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Abstract 

Implementing the strongly coupled data assimilation (SCDA) in coupled earth system models remains big challeng‑
ing, primarily due to accurately estimating the coupled cross background‑error covariance. In this work, through sim‑
plified two‑variable one‑dimensional assimilation experiments focusing on the air–sea interactions over the tropical 
pacific, we aim to clarify that SCDA based on the variance–covariance correlation, such as the ensemble‑based 
SCDA, is limited in handling the inherent nonlinear relations between cross‑sphere variables and provides a back‑
ground matrix containing linear information only. These limitations also lead to the analysis distributions deviating 
from the truth and miscalculating the strength of rare extreme events. However, free from linear or Gaussian assump‑
tions, the application of the data‑driven machine learning (ML) method, such as multilayer perceptron, on SCDA 
circumvents the expensive matrix operations by avoiding the explicit calculation of background matrix. This strat‑
egy presents comprehensively superior performance than the conventional ensemble‑based assimilation strategy, 
particularly in representing the strongly nonlinear relationships between cross‑sphere variables and reproducing 
long‑tailed distributions, which help capture the occurrence of small probability events. It is also demonstrated to be 
cost‑effective and has great potential to generate a more accurate initial condition for coupled models, especially 
in facilitating prediction tasks of the extreme events.

Keywords Coupled data assimilation, Coupled cross error covariance, Nonlinear relationship, Machine learning, 
Extreme events

Introduction
As more record-breaking weather events occur under 
global warming, using coupled earth system models to 
produce reliable seasonal to decadal predictions is pro-
gressively crucial for decision-makers to manage the risk 

(Wang et  al. 2017b; Penny and Hamill 2017; Raymond 
et  al. 2020). The accuracy of model initialization is sig-
nificant for predictions on seasonal to decadal timescales 
(Boer et  al. 2016). Coupled data assimilation (CDA) 
serves as a solution, which combines the prior model 
predictions and observations from different earth com-
ponents together to obtain the best initial conditions for 
each component. By maintaining the interaction between 
different components, CDA mitigates the initial shock 
and generates physically balanced initial conditions 
(Zhang 2011; He et al. 2020). Different from weakly CDA 
(WCDA), strongly CDA (SCDA) allows observations 
directly influence the state estimation of another compo-
nent through coupled cross background-error covariance 
(CCEC). The distinguished performance of SCDA has 
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been proved by models of various complexities (Zheng 
and Zhu 2010; Park et al. 2015; Sluka et al. 2016; Penny 
et  al. 2019; Kalnay et  al. 2023). While SCDA is a theo-
retically optimal approach, current operational centers 
mostly combine the existing atmospheric and oceanic 
assimilation systems to construct WCDA systems (Fujii 
et al. 2021). This is because the incorrect CCEC in SCDA 
will lead to inferior analysis quality compared to WCDA 
(Han et al. 2013).

It remains challenging for estimating accurate CCEC 
and implementing SCDA, due to the difference in vari-
ability of each component, lead–lag correlation between 
components, sampling errors, high computational cost, 
and nonlinear interaction at the interface (Penny et  al. 
2017; Zhang et  al. 2020; Zheng et  al. 2022). Attempts 
have been made to surmount these difficulties, and 
one such effort involves the development of a multi-
timescale, high-efficiency approximate EnKF (MSHea–
EnKF). It aims to enhance the computational efficiency 
and the accuracy of error statistics for slow scale (Yu 
et al. 2019), while the high observation frequency of fast 
scale can also help address the multiscale problem (Ton-
deur et  al. 2020). Leading averaged coupled covariance 
(LACC) method is proposed to alleviate issues arising 
from lead–lag relationships, and the real-world assimi-
lation experiments also prove that LACC could produce 
high-quality analyses (Lu et  al. 2015; Sun et  al. 2020). 
Reconditioning, Schur product localization (Smith et al. 
2018) and the correlation–cutoff method (Yoshida and 
Kalnay 2018) are three effective approaches for mitigat-
ing the sampling error. Although proven to be power-
ful in state estimation, the dominant SCDA methods, 
including ensemble-based, variational and hybrid frame-
works, have disadvantages of expensive computational 
cost and assumptions on linearity and Gaussianity that 
are detrimental to complex high-dimensional coupled 
models (Zhang and Zhang 2012; He et al. 2017; Evensen 
et al. 2022). Even the particle filter (PF), free from linear 
or Gaussian assumptions, faces the unavoidable curse 
of dimensionality and filter degeneracy when applied to 
geophysical systems with high dimensions. Some PF vari-
ants have been proposed to mitigate these problems by 
introducing localization schemes or giving equal particle 
weights (Tödter and Ahrens 2015; Poterjoy 2016; Zhu 
et al. 2016; Skauvold et al. 2019; Feng et al. 2020).

