0.13

2 10 February 2019 0.00

3 21 February 2019 0.50

4 23 February 2019 1.67

5 05 March 2019 0.50

6 06 March 2019 0.80

7 26 March 2019 2.33

8 27 March 2019 0.14
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use 26 March 2019 to investigate the mechanism initia-
tion and regeneration convective cell in Bandung Basin 
because it has the highest RegI and the rain gauge, which 
has two or more than two peaks in a day, is more distrib-
uted than other cases (Additional file, Fig. 1).

Numerical simulation
Heavy rainfall occurred in the Bandung area on 26 March 
2019, caused flooding in the southern part of Band-
ung, and 37,731 people were impacted (Cyber, 2019). 
One of the rain gauges recorded the total precipitation 
was 83 mm , with a maximum precipitation intensity of 
34 mm/h . To simulate the mechanism of initiation and 
regeneration convective, we perform the convection-
permitting simulations using the Advanced Research 
Weather Research and Forecasting Model (WRF-ARW) 
model version 4.3.3 (Skamarock et al. 2021) on 26 March 
2019. Figure 1 shows the three nested domains with hor-
izontal grid spacings of 9, 3, and 1  km denoted by d01, 
d02, and d03, respectively. The model simulation runs 

from 0000 UTC 25 March 2019 and uses NCEP GDAS 
Final Analysis data (National Centers for Environmen-
tal Prediction, National Weather Service, NOAA, U.S. 
Department of Commerce 2015) with lateral boundary 
condition updates every 6  h. We also perform the sen-
sitivity parameterization for three physics parameteri-
zations such as microphysics, planetary boundary layer 
(PBL), and land surface before analyzing the initiation 
and regeneration mechanism on 26 March 2019 because 
these three physics parameterizations influence the tim-
ing and location of convective initiation (Adams-Selin 
et  al. 2013; Singh et  al. 2018). The result of sensitivity 
parameterization is shown in Additional file  1: Table  1 
and Table 2. The configuration parameterization that was 
used in this present study includes the Betts–Miller–Jan-
jic cumulus scheme (Janjić 1994) for d01, but it was not 
used in d02 and d03. The three domains use WRF single-
moment 3-class (WSM3; Hong et al. 2004) microphysics 
scheme, Asymmetric Convection Model 2 PBL scheme 
(ACM2; Pleim 2007), Noah–MP Land Surface scheme 

Fig. 1 Model domain with elevation (unit: meter), a black line indicates the Bandung Basin boundaries as control run (CTRL), text d01, d02, and d03 
denote the domain 1 (9 km), domain 2 (3 km), and domain 3 (1 km), respectively. a CTRL run, the black dot denotes the location of BBWS rain 
gauges. b ALL_FLAT, c S_FLAT, and d N_FLAT are the experiment runs in “Result and discussion” section
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(Noah-MP; Niu et  al. 2011), Dudhia shortwave radia-
tion scheme (Dudhia 1989), Rapid and accurate Radia-
tive Transfer Model (RRTM) longwave radiation scheme 
(Mlawer et  al. 1997), and Revised MM5 Monin–Obuk-
hov surface layer scheme (Jiménez et al. 2012).

To investigate the impact of topography surrounding 
Bandung Basin to the CI, we designed and conducted 
three experiments in this study as shown in Fig.  1b–d. 
The ALL_FLAT experiment run removes all mountains 
surrounding the Bandung Basin (Fig.  1b) to the same 
height as the lowest height inside the Bandung Basin 
boundaries (~ 650  m). Similar to ALL_FLAT, S_FLAT 
experiment run removes only the southern mountain 
(Fig.  1c), while N_FLAT experiment run removes only 
the northern mountain (Fig.  1d). Herein, it is hypoth-
esized that the mechanism of CI is sensitive to the pres-
ence of mountains in the north and south Bandung Basin.

