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Abstract 

A hypothesis testing approach, based on the theorem of probability integral transformation and the Kolmogorov–
Smirnov one‑sample test, for performance evaluation of probabilistic seasonal rainfall forecasts is proposed in this 
study. By considering the probability distribution of monthly rainfalls, the approach transforms the tercile forecast 
probabilities into a forecast distribution and tests whether the observed data truly come from the forecast distribu‑
tion. The proposed approach provides not only a quantitative measure for performance evaluation but also a cumula‑
tive probability plot for insightful interpretations of forecast characteristics such as overconfident, underconfident, 
mean‑overestimated, and mean‑underestimated. The approach has been applied for the performance evaluation 
of probabilistic season rainfall forecasts in northern Taiwan, and it was found that the forecast performance is seasonal 
dependent. Probabilistic seasonal rainfall forecasts of the Meiyu season are likely to be overconfident and mean‑
underestimated, while forecasts of the winter‑to‑spring season are overconfident. A relatively good forecast perfor‑
mance is observed for the summer season.

Keywords Probabilistic forecast, Seasonal rainfall, Performance evaluation, Hypothesis test

Introduction
Rainfall forecast plays an essential role in natural disas-
ter prevention and mitigation. For such applications, 
very-short-range, short-range, to daily rainfall forecasts 
are needed. These forecasts can yield sub-hourly, hourly, 
and daily rainfall forecasts for the next several hours to 

days (Cuo et  al. 2011; Shrestha et  al. 2013; JMA 2018). 
Roberts et  al. (2009) demonstrated the benefit of using 
high-resolution precipitation forecasts from numeri-
cal weather prediction (NWP) models for flood and 
short-term streamflow forecasting. Most NWP models 
are deterministic models. The uncertainty in the initial 
condition of weather variables; however, small, together 
with the model uncertainty, will lead to uncertainty in 
the forecast after a certain forecast lead time (Slingo and 
Palmer 2011). Hence, all NWP forecasts must be treated 
as probabilistic. Nowadays, accurate forecast of sub-
hourly to daily rainfalls relies mainly on NWP models. 
However, machine learning techniques are also increas-
ingly applied to short-range rainfall forecasts (Donlapark 
2021; Chen and Wang 2022; Frnda et al. 2022).

In contrast to natural disaster prevention and mitiga-
tion, for which responsive actions are taken immedi-
ately before or after issuing the forecast, tasks like water 
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resources planning and disaster management often need 
to make decisions several weeks or months in advance. 
For example, in a dry year, an irrigation manager needs 
to decide on paddy planting acreage and irrigation water 
allocation several months in advance (Tsai et  al. 2023). 
Short-range rainfall forecasts cannot facilitate the data 
requirements for such long-term decision-making. 
Instead, information about the seasonal rainfall over the 
crop-growing season is crucial for such irrigation deci-
sion-making. Other examples of strategic planning for 
risk reduction using seasonal climate forecasts have also 
been documented (Dessai and Bruno Soares 2013; BoM 
and IFRC 2015) Nowadays, routine operational activities 
of global seasonal climate forecasts are being conducted 
by several meteorological forecast services, including the 
European Centre for Medium-Range Weather Forecasts, 
Japan Meteorological Agency, Met Office of UK, and the 
National Centers for Environmental Prediction of the 
United States.

Seasonal climate forecasts do not aim to forecast the 
day-to-day evolution of weather; instead, they provide 
estimates of seasonal-mean weather statistics over a 
region, typically up to 3 months ahead of the season in 
question (Weisheimer and Palmer 2014). In addition, 
weather models used to make seasonal forecasts are only 
approximate representations of reality. Thus, seasonal 
forecasts are probabilistic in nature, taking the form of 
occurrence probabilities over future events (Weisheimer 
and Palmer 2014). Probabilistic weather forecasting pro-
vides a range of plausible forecast results, which allows 
the forecaster to assess possible outcomes, and estimate 
the risks and probabilities of those outcomes. By con-
sidering perturbations to the initial conditions and sto-
chastic parameterizations, ensemble forecasts are now 
fundamental to weather forecasting on all scales. It has 
been demonstrated that model-specific biases lead to 
under-dispersion in the ensemble; thus, the use of multi-
model ensembles (MME) with greater reliability in the 
ensemble prediction system is pursued (Palmer et  al. 
2004; Slingo and Palmer 2011).