The data-driven machine learning (ML) method has 
drawn tremendous attention today, due to its capabil-
ity of nonlinear expression and spatiotemporal feature 
extraction, coupled with the advantages of strong gener-
alization and computational efficiency (Sarker 2021; Xu 
et al. 2021). The successful applications of ML in assimi-
lation for single models provide a promising approach for 
addressing the aforementioned challenges (Brajard et al. 

2020; Arcucci et  al. 2021; Ruckstuhl et  al. 2021; Huang 
et  al. 2021; Zhou and Zhang 2023). This study aims to 
investigate (1) the limitation of conventional SCDA strat-
egy that based on variance–covariance correlation and 
(2) the potential effectiveness of ML in nonlinear SCDA. 
This paper is organized as follows: Sect.  “Problem Defi-
nition” elucidates the conflict between the linear update 
mechanism of conventional assimilation methods and 
the nonlinear reality. The nonlinear assimilation experi-
ment design is presented in Sect.  “Experiment settings 
for strategy effectiveness evaluation” and the main results 
are analyzed in Sect.  “Performance of different SCDA 
strategies”. Conclusions will be provided in Sect.  “Con-
clusion and discussion”.

Problem definition
Data sets
The present study employs the monthly reanalysis data 
of oceanic and atmospheric components: the sea surface 
temperature (SST) is obtained from the Hadley Centre 
Sea Ice and SST data set version 1 (HadISST1) (Rayner 
et al. 2003); the sea surface salinity (SSS) is from the Had-
ley Centre’s subsurface temperature and salinity data set 
EN4.2.2 (Gouretski and Reseghetti 2010); and the sea 
surface height (SSH) measurements is derived from the 
Simple Ocean Data Assimilation product (SODA 3.15.2) 
(Carton et  al. 2018). The outgoing longwave radiation 
(OLR) is from NOAA interpolated outgoing longwave 
radiation data set (Liebmann and Smith 1996); the pre-
cipitation rate (PRC) is taken from the Global Precipita-
tion Climatology Project (GPCP) (Adler et al. 2003); and 
the air temperature at 2 m (T2m) is from the fifth genera-
tion ECMWF Reanalysis (ERA5) (Hersbach et al. 2020). 
The SSH data is available from 1980 to 2020, while oth-
ers cover the period from 1979 to 2022. The provided 
data will be used to evaluate the performance of differ-
ent SCDA strategies in handling relations of various 
complexity.

Linear characteristic of coupled data assimilation
Ensemble Kalman filter (EnKF) has shown powerful 
capability in SCDA for coupled ocean–atmosphere mod-
els (Liu et al. 2013). The analysis equation of EnKF can be 
written as (Sakov and Sandery 2015):

where superscripts a , p and o represent analysis, predic-
tion and observation, respectively, hereafter; Xa repre-
sents the analysis field; Xp denotes the background field 
(a.k.a. the prior model prediction field); Xo is the obser-
vation field; H is the linearized observation operator; K  

(1)Xa = Xp + K
(
Xo −HXp

)
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represents the Kalman gain matrix, which can be written 
as

 where B denotes the flow dependent background error 
covariance matrix, a statistical variance–covariance 
matrix estimated by ensemble members to characterize 
the correlation of variables among the model grid points. 
R is the observation error covariance matrix that can be 
derived from the observation error of instruments.

