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Abstract 

In response to the growing demand for high‑resolution rainfall data to support disaster prevention in Taiwan, this 
study presents an innovative approach for downscaling precipitation data. We employed a hierarchical architec‑
ture of Multi‑Scale Residual Networks (MSRN) to downscale rainfall from a coarse 0.25‑degree resolution to a fine 
0.0125‑degree resolution, representing a substantial challenge due to a resolution increase of over 20 times. Our 
results demonstrate that the hierarchical MSRN outperforms both the one‑step MSRN and linear interpolation meth‑
ods when reconstructing high‑resolution daily rainfall. It surpasses the linear interpolation method by 15.1 and 9.1% 
in terms of mean absolute error and root mean square error, respectively. Furthermore, the hierarchical MSRN excels 
in accurately reproducing high‑resolution rainfall for various rainfall thresholds, displaying minimal biases. The threat 
score (TS) highlights the hierarchical MSRN’s capability to replicate extreme rainfall events, achieving TS scores 
exceeding 0.54 and 0.46 at rainfall thresholds of 350 and 500 mm per day, outperforming alternative methods. This 
method is also applied to an operational global model, the ECMWF’s daily rainfall forecasts over Taiwan. The evalua‑
tion results indicate that our approach is effective at improving rainfall forecasts for thresholds greater than 100 mm 
per day, with more significant improvement for the 1‑ to 3‑day lead forecast. This approach also offers a realistic visual 
representation of fine‑grained rainfall distribution, showing promise for making significant contributions to disaster 
preparedness and weather forecasting in Taiwan.
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Introduction
Since the 1950s, heavy precipitation has increased 
over most land areas, and it is likely that precipitation 
extremes will become more frequent and intense under 
projected scenarios (Masson-Delmotte et  al. 2021). The 
demand of weather and climate model rainfall outputs 
for precipitation impact assessment has risen across 

various disciplines in recent years. Specifically, local 
disaster pre-warning information, such as flooding, for 
example, heavily relies on high-resolution forecast rain-
fall data during evolving disastrous weather systems (Yu 
et al. 2016). However, due to the limitation of computa-
tional and storage resources, physical approximations 
or model parameterizations, most global models have 
spatial resolutions of 10–100 km or even coarser (Taylor 
et al. 2012; Bauer et al. 2015; Li et al. 2022). Users gen-
erally access pre-interpolated data with a resolution of 
0.25–0.5 degrees through public data repositories. These 
resolutions are inadequate to resolve the convective scale 
systems associated with heavy rainfall and assess their 
local impacts (Schiermeier 2010; D’Onofrio et al. 2014). 
In Taiwan, with its cramped land area and high popula-
tion density, rainfall data of spatial resolution smaller 
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than 5  km is frequently required for effective disas-
ter prevention in local areas. This poses a challenge for 
meteorological models to meet the demand.

National weather centers typically employ regional cli-
mate models (RCM) within a general circulation model 
(GCM) or use a regional weather model with initial and 
boundary conditions from a GCM to provide better rep-
resentations of high-resolution precipitations (von Storch 
et  al. 2000; Maraun et  al. 2010; Giorgi and Gutowski 
2015; Prein et al. 2015; Kaur et al. 2020). These dynami-
cal downscaling approaches generate more small-scale 
regional forecast information, but they require significant 
computational resources on super-computing clusters 
and need to be developed individually. However, the per-
formance of dynamical downscaling is still affected by the 
global forecasting model and may contain its own model 
errors (May 2004; Xue et al. 2014; Hong and Kanamitsu 
2014; Lucas‐Picher et  al. 2021). Statistical downscaling 
projects low-resolution data to construct higher-reso-
lution data in a more computationally efficient manner 
compared to dynamical downscaling. Recent years have 
witnessed significant progress in this field by employing 
deep learning techniques, specifically those derived from 
the single-image super-resolution (SR) problem. Vari-
ous studies have demonstrated that deep learning mod-
els based on Convolutional Neural Networks (CNNs) or 
Generative Adversarial Networks (GANs) can generate 
realistic high-resolution deterministic or stochastic pre-
cipitation forecasting from single or multiple low-resolu-
tion meteorological fields.