Probabilistic forecasts are probability statements 
about future outcomes; however, they are not neces-
sarily issued as a probability for an event, such as the 
probability of raining or not raining. WMO (2020) rec-
ommended that operational seasonal forecasts be in a 
probabilistic format and that the probabilistic nature of 
seasonal forecasts be emphasized with a description of 
the probabilities used and their meaning. Different types 
of probabilistic seasonal forecasts can be issued (Troc-
coli et al. 2008). The most common type of probabilistic 
seasonal climate forecasts is to present the probabilities 
for the variable of interest, such as monthly rainfall or 
temperature, to fall into individual tercile categories. The 

tercile categories represent data ranges of below-normal, 
normal, and above-normal, and are determined based on 
the observed data within a specific historical period such 
as 1981 to 2010. Another type of probabilistic forecast is 
to present the probability density function or the cumu-
lative distribution function of the forecast variable, con-
ditioned on the current weather condition. This will give 
more complete and detailed information about the fore-
cast variable; however, it may also be difficult to interpret 
for many end users.

Since the probabilistic forecasts do not yield specific 
values of the forecast variables, for example, rainfall 
amounts or temperatures, the forecast performance can-
not be assessed using the attributes of forecast quality 
such as accuracy or correctness. In addition, forecast-
ing skills can be evaluated only when a large number of 
similar forecasts are available. Many measures for per-
formance evaluation of probabilistic forecasts exist in the 
literature (Bröcker and Smith 2007; Broecker 2012; Laio 
and Tamea 2007; Wilks 2019). All these measures are 
statistical characterization of the relationship between 
the observations and their corresponding forecasts. Two 
widely used measures are briefly described below.

Brier score (BS). Let y and o represent the probability 
forecast and the observation for probabilistic forecast-
ing of an event E, respectively. The Brier score (Eq.  1) 
is defined as the mean squared error of the probability 
forecasts, considering that the observation is 1 if event E 
occurs and that the observation is 0 if event E does not 
occur:

where n is the total number of (forecast y, observation o) 
pairs.

The forecast probabilities often only assume a few lev-
els, such as multiples of 0.1. If there are k forecast prob-
ability levels, i.e., yi, i = 1, 2, · · · , k , then the above Brier 
score can be further decomposed into three terms (Mur-
phy 1973; Troccoli et al. 2008; Wilks 2019):

where ni is the number of forecasts given that probabil-
ity level yi was forecast, oi is the average of all observa-
tions with corresponding forecast probability yi , and o is 
the average of all observations, i.e., the occurrence prob-
ability of event E. The first decomposed term in Eq. (2a) 

(1)BS =
1

n

n
∑

i=1

(

yi − oi
)2
, 0 ≤ BS ≤ 1

(2a)

BS =
k

∑

i=1

pi
(

yi − oi
)2 −

k
∑

i=1

pi(oi − o)2 + o(1− o)

(2b)pi =
ni

n



Page 3 of 15Cheng et al. Geoscience Letters           (2024) 11:27  

summarizes the conditional bias of the forecasts and is 
called the reliability.

For events with multi-category outcomes, as is the 
case of the tercile-category probabilistic forecast, the 
following multi-category Brier score can be calculated:

where m is the number of outcome categories and BSj is 
the Brier score for the event of category-j occurrence.

Brier scores close to zero indicate good forecast per-
formance. However, there is no single standard for how 
small or large the Brier score should be for a model 
with good or poor forecast performance. For example, 
it is difficult to interpret the performance as good or 
bad for a forecast model with a Brier score of 0.35.

Reliability diagram. For a given binary event E, the 
reliability diagram is a graph that shows the correspond-
ence of the forecast probabilities ( yi ) with the observed 
relative frequency of occurrence ( oi ) of event E, given the 
forecast. The forecasts are considered reliable when the 
forecast probability is an accurate estimation of the rela-
tive frequency of the predicted outcome (Murphy 1993). 
The reliability diagram plots as a diagonal line for perfect 
forecasts, as illustrated in Fig. 1. Previous studies (Endris 
et  al. 2021; Xu 2022) evaluated PSRF performance by 
considering regional or global probabilistic forecasts. In 
these studies, grid sizes of 0.5° and 1° were adopted for 
seasonal rainfall forecasts. Probabilistic forecasts at all 
grids within a specific region were combined to gain a 
large sample size, i.e. the number of PSRF runs, for the 
construction of reliability diagrams.