In order to analyze the increment of prior prediction 
induced by the observations from another earth compo-
nent during one assimilation cycle, here we consider a 
two-variable one-dimensional field denoted as (x, y) , with 
x and y represent oceanic and atmospheric components, 
respectively. To directly illustrate the adjustment and high-
light the role of B in adjustment (Appendix B), we further 
simplify the update equation by assuming that there are 
only accurate observations of oceanic variable xo available 
at the model grid points, so we have Xo = xo , R = 0 and 
H = (1,0) . Supposing that the prior model prediction is 
Xp = (xp, yp)

T , the update equation finally turns to

where δX = Xo −HXp = xo − xp = δx , so that the anal-
yses of x and y are computed by

where σyx represents the covariance between y and x , σ 2
x  

represents the standard deviation of the x . σyx and σ 2
x  are 

(2)K = BHT
(
HBHT + R

)−1

(3)Xa = Xp + BHT
(
HBHT

)−1
δX

(4)xa = xp + δx

(5)ya = yp +
σyx

σ 2
x
δx

parts of B . Equation  (5) clearly shows that the oceanic 
observation innovation is projected to atmospheric com-
ponent through a linear coefficient, which is the ratio of 
σyx and σ 2

x .
If we substitute the variance–covariance correlation with 

linear regression to describe the relationship between air–
sea variables, then the analysis field will be expressed as

where 0 and b represent the bias, and the regression coef-
ficient a is calculated by

Therefore, the only difference between two assimila-
tion strategies is the bias in update equation of y , that 
means SCDA based on the variance–covariance corre-
lation is analogous to linear regression mathematically. 
These deductions are in agreement with previous works 
(Anderson 2003; Zhang et al. 2007). Equations (5) and (8) 
collectively demonstrate that through conventional SCDA, 
observations can only linearly impact the adjustment of 
state from different components.

Correlation between variables from different components
Tropical Pacific is a region characterized by intense air–
sea interaction. To investigate the importance of non-
linear part in the relationships between different earth 
components, we evaluate the difference of determina-
ble coefficient ( R2 ) between the second-order and first-
order Taylor expansion of the function y = f (x) over 

(6)xa = xp + 1× δx + 0

(7)ya = yp + a× δx + b

(8)a =

∑N
i=1(xi−x)(yi−y)∑N

i=1(xi−x)2
=

∑N
i=1(xi−x)(yi−y)

N∑N
i=1(xi−x)2

N

=
σxy

σ 2
x

Fig. 1 Difference in  R2 between the quadratic fitting model and linear regression model for modeling the correlations between local monthly 
anomalies. The blue line denotes that  R2 of quadratic fitting is 10 percent larger than linear regression
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(20◦S− 20◦N, 100◦E− 80◦W) , represented by linear 
regression model and quadratic fitting model, respec-
tively. R2 is an important metric for quantifying the 
explanatory power of the model, with larger values indi-
cating a more adaptive model to the task. The mathemat-
ical formulation is expressed as

where n is the number of the truth of atmospheric com-
ponents yi , ŷi is the estimates from fitting models and y 
is the mean of the truth. Decadal variability is removed 
from data by subtracting the monthly mean at different 
locations.

From Fig. 1, we observe that nonlinear correlations are 
prevalent among variables in the tropical Pacific. Uti-
lizing the quadratic fitting model to characterize these 
relationships can enhance R2 more than 10%, even larger 
than 24% in certain instances. It suggests that nonlinear 
component plays a crucial role and nonlinear approaches 
are more suitable to describe the relationships between 
variables from different earth components. However, the 
conventional SCDA only captures the linear correlation 
between variables to adjust the initial conditions for the 
coupled models, which conflicts with the realistic nonlin-
ear relationships. SCDA may lead the predictions unreli-
able, along with the linearized model and measurement 
operator.

Although nonlinear correlation also exists within a sin-
gle earth component, the fact that all variables are gov-
erned by the same dynamic equations helps mitigate the 
negative impact caused by the linear deficiency of assimi-
lation algorithms. However, it remains challenging for 
coupled system, subject to different dynamic equations, 
to avoid the incongruity between variables and address 
the linear deficiency. These inferences suggest that intro-
ducing non-linearity into SCDA methods is necessary 

(9)R2 = 1−
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi−y)

2

for generating more accurate analysis field and reliable 
predictions.

Experiment settings for strategy effectiveness 
evaluation
Multilayer perceptron (MLP)
MLP is a fully connected feedforward artificial neural 
network, comprising an input layer, at least one hidden 
layer and a output layer (Subasi 2020). The number of 
hidden layers and neurons is task-dependent. Each neu-
ron introduces nonlinearity through a nonlinear acti-
vation function, enabling the MLP to approximate any 
complex functions. The weights help establish connec-
tions between neurons in adjacent layers. The network 
gradually converges to the optimal solution by minimiz-
ing the loss function. MLP has exhibited remarkable 
performance in various applications, including image 
recognition and pattern recognition. Flexibility, a notable 
strength of MLP, enables the network to tackle a variety 
of tasks (Hornik et al. 1989). MLP remains effective even 
when faced with a single input feature, underscoring its 
ability to perform well in low-dimensional input settings 
(Taud and Mas 2018).