Dong et al. (2015) proposed the SRCNN model, which 
applies deep CNN to the single-image SR reconstruction. 
They used three convolutional layers to extract image 
features and reconstruct a high-resolution image with 
the resolution increased up to a factor of 4  times. Van-
dal et al. (2017) used a stacked SRCNN framework, called 
the DeepSD, for downscaling of climate variables. Precip-
itation and elevation are used as input channels to gener-
ate high-resolution daily precipitation. The DeepSD was 
applied to GCMs’ climate change scenarios projections in 
downscaling daily precipitation from 100 to 12.5 km (in 
a scaling factor of 8  times) over the Continental United 
States. Kumar et  al. (2021) applied the DeepSD to the 
Indian region. Their results showed that the DeepSD 
could obtain reliable 0.25-degree rainfall data from 
1-degree rainfall data derived from India Meteorologi-
cal Department (IMD) and the Tropical Rainfall Measur-
ing Mission (TRMM). The DeepSD method is also used 
to generate 0.125-degree rainfall from 0.25-degree ERA5 
reanalysis rainfall over the Indian region. Some recent 
works considered both downscaling and nowcasting, 
in which the models contain CNN and Recurrent Neu-
ral Networks (RNN) parts. Shi et  al. (2015) presented a 

Convolutional Long Short-Term Memory (ConvLSTM), 
using convolutions to extract large-scale weather features 
and a recurrent structure for precipitation nowcasting. 
Adewoyin et  al. (2021) presented a Temporal Recurrent 
U-Net (TRU-NET) model, which uses convolutional-
recurrent layers to model multi-scale spatiotemporal 
weather processes. Their model predicts 8.5-km-resolu-
tion precipitation over the United Kingdom (UK) from 
several 65-km-resolution simulated weather variables 
(approximately an increase of 8 times resolution).

Another approach for image SR involves the utiliza-
tion of GANs. Ledig et al. (2017) present SRGAN to get 
realistic images with 4 × higher resolution. Kumar et  al. 
(2023) showed that SRGAN outperforms DeepSD and 
ConvLSTM in downscaling 0.25-degree IMD rainfall 
to 0.0625-degree rainfall (4 times higher) over the India 
region. In the probabilistic forecasting sense, GANs are 
used as stochastically downscaling techniques to gener-
ate an ensemble of high-resolution precipitations from 
coarsen-resolution meteorological variables, which pre-
sent the small-scale samples from the same large-scale 
distribution. Price and Rasp (2022) used a deep gen-
erative model to correct and downscale global ensemble 
forecasts over the Continental United States. Multiple 
meteorological variables from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) ensemble 
forecasts system at 32  km resolution are used as input 
data to produce stochastic 4-km-resolution precipita-
tion. Harris et al. (2022) used a GAN model to learn the 
mapping from low-resolution model outputs to high-
resolution radar data. They produced realistic precipita-
tion forecast data than the input data from approximately 
10 km ECMWF model fields to 1 km precipitation over 
the UK (10X resolution higher). Their model produced 
an ensemble of predictions with reasonable statistical 
properties to estimate the uncertainty of their forecasts.

This paper uses CNN-based multi-scale residual net-
work (MSRN; Li et  al. 2018) downscaling approach to 
generate high-resolution precipitation data over Tai-
wan. In the SR problem, the residual network assumes 
that low-frequency information in the input and output 
images is similar. The model training efficiency can be 
improved by learning only the high-frequency informa-
tion residuals between the two images (He et  al. 2016; 
Kim et al. 2016). Li et al. (2018) used convolutional ker-
nels of different sizes to design multi-scale residual 
blocks that extract multi-scale features. MSRN has a 
simple training structure and can be applied to any 
resolution ratio. The model performs well, improving 
the resolution by 2–8  times while using the multi-scale 
features of low-resolution images to reconstruct high-
resolution images. In this work, we aim to downscale 
precipitation data from a 0.25-degree resolution to a 
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0.0125-degree resolution, thereby producing rainfall data 
with 20  times higher resolution. Faced with the chal-
lenge posed by the large scaling factor of 20, we utilize 
the advantage of multi-scale residual blocks to design a 
hierarchical architecture for the MSRN. We compare the 
effectiveness of this hierarchical approach with a direct 
downscaling MSRN approach in reconstructing high-
resolution images under this large scaling factor condi-
tion. The model is trained using high-resolution radar 
retrieval precipitation, and we apply it to GCM’s low-
resolution rainfall forecasts over Taiwan. The evaluation 
matrices associated with deterministic forecast are used 
for exploring the performance of MSRN on downscaling 
rainfall in Taiwan.