Result and discussion
Convective initiation
The convective initiation (CI) is defined as in Abulikemu 
et  al. 2020; Du et  al. 2020. To illustrate CI and convec-
tive activity in Bandung Basin in detail, Fig. 2 shows the 
hourly cloud evolution of Himawari 8 satellite compos-
ite true color (Akihiro 2020) from 0800 Local Time (LT; 
UTC + 7) to 1000 LT and the hourly evolution of model 
maximum reflectivity from 0900 to 1400 LT. We use 
Himawari 8 satellite composite true color (Band 1: 0.47µ , 
Band 2: 0.51µ , and Band 3: 0.64µ ) to validate the con-
vective activity surrounding Bandung Basin because of 
the absence of radar observation in Bandung Basin. The 
nearest radar observation is in Tangerang, which is 130–
160 km from the Bandung Basin and the range of radar is 
blocked by topography.

The CI first appeared in the southern mountain of 
Bandung Basin at 0900 LT (Fig.  2d). It is also con-
firmed from Himawari 8 satellite composite true color 
that there is convective activity in the location of CI, 
which is denoted by white color (Fig. 2a) at 0800 LT. The 
low-level convergence is formed in the location of CI, 
denoted by the blue contour (Fig. 2d). The wind surface 
flows to the southern mountain of the Bandung Basin. 
This flow merges with the wind that flows from outside 
Bandung Basin, producing the low-level convergence at 
the peak of the mountain. Because of radiation heating, 
the wind flows stronger and makes the convective activ-
ity at the peak mountain stronger, both in the southern 
mountain and the northern mountain. Note that a 1-h 
time difference between the Himawari 8 satellite com-
posite true color (Fig.  2a–c) and model (Fig.  2d–i). The 
initiation time errors between model and observation, 
possibly because of the initial model condition and phys-
ics scheme, significantly affect the convective activity 

(Du et  al. 2020) in West Java. Predicting the timing of 
CI in a complex topography such as West Java is diffi-
cult to accomplish, as pointed out by Kain et al. (2013). 
Regardless of the time difference between the model 
and observation, the model can capture the features of 
CI and convective activity in the Bandung Basin and its 
surroundings.

To further analyze the radiation heating effect on the 
wind flow, we examined the simulated shortwave radia-
tion in eight locations that is shown in Fig. 3 from 0700 
LT until 1200 LT. The shortwave radiation is increasing 
from 0700 LT until 1200 LT (Additional file, Table 3). It 
means that the near surface is continually heated and 
it will affect the temperature. Then, we examined the 
meridional wind and potential temperature at eight 
locations for 0700 LT and 1000 LT (Fig. 3). We pair two 
locations of each valley side of the mountain: location 
1H (higher place than 1B ) and 1B (lower place than 1H ) in 
the north mountain valley of the outer basin, location 
2H (higher place than 2B ) and 2B (lower place than 2H ) in 
the north mountain valley of the inner basin, location 3H 
(higher place than 3B ) and 3B (lower place than 3H ) in the 
south mountain valley of the inner basin, and location 
4H (higher place than 4B ) and 4B (lower place than 4H ) in 
the south mountain valley of the outer basin to calculate 
the differences of potential temperature. It shows that 
the different potential temperature for all pairs is posi-
tive, which means that the higher location has a higher 
potential temperature or warmer than the lower location. 
The wind speed increases and shows the reverse pat-
tern in the near surface. Wind flows down to the valley 
(downslope) and has small wind speed at 0700 LT, then 
flows up to the valley (upslope) and has strong wind 
speed. The reason for reversing and enhancing wind are 
the different temperatures along the valley. It produces 
horizontal pressure gradient force from lower location to 
higher location during daytime, and is called thermally 
driven wind (Markowski and Richardson 2010; Chow 
et al. 2013).

The convective cell that mostly initiates at the peak 
mountain will merge with another convective cell in the 
mountain region. These make convective line activity 
along the mountain (Fig. 2e–i). As shown in Fig. 2g, CI 
also initiates in the foothills of the northern mountain 
because of the convergence between gap wind from the 
west and gap wind from the east. This convective cell 
merges with the convective system that developed in the 
northern mountains. The convective system in the north-
ern mountains is earlier mature and dissipates rather than 
the convective system that developed in the southern 
mountains. A possible reason is the convergence, which 
continuously remains in the southern mountain because 
of flow from the bottom boundary domain and both west 
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and east gap winds. The northern mountain convective 
system propagates to the south and east. Meanwhile, the 
southern mountain convective system propagates slightly 
to the north.