Experiment design
Under assumptions in Sect. “Linear characteristic of 
coupled data assimilation”, three SCDA strategies will 
be tested to handle relations between SST and OLR 
with different degrees of nonlinearity: quadratic fitting, 
a data-informed nonlinear polynomial fitting model; 
MLP, an effective data-driven and adaptive nonlinear 
machine learning approach; and EnKF, representing vari-
ance–covariance correlation and serving as a baseline for 
comparison.

Several temporally corresponding pairs of (ssto, olrt) 
points will be randomly selected from SST and OLR 
data sets in Sect. “Datasets” as test data set X test , with 
ssto serves as the xo in Sect. “Linear characteristic of cou-
pled data assimilation” and olrt as the atmospheric truth 
to assess the analyses olra generated by different SCDA 
strategies. Similarity is crucial for avoiding the deviation 
from realistic situation and effectively evaluating strate-
gies, so the number of pairs depends on the value of JSD 
between the distributions of selected points and the real 
situation (estimated by the entire data set). The remain-
ing part serves as the training data set X train . The mean 
of the entire data set serves as Xp and B is estimated by 
anomalies �X train , where � denotes X train minus Xp . 
�X train will be utilized to train parameters for strategies 
to model the relationship (Fig. 2).

Fig. 2 Nonlinear assimilation experimental design
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To facilitate training, the data for MLP is initially nor-
malized within the range of (−  1,1). The rectified lin-
ear unit (ReLU) is chosen as the activation function to 
process the input nonlinearly. The Mean Square Error 
(MSE) is employed as the loss function and the Adaptive 
Moment Estimation (Adam) algorithm serves as weight 
updating scheme. The learning rate, as well as the depth 
and width of MLP are determined empirically. Consider-
ing the data volume, K-fold cross-validation is introduced 
to determine the optimal validation data set and trained 
model.

Evaluation metrics
To systematically measure the performance of different 
assimilation strategies, six evaluation metrics are intro-
duced. Besides R2 , the root-mean-square error (RMSE) 
and mean absolute error (MAE) serve to quantify the 
precision of the assimilation model. Compared to MAE, 
RMSE amplifies the contribution of larger errors to com-
prehensive performance of the assimilation model, which 
could help evaluate the performance of model in the 
extreme events. Pearson correlation coefficient (Corr) is 
used to evaluate the degree of coordinated variation of 
the analyses and the truth olrt.

Considerable emphasis should also be placed on 
whether the distribution of the analysis field deviates 

from the truth. The Kullback–Leribler divergence ( DKL ), 
also known as relative entropy, is commonly used to 
evaluate the disparity between two distributions. DKL is 
defined as

where P is the baseline distribution and Q is the sample 
distribution. DKL is a non-negative asymmetric metric, 
signifying that DKL(P||Q) �= DKL(Q||P) . The lower the 
values of DKL , the smaller the disparity between Q and P.

The Jensen–Shannon divergence ( JSD ) is a more com-
prehensive measure of distribution similarity, which 
inherits the capabilities of DKL and addresses its asymme-
try deficiency simultaneously. The formula is as follows:

where M is the average of P and Q . The range of JSD is 
0–1. Here we define that the difference between P and Q 
is negligible when JSD ≤ 0.01.

Performance of different SCDA strategies
We first evaluate the effectiveness of strategies in near-
linear, weak and strong nonlinear relations at local grid 
points within the tropical pacific, where the data assim-
ilation is practiced on. 100 points are selected to reflect 

(10)DKL(P||Q) =
∑

iP(i)log
(

P(i)
Q(i)

)

(11)JSD(P,Q) = 1
2DKL(P||M)+ 1

2DKL(Q||M)

Table 1 Statistical average evaluation metrics of different strategies for relations with different complexity

The correlation coefficients are significant at the 5% significant level and the “improvement” rows in the table represent the improvement of the MLP compared to 
EnKF