In a reliability diagram, forecast probabilities are 
grouped into a few probability levels, making each 
level have only a limited number of forecasts for cal-
culation of its relative frequency ( oi ). Even the reli-
ability diagrams of a perfectly reliable forecast system 
can exhibit deviations from the diagonal. Thus, evalu-
ating a forecast system requires some idea as to how 
far the observed relative frequencies are expected to 
be from the diagonal if the forecast system is reliable 
(Bröcker and Smith 2007). Unlike the reliability term 
in Eq.  (2a), which is a scalar summary measure, the 
reliability diagram uses k pairs of ( yi, oi ) to describe 
various properties, such as the overconfident, under-
confident, well-calibrated, wet bias, and dry bias, of the 
probability forecasts (Wilks 2019; WMO 2020). How-
ever, it is difficult to quantitatively compare the forecast 
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performance of different models using graphical diag-
nostic tools like the reliability diagram.

In this paper, we focus on probabilistic seasonal rainfall 
forecast (PSRF), and hereinafter, monthly rainfalls are the 
climatological variable under investigation. Most PSRF sys-
tems consider tercile categories and yield tercile forecast 
probabilities, i.e., probabilities for monthly rainfalls of ℓ
-month lead time to fall into individual tercile categories. 
Usually, probabilistic forecasts of 1-, 2-, and 3-month lead 
times are issued. Such practices require determining two 
tercile thresholds from monthly rainfall observations of a 
historical period. Each tercile category defines a dichoto-
mous, or binary, event that monthly rainfalls will or will not 
fall into this tercile category. Let the below-normal, normal, 
and above-normal tercile categories be expressed by C1 , 
C2 , and C3 , respectively, and their corresponding events be 
E1 , E2 , and E3 . A forecast that yields 100p% probability for 
C1 can be interpreted as that there is a 100p % chance that 
event E1 will occur. Each forecast run results in three ter-
cile forecast probabilities, or equivalently, the occurrence 
probabilities of E1 , E2 , and E3 . After a large number of 
forecast runs have been conducted, one can construct the 
reliability diagrams of events E1 , E2 , and E3 , respectively. 
However, when these reliability diagrams show different 
patterns, evaluating the overall performance of probabilis-
tic forecasts may become complicated. Although the tercile 
thresholds of monthly rainfalls were calculated using his-
torical observations, most PSRF systems do not consider 
the probability distribution properties of monthly rainfalls, 
including the distribution type and parameters. We believe 

Fig. 1 Exemplar reliability diagram. Dots represent the (forecast 
probability, observed relative frequency) pairs of probability forecasts. 
The diagonal line represents perfect forecasts
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that considering the probability distribution of monthly 
rainfalls can lead to a more insightful evaluation of PSRF 
Systems.

In addition, a question that naturally arises when evalu-
ating the performance of a PSRF system is whether the 
observed rainfalls truly come from the forecast distribu-
tion. This question can be dealt with by conducting sta-
tistical hypothesis tests, also known as the goodness-of-fit 
(GOF) tests. The Chi-squared test and the one-sample 
Kolmogorov–Smirnov (KS) test are the most widely used, 
particularly in the fields of water resources and hydrologic 
science (Kite 1977; Vlček and Huth 2009; Tarnavsky et al. 
2012; Hamed and Rao 2019). Therefore, we propose a non-
parametric goodness-of-fit test approach based on the Kol-
mogorov–Smirnov statistic for evaluating the performance 
of probabilistic seasonal forecasts.

This study aims to overcome the above difficulties in 
PSRF performance evaluation based on the Brier score and 
the reliability diagram. The proposed approach is statisti-
cally tractable and does not require using different reliabil-
ity diagrams for below-normal, normal, and above-normal 
events or separating forecast probabilities into a few prob-
ability levels. Specifically, the main research goals of this 
study are to (1) provide a clear criterion for PSRF perfor-
mance evaluation based on the KS hypothesis test and (2) 
derive a metric that does not need to separately evaluate 
the PSRF performance for the three tercile categories.

Methodology
In Taiwan, the Central Weather Administration (CWA) 
routinely issues probabilistic seasonal rainfall forecasts 
for the next 3  months at the end of the current month. 
Let X represent the monthly rainfalls of a specific month, 
say August, and q1 and q2 be the lower and upper tercile 
thresholds of X, respectively. Probabilistic rainfall fore-
casts for August can be issued at the end of May, June, 
and July, with 3-, 2-, and 1-month lead time, respectively. 
Let Y represent the forecast monthly rainfall of August 
under the current weather conditions. We shall refer to 
the cumulative distribution functions (CDF) of X and 
Y as the climate distribution and the forecast (or condi-
tional) distribution, respectively. We further assume that X 
and Y are of the same distribution type with two param-
eters. A forecast run yields three forecast probabilities, say 
(

pE1 , pE2 , 1− pE1 − pE2
)

 , where pE1 and pE2 are forecast 
probabilities of event E1 (below-normal) and event E2 (nor-
mal), respectively. We then have

(4a)FY (q1;α,β) = P(Y ≤ q1) = pE1

(4b)FY (q2;α,β) = P(Y ≤ q2) = pE1 + pE2

where FY  is the CDF of Y, and α and β are its parameters. 
Figure 2 illustrates the climate and forecast distributions 
and the cumulative probability of the observed rainfall, if 
the forecast distribution is true, of an exemplar forecast 
run.