Figure 4 shows the cross-section of the CI mechanism 
associated with low-level convergence along the line XY 
in Fig.  2d. As shown in Fig.  4a, surface wind from the 
bottom basin flows to the southern mountain 40  min 

107.2°° E

6.4°° S

6.8°° S

7.2°° S

7.6°° S

6.4°° S

6.8°° S

7.2°° S

7.6°° S

107.6°° E 108.0 °° E

(a) 08:00 LT (b) 09:00 LT (c) 10:00 LT

(d) 09:00 LT (e) 10:00 LT (f) 11:00 LT

107.2°° E 107.6°° E 108.0°° E 107.2°° E 107.6°° E 108.0°° E

CI

5 m/s

6.4°° S

6.8°° S

7.2°° S

7.6°° S

(g) 12:00 LT (h) 13:00 LT (i) 14:00 LT

CI

Fig. 2 a–c Himawari 8 composite true color from 0800 to 1000 LT 26 March 2019. d–i Hourly Maximum reflectivity (shaded, unit: dBZ ), surface 
wind from the bottom of the model (25-m, vector), divergence (red contour, 1× 10

−3s−1 ), convergence (blue contour, −1× 10
−3s−1 ), black line 

indicates the Bandung Basin boundaries from 0900 to 1400 LT 26 March 2019. X and Y lines are used to analyze the cross-section in Fig. 3. CI means 
convective initiation
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b) c)

d) e)

a)

Fig. 3 a Eight locations (four pairs) for radiation heating analysis, superscript denoted by H and L mean higher place and lower place. b–e 
Meridional temperature (red and blue, unit: m/s ) and different potential temperature (purple, unit: K  ) for 0700 LT and 1000 LT. The different potential 
temperatures are calculated by subtracting the potential temperature of the higher place and the potential temperature of the lower place
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Fig. 4 Vertical cross-section of meridional wind (vector and shaded (positive/red: to the north, negative/blue: to the south), unit: m/s ). a–c Vertical 
wind (magenta line from 1 m/s increase per 1 m/s) and black contour indicate meridional wind 0 m/s from 0820 to 0900 LT. d–f Reflectivity (shaded, 
unit: dBZ ), water vapor mixing ratio ( Qv , shaded, unit: g/kg ), wind (vector, unit: m/s ), and equivalent potential temperature (blue contour, unit: K)
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(0820 LT) before the time initiation (0900 LT). The wind 
also carried out water vapor from the bottom basin to the 
mountain peak (Fig. 4d). The wind from the bottom basin 
merges with the wind from the outside basin, creating an 
updraft that is denoted by the magenta line at the moun-
tain peak (Fig.  4b, d). As radiation heated stronger, the 
updraft also became stronger, causing the atmosphere to 
become unstable and resulting in the CI at the mountain 
peak.

To further analyze the source water vapor, we modi-
fied the net moisture budget by Du et al. (2020), which is 
expressed by Eqs. 3, 4, and 5:

where g is the gravitational constant, h1 and h2 are height 
of above ground level (0–500 m), Qx1x2  is the plane inte-
gration along the boundary from x1 until x2 . We calcu-
lated the net moisture budget around the north and south 
mountains from 0700 LT until 1000 LT. There are abun-
dant moisture flows to the peak mountains both from the 
bottom basin and the outer basin (Additional file, Fig. 2).

The impact of topography on convection initiation
To investigate the impact of topography surround-
ing Bandung Basin on the CI, we conducted the three 
modifying topography experiments. Figure  5 shows the 
impact of topography surrounding Bandung Basin on 
CI. As shown in Fig.  5a–c for ALL_FLAT run, there is 
no convective activity, which is denoted by maximum 
reflectivity ≥ 35 dBZ in the southern Bandung Basin, 
especially in the location of CI CTRL run (Fig. 2a). The 
low-level convergence forms in the southern West Java at 
1000 LT (Fig. 5b) and in the northern West Java at 1100 
LT (Fig.  5c), because the wind from bottom boundaries 
domain merges with the wind from top of flat topogra-
phy. In contrast with ALL_FLAT run, S_FLAT run and 
N_FLAT run show convective activity on the mountain 
peak (Fig.  5d–i). The CI in the N_FLAT run is delayed, 
compared to the result of the CTRL run around 20 min. 
Nevertheless, the convective activity N_FLAT run 
(Fig. 5d–f) in the southern mountain is quite similar with 
CTRL run (Fig.  2a–c). The convective cells merge with 
another convective cell along the topography. In contrast 
to the N_FLAT run, the S_FLAT run shows that the CI 
delay is around 10  min, compared to the CTRL run, in 