Near-linear Weak nonlinear Strong nonlinear

RMSE (W/m2) EnKF (Var‑Cov) 14.614 15.227 9.052

Quadratic fitting 14.514 13.543 6.630

MLP 14.294 13.076 5.897

Improvement − 3% − 14% − 35%
MAE (W/m2) EnKF (Var‑Cov) 11.639 10.866 6.144

Quadratic fitting 11.525 9.436 4.550

MLP 11.349 8.998 3.900

Improvement − 2% − 17% − 37%

R
2 EnKF (Var‑Cov) 0.25 0.32 0.29

Quadratic fitting 0.26 0.47 0.61

MLP 0.28 0.51 0.68

Improvement  + 3%  + 19%  + 39%
Corr EnKF (Var‑Cov) 0.45 0.58 0.55

Quadratic fitting 0.50 0.70 0.79

MLP 0.52 0.73 0.83

Improvement  + 7%  + 15%  + 28%
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the realistic situations for these examples according to 
the standard of JSD (Fig.  6), and 20 repeated experi-
ments are conducted at different grid points for each 
condition (Table  1). Consistent with the mathemati-
cal deduction, Fig.  3 shows that the analysis of EnKF 
is a result of linear mapping. Figure  3a demonstrates 
that variance–covariance correlation (EnKF) may yield 
more accurate state estimation than the unsuitable 
data-informed quadratic fitting strategy under near-
linear situation, though the latter shows statistically 
superiority (Table 1). When faced with nonlinear rela-
tions (Fig.  3b–d), linear strategy (i.e., EnKF) sacrifices 
information, especially in dealing with rare extreme 
events (OLR smaller than 240W /m2 ). Besides modeling 

the ordinary events accurately, MLP strategy is more 
reliable in predicting extreme or out-of-sample events, 
which other strategies are prone to underestimate. 
However, both linear and data-informed nonlinear 
strategies could generate state estimation that deviate 
from the truth to different extent, particularly for “low 
probability, high impact” events. The advantage of flex-
ibility enables data-driven MLP strategy adaptive to 
different relations, achieving statistically superior eval-
uation metrics (Table  1). The correlation coefficeinets 
in Table 1 also indicate that the linear strategy has diffi-
culty capturing the evolving character of complex rela-
tionships. Figure 3d shows that the bimodal analysis of 

Fig. 3 Analyses produced by EnKF, quadratic fitting and MLP strategies during one assimilation cycle for relations between SST and OLR: a 
near‑linear relation at (5◦S, 135◦E) ; b weak nonlinear relation at (0◦ , 165◦W) ; c strong nonlinear relation at (2.5◦S, 105◦W) ; d analysis distributions 
for the strong nonlinear relation. In (a–c), the orange points denote the truth; the gray points represent the training data set and the values 
in the legend are RMSE ( R2 ). In (d), the values in the legend are DKL , and a smaller value indicates a higher degree of similarity between the analysis 
distribution and the truth. To show clearly the performance of different strategies, points in (c) are selected evenly and the results depended on PDF 
are shown in Fig. 8c
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Fig. 4 Evolution of OLR with SST generated by different SCDA models at (5◦S−5
◦
N, 130

◦
E−100

◦
W) . The blue points denote the OLR that has the 

maximum probability to happen for a given SST in a real situation and the interval between points is 0.5 ◦
C . It shows that as SST increases, the value 

of OLR first increases (SST ≤ 25
◦
C) , remains relatively constant (25 ◦

C ≤ SST ≤ 28
◦
C) and finally exhibits a curve relation with SST (28 ◦

C ≤ SST ) . 
The other color points represent the analyses of OLR produced by different strategies for the given SST. The functions of gray and orange points 
remain the same as before

Fig. 5 Evolution of the loss function with epochs for the training and validation data set of relations between �SST  and �OLR at (a) (0◦ , 165◦W) ; (b) 
(5◦S−5

◦
N, 130

◦
E−100

◦
W)
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EnKF is inconsistent with the unimodal truth, because 
the variance–covariance correlation is analogous to lin-
ear mapping, determining that EnKF will yield a wrong 
distribution consistent with SST but not OLR (Fig. 6). 
Nonlinear strategies all successfully reproduce the uni-
modal distribution and gain smaller DKL.