Methodology
Multi‑scale residual network model
Figure  1 depicts the hierarchical architecture of MSRN 
in this study. The input data are the low-resolution rain-
fall data at 0.25-degree resolution, with the objective of 
improving the resolution by 20  times to output high-
resolution rainfall data at 0.0125-degree resolution in 
Taiwan. This study designs a hierarchical connection of 
MSRN models, two MSRN models are used to enhance 
the resolution by 4 and 5  times, respectively, achiev-
ing a 20-time increase in resolution. First, using the 
0.25-degree precipitation data as input for the 4X-MSRN 
and obtaining the output at 0.0625-degree resolution. 
The 5X-MSRN is then set to take the 0.0625-degree pre-
cipitation data as input and produce the output precipita-
tion data at 0.0125-degree resolution.

Following Li et al. (2018), each MSRN model has eight 
multi-scale residual blocks (MSRBs), each of which is 
designed with 3 × 3 and 5 × 5 convolutional kernels and 

two convolutional layers to extract different sizes of fea-
ture maps. Afterward, the two scales of feature maps are 
concatenated via one convolutional layer (Fig. 3, Li et al. 
2018, p.522). This design allows multiple MSRBs to be 
connected and trained individually for input and out-
put residuals, enhancing the module’s training efficiency 
while extracting feature maps of different sizes. MSRN 
also incorporates a bottleneck layer with a 1 × 1 convo-
lutional kernel (gray box in Fig.  1) that merges the first 
convolutional layer and the features extracted by the 
eight MSRBs before entering the high-resolution image 
reconstruction process. In the high-resolution image 
reconstruction process, a pixel shuffle layer (green box 
in Fig. 1) is designed to perform sub-pixel convolutional 
layer upsampling on the low-resolution feature map and 
obtain the high-resolution image (Shi et al. 2016).

Data preprocessing and training
The high-resolution gridded precipitation data from Tai-
wan Central Weather Administration’s Quantitative Pre-
cipitation Estimation and Segregation Using Multiple 
Sensors system (QPESUMS, Chang et al. 2021) is used as 
high-resolution ground truth in this study. QPESUMS is 
recorded every 10 min with a spatial resolution of 0.0125 
degrees. This work first aggregates the QPESUMS 10-min 
rainfall record to obtain the daily precipitation from 2006 
to 2021 which is used for training and evaluation. The 
training and testing data are chosen randomly with a 
ratio of 8:2, which is 3447 days and 861 days, respectively. 
Each of the data covers the region of 21.825–25.3125°N, 
120.0–122.2375°E with a dimension of 280 × 180.

Regarding the training process (Fig.  2), low-resolu-
tion (0.25-degree) and mid-resolution (0.0625-degree) 
precipitation data need to be prepared for training the 

Fig.1 The hierarchical architecture of multi‑scale residual network (MSRN)
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4X-MSRN model. First, we use a 3 × 3 mean filter to 
reduce the magnitude of the high-frequency components 
of the high-resolution (0.0125-degree) precipitation data. 
Then the 0.0125-degree data are downsampled via stor-
ing the 20 × 20-grid-averaged rainfall (5 × 5-grid-aver-
aged rainfall) to the corresponding cell of a 14 × 9 array 
(56 × 36 array) to construct the low-resolution dataset 
(mid-resolution dataset). For training the 4X-MSRN 
model, the 0.25-degree data are used as the input 
data, and the 0.0625-degree data are used as the learn-
ing target. The patch sizes are set to 4 × 4 and 16 × 16 
and strides are set to 3 and 12 on 0.25° to 0.0625° scale. 
After the training of the 4X-MSRN model is completed, 
a set of 0.0625-degree data can be produced. For train-
ing the 5X-MSRN model, the 0.0625-degree data pro-
duced by the 4X-MSRN model is used as the input, with 
the observed 0.0125-degree data as the learning target. 
The patch sizes are set to 10 × 10 and 50 × 50 and strides 
are set to 5 and 25 on 0.0625–0.0125° scale. The mean 

absolute error (MAE) is used as the loss function for both 
MSRN models.