For a two-parameter distribution, Cook (2010) 
showed how to solve for distribution parameters, given 
the two quantile conditions in Eqs.  (4a) and (4b). If Y 
belongs to a location-scale family, its location ( α ) and 
scale ( β ) parameters can be obtained as follows:

where Y ∗ is the same location-scale family distribution 
with location and scale parameters being 0 and 1, respec-
tively, and FY ∗ is the CDF of Y ∗.

Assuming that forecast probabilities 
(

pE1 , pE2 , 1− pE1 − pE2
)

 of n forecast runs are available 
and let oi, i = 1, 2, · · · , n, be the corresponding monthly 
rainfall observations. If the probability distribution 
type of monthly rainfalls is known, the forecast distri-
butions of individual forecast runs can be derived using 
Eqs. (5) and (6). By the theorem of probability integral 
transformation (PIT) (Mood et  al. 1974), cumulative 
probabilities of oi′ s form a random sample of size n 
from the standard uniform distribution U [0, 1] , if the 
observed rainfalls are truly from the forecast distribu-
tion FY  , that is

where parameters (αi,βi) may vary among different fore-
cast runs. The same concept has been applied to the PIT 
histogram and verification rank histogram to evaluate 
whether the forecast ensembles apparently include the 
observations being predicted as equiprobable members 
(Dawid 1984; Wilks 2019).

After the cumulative probabilities of the observed 
rainfalls have been calculated using Eq.  (7), the one-
sample KS GOF test can be conducted to test whether 
the observed monthly rainfalls truly come from the 
forecast distributions. This is equivalent to testing 
whether ui′ s are uniformly distributed. The KS statistic 
Dn is a measure of the maximum distance between the 
empirical CDF of the observed data and the CDF of the 
forecast, or hypothesized, distribution, that is

(5)α =
q1F

−1
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(

pE1 + pE2
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− q2F
−1
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(

pE1
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F−1
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− F−1
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F−1
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− F−1
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)

(7)ui = FY (oi;αi,βi) ∼ U [0, 1], i = 1, 2, · · · , n
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where Fn is the empirical CDF of ui′ s in Eq. (7) and FU is 
the CDF of the standard uniform distribution. The criti-
cal region of the KS test statistic depends on the sample 
size n and is well-documented (Mood et al. 1974). If the 
KS test rejects the null hypothesis, it suggests that the 
forecast distribution does not properly characterize the 
observed data, or the observed data do not come from 
the forecast distribution.

Demonstration by stochastic simulation
To demonstrate the efficacy of the proposed approach, 
we conducted the following stochastic simulation to 
mimic the probabilistic forecasts and evaluate the fore-
cast performance. Let W and X represent the monthly 
rainfalls of July and August, respectively, and q1 and q2 
be the lower and upper tercile thresholds of X. We can 
think of X as the climate distribution of monthly rainfall 
of August, and W as the current weather condition that 
leads us to make a probabilistic forecast. In addition, let 
Y be the forecast monthly rainfall of August given the 

(8)Dn = Sup
0≤u≤1

|Fn(u)− FU (u)| observed value of W, i.e., the conditional distribution of 
X given W. In our simulation, we assume that W and X 
form a bivariate normal distribution with the following 
parameters:

where µ, σ , and ρ represent the expected value, standard 
deviation, and correlation coefficient, respectively.

The above parameters were set for demonstration pur-
poses by considering the long-term average monthly 
rainfalls of July and August for the Shihmen Reservoir 
watershed and Tsengwen Reservoir watershed, the two 
largest reservoirs in Taiwan (NCDR, n.d.; see Supple-
mentary Information SI 1). Although these parameters 
are not exactly the same as the monthly rainfall statistics 
of the two reservoirs, they represent realistic amounts 
of monthly rainfall in summer in Taiwan. Figure 3 dem-
onstrates a scatter plot of 10,000 sample pairs of (W ,X) 

(9a)W ∼ N (µW = 860, σW = 279.28)

(9b)X ∼ N (µX = 745, σX = 219.09)

(9c)ρWX = 0.16

Fig. 2 Exemplar illustration of the climate and forecast distributions of monthly rainfall. a cumulative distribution functions; b probability density 
functions
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from the above bivariate normal distribution. The lower 
and upper tercile thresholds of X are 650.63 and 839.37, 
respectively.