Further comparison is made based on a more strongly 
nonlinear relationship between SST and OLR at 
( 5◦S−5◦N, 130◦E−100◦W ). 1500 points are selected for 
this example to validate the trained assimilation models 
(Fig. 7). The SCDA strategies based on least-squares cri-
terion are not only required to reduce RMSE, but closely 
represent the true evolving relationship between vari-
ables. Here we use the evolution of OLR with SST based 
on joint probability distribution to evaluate the three 
trained models. The analysis produced by EnKF shows 
a large margin of error, even completely away from the 
range of OLR when SST is below 25 ◦C (Fig.  4). Other 
two nonlinear strategies generate more accurate state 
estimations without significant deviation. The data-
informed quadratic fitting strategy is prone to overesti-
mates the value of OLR when SST is smaller than 22 ◦C , 
and fails to reproduce the evolution of OLR when SST is 
larger than 28 ◦C . However, the data-driven MLP strategy 
effectively captures the various evolving character within 
this complex correlation (Lau et al. 1997; Jiang and Zhu 
2020). The evolution reproduced by MLP closely matches 
the truth when SST is smaller than 25 ◦C , whereas other 
strategies exhibit substantially increased margins of error.

These inferences imply that the linear variance–covari-
ance correlation is not suitable for modeling ubiquitous 
nonlinear relationships, resulting in substantial errors in 
the analyses and predictions. Introducing nonlinear strat-
egies will remedy the linear limitation of conventional 
SCDA and improve the prediction skills for coupled 
models. Utilizing nonlinear fitting strategies to improve 
the state estimation proves to be more computationally 
expensive (Appendix C). In contrast, the ML strategy cir-
cumvents the need for constructing B explicitly, emerg-
ing as a promising approach for implementing SCDA in 
coupled models. Figure 5 also demonstrates that the loss 
function will converge stably and quickly as data volume 
grows, contributing to an improvement in computational 
efficiency of SCDA.

Conclusions and discussion
This study aims to clarify that the conventional SCDA 
based on the linear variance–covariance correlation faces 
limitations in addressing complex relations within cou-
pled systems. The simplified two-variable one-dimen-
sional nonlinear assimilation experiments based on SST 
and OLR are conducted in the tropical Pacific, a region 
characterized by intense air–sea interaction (Wang et al. 
2017a). Experimental results indicate that the conven-
tional SCDA strategy (i.e. ensemble-based assimilation 
method) is suitable for near-linear situations, but fails 
to represent nonlinear relationships. Given the universal 
nonlinear relationships in the real world, it is necessary 
to develop nonlinear SCDA strategies. Instead, the data-
driven advantage enables ML strategy, represented by 
MLP here, to overcome the linear or Gaussian limitations 
of conventional strategies and adapt to relations with 
various complexity. This strategy also achieves compre-
hensively improved analysis quality than linear and data-
informed nonlinear strategies, especially for regions with 
strongly nonlinear interaction between earth compo-
nents. The superior results of evaluation metrics and the 
longer tail of analysis distributions collectively illustrate 
the significant potential effectiveness of ML in generating 
more accurate analysis field and enhancing the prediction 
skills of small probability events (Frame et  al. 2022). In 
addition, it circumvents the explicit construction of back-
ground matrix and subsequent costly matrix operations, 
presenting a cost-effective approach for implementing 
SCDA. The augment of the data volume and input fea-
tures could further enhance the computational efficiency 
of SCDA based on ML strategy, which can be achieved by 
increasing the ensemble size and integrating heterogene-
ous data from different sources. However, the limitation 
of ML in handling imbalanced data set may hinder the 
further improvement, solutions like introducing physi-
cal mechanism into ML strategy become imperative (Xie 
et al. 2021).

Appendix A
Distribution similarity and loss evolution

See Figs. 6, 7, 8, 9
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Fig. 6 JSD for examples of local relation between SST and OLR, when 100 points are selected. a, b at (5◦S, 135◦E) ; c, d at (5◦S, 155◦W) ; e, f 
at (2.5◦S, 105◦W) . The values after the “selected” are JSD
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Fig. 7 Same as Figure A1 but for the relation between SST and OLR at ( 5◦S−5
◦
N, 130