Evaluation indices
In this study, we focus on the MSRN performance 
over Taiwan. Therefore, the reconstructed high-res-
olution results are compared with the 0.0125-degree 
QPESUMS daily precipitation data only on the 20485 
land grids in our domain. We use mean absolute error 
(MAE) and root mean square error (RMSE) to evalu-
ate the forecast errors, and compared the occurrence 
frequency of rainfall intensity between downscaled 
rainfall and their observation pairs. For evaluating the 
performance of reconstructed high-resolution rainfall 
that exceeds different rainfall thresholds, correspond 
contingency tables are constructed, which shows the 
frequencies of true positive (TP), false positive (FP), 
false negative (FN), and true negative (TN) for all land 
grids and all events. Five evaluation indices, namely 

Fig. 2 Workflow of training the hierarchical MSRN module
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Fig. 3 a The relative frequency for which rainfall ≥ 5 mm  day−1. Each bin width is 10 mm. Right panel enlarge the scale of frequency 
within the rainfall range of 150–350 mm  day−1. The total counts for observation, H4X5‑MSRN, D20‑MSRN, and linear are 3875473, 4026543, 2853880, 
and 4486465, respectively. b The mean absolute errors (MAE) against with the mean observational daily rainfall. c The absolute errors of maximum 
daily rainfall. Red, yellow, and black lines and dots represent the results from H4X5‑MSRN, D20‑MSRN, and linear interpolation. a Also denotes 
the observational frequency with a light blue line. The dotted lines in b and c are the linear trends
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true positive rate (TPR),  F1 score (F1), bias score (BS), 
false positive rate (FPR), threat score (TS) can be 
derived (Jolliffe and Stephenson 2012): 

TPR ranges from 0 to 1 and represents the propor-
tion of correctly predicted (hits) events to all occurred 
observations, also called sensitivity. F1 ranges from 0 to 
1 and represents the harmonic mean of precision and 
sensitivity thus measures the accuracy. BS ranges from 
0 to ∞ and represents the relative frequency of posi-
tive forecasts compare to the occurred observations. 
The perfect score is 1. The forecast tends to underes-
timate (overestimate) the occurred frequencies while 
the BS is less (greater) than 1. FPR ranges from 0 to 1 
and represents the proportion of false alarm events to 
all negative observed events. TS ranges from 0 to 1 and 
quantifies the similarity between occurred observations 
and positive predicted events by the ratio of the inter-
section size to the union size of the two samples.

In addition to above grid-to-grid evaluation meth-
ods, the Fractions Skill Score (FSS) (Roberts and Lean 
2008) is one of the popular skill scores that evaluates 
the high-resolution rainfall predictions at a given spa-
tial scale. For a given rainfall threshold and a given size 
of neighborhood, the forecast and observed fraction 
of grids exceed the threshold in the neighborhood of 
each grid are compared. The FSS of daily rainfall can be 
obtained by: 