Given an observed monthly rainfall of July, say w, we 
expect the monthly rainfall of August to be from the fol-
lowing condition normal distribution:

The above conditional distribution represents the fore-
cast, or hypothesized, distribution, for monthly rainfall 
of August. For our stochastic simulation, a set of N ran-
dom numbers of W, {wi, i = 1, 2, · · · ,N } , were generated. 
This is equivalent to conducting N PSRF runs. For each 
wi , the forecast distribution of monthly rainfall of August, 
i.e. fY

(

y
)

= fX |W
(

y|wi

)

 , was determined using Eqs. (10b) 
and (10c).

Given an observed wi , the observed monthly rainfalls 
of August, oi , may or may not come from our forecast 
distribution. We assume that the true distribution of oi 
is of the same distribution type as the forecast distri-
bution, but with an inflated variance and/or increased 
mean value. The variance inflation factor (VIF) is 
defined as the ratio of the variance of the observed data 
to the variance of the forecast distribution. Similarly, 
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(10c)Var(Y ) = Var(X |w) = σ 2
X

(
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)

the mean increase factor (MIF) is defined as the ratio of 
the expected value of the observed data to the expected 
value of the forecast distribution. If VIF = MIF = 1 , 
the observed data are from the forecast distribution; 
otherwise, the forecast distribution does not correctly 
characterize the observed data. We then generated 
an observed value, say oi , from the true distribution 
and calculated the cumulative probability FY (oi) = ui . 
The algorithm for stochastic simulation of PSRF per-
formance evaluation using the KS test is illustrated in 
Fig. 4.

Suppose the probability distribution of the observed 
data and the forecast distribution differ only in their 
variances (MIF = 1), the empirical CDF, Fn(u) , and the 
hypothesized CDF, FU (u) , would exhibit patterns, as 
illustrated in Fig. 5 (N = 1000) and Fig. 6 (N = 100). Panel 
(a) in Fig. 5 shows that when the observed data are from 
the forecast distribution (VIF = 1), Fn(u) and FU (u) are 
nearly identical (well-calibrated), and the null hypothesis 
was not rejected at 5% level of significance (p = 0.690). 
By contrast, panels (b) and (c) show rejection of the null 
hypothesis for underconfident (VIF < 1) and overconfi-
dent forecasts (VIF > 1), respectively. Although the corre-
sponding reliability diagrams shown in panels (d), (e), and 
(f ) seem to suggest a good correspondence between the 

forecast probability and the observed probability, they do 
not provide a quantitative measure of the forecast perfor-
mance. When the sample size is reduced to 100, panels 
(a), (b), and (c) in Fig. 6 demonstrate similar patterns as 
in Fig.  5, but with larger deviations between Fn(u) and 
FU (u). However, the reliability diagrams in panels (d), 
(e), and (f ) of Fig. 6 show erratic patterns, making it dif-
ficult to evaluate the forecast performance. It is worthy to 
observe the Fn(u) ∼ F(u) patterns in Figs. 5 and 6. When 
VIF < 1 , Fn(u) falls below F(u) , with a concave form, in 
the lower tercile range and falls above F(u) , with a convex 
form, in the upper tercile range. Whereas when VIF > 1 , 
Fn(u) falls above F(u) , with a convex form, in the lower 
tercile range and falls below F(u) , with a concave form, in 
the upper tercile range.

If the probability distribution of the observed data 
and the forecast distribution differ only in their means 
(VIF = 1), then Fn(u) and F(u) exhibit unique patterns, 
as illustrated in Fig. 7. When MIF < 1 , Fn(u) falls above 
F(u) and has a convex form, whereas when MIF > 1 , 
Fn(u) falls below F(u) and has a concave form.

Fig. 3 Scatter plot of 10,000 sample pairs from a bivariate normal 
distribution. The red line represents the regression line. Blue dashed 
lines mark the tercile thresholds of X 
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The above unique Fn(u) ∼ F(u) patterns can provide 
valuable insights into the characteristics, underconfident, 
overconfident, mean-underestimated (dry-biased), and 
mean-overestimated (wet-biased), of the PSRF results. 
For example, Fig.  8 demonstrates Fn(u) ∼ F(u) patterns 
for four (VIF, MIF) combinations. These patterns can be 
easily explained by the above insightful observations and 
can serve as guidelines to uncover the causes of PSRF 
results.