◦
E−100

◦
W ), when 1500 points are selected

Fig. 8 Analysis distributions produced by EnKF, quadratic fitting and MLP strategies during one assimilation cycle for the examples of the relation 
between SST and OLR: a near‑linear relation at (5◦S, 135◦E) ; b weak nonlinear relation at (0◦ , 165◦W) . In (a, b), the values in the legend are DKL . c 
Analyses produced by different strategies during one assimilation cycle for strong nonlinear relation at (2.5◦S, 105◦W)
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Appendix B
Influence of observation error covariance in adjustment

In real-world assimilation experiments, the observa-
tion error covariance R can be derived from the observa-
tion error of instruments and is usually non-zero. In this 
study, R is also a changeable positive variance, when only 
oceanic observation xo is available. If we set R = c ∗ σ 2

x  , 
where c is a changeable positive constant and σ 2

x  is the 
background error variance of oceanic component. Then 
the update Eq. (1) turns to:

and the analyses of x and y are described as:

Equations (13) and (14) clearly shows that the oceanic 
observation innovation is projected to atmospheric com-
ponent through a linear coefficient. When σ 2

x  is fixed, the 

(12)

Xa =Xp +

(
σ 2
x σxy

σyx σ 2
y

)(
1

0

)

((
1 0

)( σ 2
x σxy

σyx σ 2
y

)(
1

0

)
+ c∗σ 2

x

)−1

δX

(13)xa = xp +
1

1+ c
(xo − xp)

(14)ya = yp +
σyx

σ 2
x

1

1+ c
(xo − xp)

value of c will influence the analyses generated by EnKF. 
To further clarify the influence of R , Fig.10 provides an 
example based on SST and OLR at a local grid point. 
It clearly shows that when 0 ≤ c < 1(0 ≤ R < σ 2

x  ), the 
SCDA model weights observation xo more than prior 
prediction xp and when c = 0 ( R = 0 ), observation is 
completely trusted to modify the prior predictions Xp . 
When 1 ≤ c(σ 2

x ≤ R ), xp plays more important role in 
assimilation, analyses Xa are gradually close to Xp as c 
increases. When c = ∞(R = ∞ ), analyses Xa are finally 
equal to Xp . Although R derived from instruments will 
influence the analyses, it will not change the linear char-
acteristic of conventional SCDA strategies. However, 
the variance–covariance relationship ( σyx/σ 2

x  ) between 
cross-sphere variables estimated by ensemble members 
can be replaced by a nonlinear form to supply nonlinear-
ity to SCDA strategies.

See Fig. 10.

Although R derived from instruments will influence 
the analyses, it will not change the linear characteristic 
of conventional SCDA strategies. However, the variance–
covariance relationship ( σyx/σ 2

x  ) between cross-sphere 
variables estimated by ensemble members can be 
replaced by a nonlinear form to supply nonlinearity to 
SCDA strategies.

Fig. 9 Evolution of the loss function with epochs for the training and validation data set for relations between �SST  and �OLR at (a) (5◦S, 135◦E) ; 
the PDF‑dependent (b) and the evenly selected example (c) at (2.5◦S, 105◦W)
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Appendix C
Construction of nonlinear background matrix

To enhance the accuracy of state estimation, we try to 
introduce nonlinearity into SCDA by constructing a non-
linear B based on quadratic fitting. The quadratic fitting 
offers the benefits of simplicity, nonlinearity, and a higher 
level of accuracy. Then the analysis formulations of x and 
y are:

where δx = xo − xp , the corresponding tangent linear 
format can be written as:

then the reconstructed nonlinear B can be obtained 
through inverse deduction:

And compared to the original one, the analysis equa-
tion has one more constant vector C = (0, c)T :

This simplest scenario demonstrates that the nonlin-
ear B in Eq. (19) is no longer a symmetrical constant 
matrix and the elements of B are functions dependent 
on observations. However, as the degree of polynomial 
fitting, variable and observation increase, along with 
segmented partitioning, the rapid growing complexity 

(15)xa = xp + δx

(16)ya = yp + aδx2 + bδx + c

(17)δxa = δxo

(18)δya = 2a
(
xo − xp

)
δxo + bδxo

(19)B =

(
1 0

2a
(
xo − xp

)
+ b 0

)

(20)Xa = Xp + BHT
(
HBHT

)−1
δX + C

of B will result in a surge of computational cost. The 
adaptability of this matrix requires further examina-
tion. Therefore, more practical nonlinear strategies are 
needed for SCDA.
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