(3)Q =
1

g

∫ h2

h1

qV dh,

(4)Qx1x2 =

∫ x2

x1

Qdx,

(5)
Qnet = Qsouth_plane +Qnorth_plane +Qwest_plane +Qeast_plane,

the northern mountain and there is no convective activ-
ity in the southern Bandung Basin because of the absence 
of the southern mountain (Fig. 5g–i).

The simulation of modified topography results indi-
cates that topography in the southern and northern 
Bandung Basin greatly influence the CI. This result is 
consistent with the previous study results (e.g., Chen 
et  al. 2011, 2013; Du et  al. 2020; Li et  al. 2021) for the 
topography effect on the convective activity. The absence 
of southern and northern topography in the Bandung 
Basin causes the lack of low-level convergence and is 
inadequate to trigger the CI due to decrease of mois-
ture flux. This result also similar with Rasmussen and 
Houze (2016), who have explored the effect of the Andes, 
South America on the CI and showed that removing 50% 
topography will decrease the moisture flux convergence 
and less convection.

Convective regeneration
The definition of convective regeneration is that a new 
convective cell appears (cell t+ 1 ) after the previous con-
vective cell (cell t ) produces precipitation and dissipates 
(weakening). Convective regeneration can occur in a sim-
ilar place as the predecessor convective cell or in another 
place. This present study hypothesizes that convective 
cell initiates in certain locations, grow into convective 
system, and produce precipitation. The precipitation gen-
erates the formation of a cold pool, which triggers the 
regeneration of convective cells. The identification of a 
cold pool uses potential temperature ( θ ) and buoyancy 
( b ) at the lowest level of the model (~ 25  m). Buoyancy 
is a quantity used to examine the cold pools (Hirt et al. 
2020; Tompkins 2001). The buoyancy equation is given 
by Eqs. 6 and 7:

where b is buoyancy ( m/s2 ), g is gravitation ( m/s2 ), θρ is 
temperature density ( K ), θρ is horizontal mean tempera-
ture density ( K ), and qv, qc, qr, qi, qg, qs is mixing ratio for 
water vapor, cloud, rain, ice, graupel, and snow, respec-
tively. To identify the cold pool boundaries, we follow the 
threshold value b ≤ −0.005 m/s2 from Tompkins (2001) 
because it can capture the cold pools that coincide with 
the precipitation region.

As explained in the previous section, the northern 
mountain convective system propagates to the south 
and it coincides with the propagating cold pool to the 
south (Fig. 6a–d). The convective system produces the 

(6)b =
g
(

θρ − θρ
)

θρ
,

(7)θρ = θ

(

1+ 0.608qv − qc − qr − qi − qg − qs

)

,
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precipitation in the northern mountain, resulting in 
surface air becoming cool. This cold pool falls down 
through the valley and reaches the bottom basin. Mean-
while, the cold pool that is generated in the southern 
mountain propagates slightly to the north due to the 

gap wind from the west that prevents the southern con-
vective system from propagating further. Cold pool that 
reach the bottom basin tend to propagate to the east 
because of strong wind from the west (Fig. 2h, i).

5 m/s (a) 09:00 LT (b) 10:00 LT (c) 11:00 LT

(d) 09:00 LT (e) 10:00 LT (f) 11:00 LT

(g) 09:00 LT (h) 10:00 LT (i) 11:00 LT

Fig. 5 Same as Fig. 2a–c, but for three experiment runs. a–c ALL_FLAT, d–f N_FLAT, and g–i S_FLAT from 0900 to 1100 LT 26 March 2019. The black 
mark ‘X’ denotes the location of CI based on the CTRL experiment run
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Figures 7 and 8 show the detail of cold pool propaga-
tion and convective regeneration. Figure  7a–c shows 
convective cell initiates in the foothill of the northern 
mountain denoted by CS1 (Convective System 1), as 
pointed out in the previous section. The CS1 grows and 
merges with the northern mountain convective system 
(Fig.  7d–f), producing precipitation. The cold pool that 
exists in the northern mountain falls down to the val-
ley and reaches the center of the basin (Fig.  7g–r). The 
CS1 continues to propagate to the east because of strong 
wind from the west, as shown in Fig. 8 from 1330 to 1500 
LT and starts to dissipate at 1400 LT. This pattern also 
appeared on 23 February 2019. The cold pool exists in the 
southern mountain, falls down to the valley, and reaches 
the center of the basin.