For a hypothesis test, the power of the test represents 
the probability of rejecting the null hypothesis when it 
is wrong. In the context of PSRF, if the null hypothesis is 
rejected, it suggests that the observed data are not from 
the forecast distribution. Thus, the power of the KS test 
represents the capability of invalidating a PSRF system 
when its tercile forecast probabilities fail to character-
ize the probability distribution of the observed data. To 
demonstrate the power function of the KS test under 

Fig. 4 Algorithm for stochastic simulation of PSRF performance evaluation using the KS test
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different situations, we carried out 1,000 repeats of the 
simulation process in Fig. 4 for every selected combina-
tion of VIF (0.2–2.0 at increments of 0.1), MIF (0.9–1.1 at 
increments of 0.1), and N (100, 200–1000 at increments 
of 200) values. For a specific (VIF, MIF, N) combination, 
the power of the KS test is calculated as the proportion of 
the 1,000 repeats that rejected the null hypothesis. Fig-
ure 9 shows levelplots of the power of the KS test based 
on our stochastic simulation. Generally speaking, the 
power increases with the number of PSRF runs, and the 
MIF appears to have a higher effect on the power than 
does the VIF. Figure 10 shows the power function of the 
KS test when only the variation in variance (MIF = 1) 
or mean (VIF = 1) is considered. For N = 100, the power 
function reaches 0.4 when the VIF is near 0.5 or 1.9, i.e., 

the variance of the observed data is 40% lower or higher 
than the variance of the forecast distribution. Whereas 
the same power level is reached when the MIF is 0.94 or 
1.06, i.e., the mean of the observed data is 6% lower or 
higher than the mean of the forecast distribution. These 
results reveal that PSRF systems that overestimate/
underestimate the mean are more likely to be invalidated 
by the KS test than those that overestimate/underesti-
mate the variance.

Study case—performance evaluation for PSRF in northern 
Taiwan
At the end of a month, CWA issues probabilistic seasonal 
rainfall forecasts for four regions (North, Center, South, 
and East) in Taiwan, by considering the observed weather 

Fig. 5 Exemplar results of the KS test (left column) and the corresponding reliability diagrams (right column), 1000 PSRF runs. D: sample value 
of the KS statistic
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Fig. 6 Exemplar results of the KS test (left column) and the corresponding reliability diagrams (right column), 100 PSRF runs. D: sample value 
of the KS statistic

Fig. 7 Fn(u) ∼ F(u) patterns for changes in the mean of the forecast distribution
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conditions and multi-model ensemble forecasts at a 
representative rainfall station in each region. Historical 
monthly rainfalls (1981–2020) and tercile forecast prob-
abilities (2004–2020) for the North region were used in 
this study for PSRF performance evaluation. CWA cal-
culated tercile thresholds (q1, q2) of individual months 
using 30  years of monthly rainfall observations at the 
representative Taipei station. These threshold values are 
updated every 10  years. For PSRF of 2001–2010, tercile 

thresholds were calculated using monthly rainfalls over 
the 1971–2000 period, whereas, for PSRF of 2011–2020, 
tercile thresholds were calculated using monthly rainfalls 
over the 1981–2010 period (see details in Supplementary 
Information SI 2).

A two-parameter distribution must be adopted to 
determine the forecast distribution of monthly rain-
falls based on the tercile forecast probabilities issued by 
CWA. From the results of GOF tests for monthly rainfalls 

Fig. 8 Fn(u) ∼ F(u) patterns for various combinations of (MIF , VIF) . Number of forecast runs N = 1000

Fig. 9 Levelplots of the power of the KS test, with respect to various sample sizes, based on the stochastic simulation described in the third section. 
Power functions of the two dashed profiles (MIF = 1 and VIF = 1) are shown in Fig. 10
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(1981–2020) at Taipei station using L-moment-ratio 
diagrams (Liou et  al. 2008; Wu et  al. 2012), the follow-
ing two-parameter log-normal distribution was chosen 
to fit the monthly rainfalls of individual months at Taipei 
station:

where µlnx and σlnx are the expected value and standard 
deviation of lnX , respectively. Given the tercile thresh-
olds (q1, q2) and tercile forecast probabilities (p1, p2) of a 
specific month, the location parameter ( µlnx ) and scale 
parameter ( σlnx ) of the log-normal forecast distribution 
could be determined using Eqs. (5) and (6). Cumulative 
probabilities of observed monthly rainfalls [see Eq.  (7)] 
over the 2004–2020 period for Taipei station were then 
calculated using the corresponding forecast distributions.

Taiwan experiences heavy rainfalls caused by mes-
oscale convective systems, which is known as the Meiyu 
frontal rainfalls, in late spring or early summer (May–
June), and by typhoons and convective storms in summer 
or early fall (July–October). Northeasterly monsoon also 
causes winter-to-spring (November to April) frontal rain-
falls over the northeastern part of Taiwan. These preva-
lent storms differ in terms of their annual occurrence 
frequency, storm duration, and rainfall intensity (Cheng 
et  al. 2024). Therefore, monthly rainfalls and the corre-
sponding tercile forecast probabilities were partitioned 
into three groups, namely, the Meiyu season, summer 
season, and winter-to-spring season, and their PSRF per-
formance evaluations were conducted separately.

Table 1 summarizes the results of the KS test for PSRF 
performance evaluation in northern Taiwan. For PSRF 
of the winter-to-spring season, the null hypothesis was 
rejected at 5% level of significance. For PSRF of the 
Meiyu season, the KS test rejected the null hypothesis at 
10% level of significance. The higher level of significance 

(11)fX (x) =
1

x
√
2πσlnx

e
− 1

2

(

lnx−µlnx
σlnx

)2

, 0 < x < +∞

was chosen for KS test of the Meiyu season for two rea-
sons (Labovitz 1968; Kim and Choi 2021): (1) the smaller 
sample size (34 forecast runs) for the Meiyu season and 
(2) the size of the true difference between the means of 
the observed data and the hypothesized distribution is 
expected to be small for PSRF. For PSRF of the summer 
season, the null hypothesis was not rejected at 5% level of 
significance. If the KS test rejects the null hypothesis, it is 
likely that the observed data do not come from the fore-
cast distribution, as has been explained in the Methodol-
ogy section. The causes for rejecting the null hypothesis 
were further investigated by examining the Fn(u) ∼ F(u) 
patterns of PSRF of different seasons.

Figure 11 illustrates the Fn(u) ∼ F(u) patterns of 1-, 2-, 
and 3-month lead PSRF at Taipei station for the Meiyu, 
summer, and winter-to-spring seasons. The Fn(u) ∼ F(u) 
patterns of these three groups are markedly different. 

Fig. 10 Power functions of the KS test with respect to various sample sizes. a MIF = 1, b VIF = 1

Table 1 Results of the KS test for PSRF performance evaluation 
in northern Taiwan

* Significant at 5% level of significance
** Significant at 10% level of significance

Forecast 
Lead 
(months)

Season KS statistic, 
Dn

Sample 
size, n

p value

1 Meiyu 0.2191 34 0.0650**

Summer 0.1211 68 0.2509

Winter‑to‑
spring

0.1620 102 0.0095*

2 Meiyu 0.2284 34 0.0484*

Summer 0.1241 68 0.2263

Winter‑to‑
spring

0.1522 102 0.0178*

3 Meiyu 0.2154 34 0.0729**

Summer 0.1082 68 0.3761

Winter‑to‑
spring

0.1553 102 0.0146*
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By referencing to Fig.  8, the PSRF of the Meiyu season 
is likely to be overconfident and mean-underestimated, 
while the PSRF of the winter-to-spring season is overcon-
fident. A relatively good PSRF performance is observed 
for the summer season, with a minor degree of being 
overconfident and mean-overestimated. These results 
suggest that the performance of CWA’s PSRF is sea-
sonal-dependent. However, given the seasonal effect, the 
forecast lead time does not seem to affect the PSRF per-
formance, as seen from the very similar empirical CDFs 
of different lead forecasts in Fig. 11.

Table 2 shows the multi-category Brier scores and reli-
abilities of PSRF in northern Taiwan. Generally speaking, 

the multi-category Brier scores and reliabilities of the 
Meiyu season are higher than those of the summer and 
winter-to-spring seasons, indicating poorer performance 
of the Meiyu season than other seasons. Such results are 
consistent with the evaluation by the KS test, although 
the Brier scores are less informative.

Reliability diagrams for PSRF of the Meiyu, summer, 
and winter-to-spring seasons are shown in Fig.  12. The 
reliability diagram of the Meiyu season appears to be 
more widely scattered away from the diagonal than other 
seasons. There are only a few forecast probability levels 
for each category. Notably, PSRF of the normal category 
(event E2 in the Introduction section) has only 3 forecast 

Fig. 11 Fn(u) ∼ F(u) patterns of ℓ‑month lead PSRF at Taipei station

Table 2 Multi‑category Brier scores and reliabilities of the PSRF in norther Taiwan

Brier score 1-month lead 2-month lead 3-month lead

 Meiyu 0.6953 0.7146 0.7129

 Summer 0.6773 0.6836 0.6896

 Winter‑to‑spring 0.6965 0.6827 0.6857

Reliability 1-month lead 2-month lead 3-month lead

 Meiyu 0.1016 0.0928 0.1154

 Summer 0.0393 0.0471 0.0462

 Winter‑to‑spring 0.0584 0.0434 0.0349
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probability levels, 40%, 50%, and 60%, regardless of the 
seasons and lead time. With a limited number of forecast 
probability levels, it is rather difficult to use the reliability 
diagrams shown in Fig. 12 to describe various properties, 
such as the overconfident, underconfident, well-cali-
brated, mean-overestimated, and mean-underestimated, 
of the forecast probabilities.