The new convective cell initiates inside the basin, 
denoted by CS2 in Fig.  8 at 1440 LT (also shown in 
Additional file: Fig.  3 denoted by CR). The CS1 pro-
duces precipitation and subsequent evaporation creates 
a downdraft. The downdraft spreads as it reaches the 
surface, as shown in Fig. 8 at 1330 LT, as pointed out by 
Markowski and Richardson (2010). It spreads westward 
and eastward, pushing the cold pool to the west and east 
of the Bandung Basin. The cold pool collides with warm 
air from west, making a new convective cell as denoted 

by CS2 at 1440 LT. The CS2 develops and propagates 
tend to eastward. It is shown that the cold pool indeed 
exerts an important factor in the convective regeneration 
in Bandung Basin.

Summary
In the current study, we investigate the mechanism of 
convective initiation and regeneration in Bandung Basin, 
Indonesia, using the WRF model. A rainfall event on 
26 March 2019 was used as the case study based on the 
Cumulative Distribution Function (CDF) and Regenera-
tion Index (RegI) calculation. A convection-permitting 
WRF-ARW simulation with a horizontal grid spacing of 
1 km can capture the location of CI compared to those of 
the observations. The wind flow from the bottom basin 
carrying water vapor merges with the wind flow from the 
outside of the basin at the mountain peak. These winds 
create a low-level convergence in the mountain peak 
region. The low-level convergence reinforces the updraft, 
makes the atmosphere unstable, and forms the CI.

By carrying out the modified topography experiments, 
we attempt to clarify the role of southern and northern 
mountains in the Bandung Basin to the CI. When the 
northern and southern mountains are removed, there is 
no convective activity in both regions due to the absence 

Potential Temperature (K(K)

(a) 12:00 LT (b) 12:30 LT (c) 13:00 LT (d) 14:00 LT

(e) 14:30 LT (f) 15:00 LT (g) 15:30 LT (h) 16:00 LT

Fig. 6 a–h Potential temperature (shaded: K  ), and buoyancy (black dot, b ≤ −0.005m/s2 ) from 1200 to 1600 LT 26 March 2023. The X1-X2 
and Y1-Y2 in e 1430 LT are used to analyze the vertical cross-section in Figure
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vertical wind (magenta contour with interval 1 m/s ), meridional wind (first column panel), and zonal wind (fourth column panel) (vector, m/s ). 
The second (b, e, h) and fifth (k, n, q) column panel are total mixing ratio except water vapor mixing ratio (shaded) and reflectivity (black contour 
from 15 dBZ with interval 10 dBZ ). The third (c, f, i) and sixth (l, o, r) column panel are potential temperature (shaded) and cloud mixing ratio 
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of lifting and low-level convergence. These experiments 
also revealed that topography influences the CI timing.

The convective system that developed in mountains 
produces rainfall and generates a cold pool on the sur-
face. The cold pool will fall down to the valley and reaches 
the center basin. The outflow from the convective system 
causes the cold pool to spread westward and eastward. 
The cold pool will collide with warmer air from the oppo-
site direction, resulting in an updraft at the cold pool 
leading edge (CPLE) and convective will re-initiate (con-
vective regeneration) in the Bandung Basin, with the new 
convective system tending to move eastward. The process 
mechanism of the initiation and regeneration convective 
system in Bandung Basin is summarized in Fig. 9.

The present study gives understanding about the mech-
anism of CI and convective regeneration in basin area, 
especially in Bandung Basin, Indonesia. Also, it gives 
clarity about the role of mountains surrounding Bandung 

Basin to the CI. The effect of land use and the interac-
tion between sea–land breeze and mountain breeze in 
the southern mountain were not discussed in the present 
study, which is important to investigate in the future.
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