Table  3 further summarizes the frequencies of indi-
vidual forecast probability levels with respect to different 
categories and seasons. The normal category was always 

forecast as having either a 40%, 50%, or 60% chance of 
occurrence. The 50% chance of the normal category 
occurrence accounts for 72% (79/110), 69% (151/220), 
and 61% (200/330) of the Meiyu, summer, and winter-to-
spring events, respectively. Both the below-normal and 
above-normal categories were mostly forecast to have 
a 20–30% chance of occurrence. The 20–30% chance of 
the below-normal category occurrence accounts for 85% 
(94/110), 85% (188/220), and 80% (265/330) of the Meiyu, 
summer, and winter-to-spring events, respectively. The 

Fig. 12 Reliability plots for PSRF of different seasons in northern Taiwan. meiyu season: (a–c), summer season: (d–f), winter‑to‑spring season: (g–i)

Table 3 Frequency table of tercile forecast probabilities for different seasons

Season Tercile category Tercile forecast probability (%) Average 
probability

0 10 20 30 40 50 60

Meiyu Below normal 4 32 62 12 0.27

Normal 22 79 9 0.49

Above normal 3 64 42 1 0.24

Summer Below normal 1 14 94 94 17 0.25

Normal 49 151 20 0.49

Above normal 8 90 106 10 5 1 0.26

Winter‑to‑spring Below normal 7 85 180 57 1 0.29

Normal 93 200 37 0.48

Above normal 19 203 101 7 0.23
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20–30% chance of the above-normal category occur-
rence accounts for 96% (106/110), 89% (196/220), and 
92% (304/330) of the Meiyu, summer, and winter-to-
spring events, respectively. Apparently, too many his-
torical events were forecast to have a very high chance 
(50% and 60%) of normal category occurrence. Average 
forecast probabilities of the below-normal, normal, and 
above-normal categories for Meiyu, summer, and winter-
to-spring events are also shown in Table 3. The average 
forecast probability of the normal category is higher than 
48% for all seasons, while the average forecast probabili-
ties of the below-normal and above-normal categories 
vary between 23% and 29%. Compared with the 33.3% 
occurrence probability for the tercile categories under 
the climate condition, the above results indicate over-
confident forecasts for PSRF of all seasons in northern 
Taiwan.

Summary and conclusions
This study proposed a hypothesis testing approach to the 
performance evaluation of probabilistic seasonal rainfall 
forecasts. The approach first transforms the tercile fore-
cast probabilities to a forecast distribution of monthly 
rainfalls, and, through the theorem of probability inte-
gral transformation, it enables the Kolmogorov–Smirnov 
hypothesis test of whether the observed monthly rainfalls 
truly come from the forecast distribution. Compared to 
other measures of PSRF performance evaluation, such 
as the Brier scores and reliability diagram, the proposed 
approach offers not only a quantitative measure but also 
insightful Fn(u) ∼ F(u) patterns to uncover the causes of 
the PSRF performance. Unlike the reliability diagrams, 
the Fn(u) ∼ F(u) patterns established by our approach 
do not need to separate the below-normal, normal, and 
above-normal events and 0.1-multiples forecast probabil-
ity categories. The proposed approach has been applied 
to the performance evaluation of PSRF in northern Tai-
wan, and the following conclusions can be drawn from its 
results.

(1) CWA’s PSRF performance is seasonal dependent. 
PSRF of the Meiyu season is likely to be overconfi-
dent and mean-underestimated, while PSRF of the 
winter-to-spring season is overconfident. A rela-
tively good PSRF performance is observed for the 
summer season, with a minor degree of being over-
confident and mean-overestimated.

(2) Given the seasonal effect, the forecast lead time 
does not affect the PSRF performance.

(3) The multi-category Brier scores and the frequency 
table of tercile forecast probabilities also indicate 
overconfident forecasts for PSRF of all seasons in 
northern Taiwan, supporting the findings of the 

proposed Kolmogorov–Smirnov hypothesis testing 
approach.
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