where Pf  is the forecast fraction, Po is the observed 
fraction, N is the number of evaluated grids. Considering 
the sizes of Taiwan counties and cities, a neighborhood of 
4 × 4 grids (approximately 5 × 5   km2) is empirically cho-
sen to calculate the fractions in this work.
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Results
Evaluations of testing data
We compare the hierarchical MSRN approach (H4X5-
MSRN) with the direct downscaling approach of MSRN 
(D20-MSRN) and the linear interpolation method (lin-
ear). Figure  3a shows the relative frequency for which 
rainfall is equal to and greater than 5  mm   day−1. The 
results indicate that the H4X5-MSRN exhibits the closest 
rainfall frequency distribution to the observation data. 
The D20-MSRN has a tendency to overestimate the fre-
quency of rainfall amounts ≥ 30  mm   day−1. This overes-
timation is likely due to a significant decrease in the total 
number of grid points with rainfall > 5  mm   day−1 along 
with an increase in grid points with rainfall < 5 mm  day−1. 
The linear interpolation method underestimates the 
frequency of rainfall ≥ 20  mm   day−1 while overestimat-
ing the frequency of rainfall < 20  mm   day−1. Figure  3b 
displays the daily MAE against the mean observed rain-
fall. H4X5-MSRN tends to have smaller errors among 
the three methods, while D20-MSRN tends to produce 
larger errors. Overall, the total averaged MAE (RMSE) 
is 2.595  mm   day−1 (5.542  mm   day−1) for H4X5-MSRN, 
which represents an improvement of 15.1% in MAE 
(9.1% in RMSE) compared to the linear interpolation 
method (Table 1). The improvements of the three meth-
ods regarding the maximum daily rainfall are examined. 
Figure 3c reveals the absolute errors of the three meth-
ods against the observational maximum daily rainfall. 
H4X5-MSRN generally exhibits smaller errors in the 
maximum rainfall values. Table  2 further calculates 
the MAE of the maximum daily rainfall based on three 
rainfall ranges: < 100  mm, 100–300  mm, and ≥ 300  mm. 
D20-MSRN has the smallest MAE of 94.86 mm  day−1 in 
the range of 100–300  mm, while H4X5-MSRN has the 
smaller MAEs of 31.25 mm  day−1 and 199.42 mm  day−1 
in the range of < 100  mm and ≥ 300  mm, respectively. 
Notably, the calculation of MAE for maximum daily rain-
fall does not consider the correct locations of maximum 
rainfall, meaning that the maximum rainfall may occur in 

Table 1 Mean absolute errors (MAE) and root mean square 
errors (RMSE) for H4X5‑MSRN, D20‑MSRN and linear interpolation 
method

The second row and fourth row show the improve ratios of MAE and RMSE 
relative to the linear interpolation 

The best score for each metric is highlighted in bold

Linear D20‑MSRN H4X5‑MSRN

MAE (mm  day−1) 3.057 3.617 2.595
MAE improve ratio (%) − 18.3 15.1
RMSE (mm  day−1) 6.095 7.848 5.542
RMSE improve ratio (%) − 28.8 9.1



Page 7 of 13Hsu et al. Geoscience Letters           (2024) 11:23  

the wrong places. Next, we use the grid-to-grid evalua-
tion indices to examine our results.

Figure  4 examines grid-to-grid evaluation indi-
ces at rainfall thresholds of 1, 10, 40, 80, 100, 150, 200, 
350, and 500  mm   day−1. In Fig.  4a, we depict the TPR 
and F1 scores. H4X5-MSRN consistently outperforms 
the other two methods for rainfall thresholds exceed-
ing 40 mm   day−1. TPR and F1 score remain close to 0.8 
until the rainfall threshold surpasses 200  mm   day−1. 
For thresholds of 350 and 500  mm   day−1, the F1 scores 
still exceed 0.7 and 0.6, respectively. Figure  4b analyzes 
the BS and indicates that H4X5-MSRN exhibits nearly 
no bias (BS = 1), while the linear method (D20-MSRN) 
tends to underestimate (overestimate) at higher rainfall 
thresholds. The FPR analysis also shows that D20-MSRN 

tends to produce more false alarms for higher rainfall 
thresholds (≥ 40  mm   day−1), while the linear method 
tends to produce more false alarms at thresholds of 1 
and 10 mm   day−1. Overall, the TS indicates that H4X5-
MSRN outperforms the other two methods (as shown 
in Fig.  4c), particularly at rainfall thresholds of 350 and 
500  mm   day−1. At these thresholds, the TS scores for 
H4X5-MSRN surpass 0.54 and 0.46, respectively, signi-
fying a significant enhancement in performance com-
pared to the other two methods in cases of extreme 
rainfall. D20-MSRN consistently scores the lowest TS 
in almost all thresholds due to its higher FPR, except for 
the 500  mm   day−1 threshold, where the linear method 
performs worst due to its lowest TPR. Figure 4d reveals 
the results of daily averaged FSS for the three methods. 

Table 2 Mean absolute errors (MAE) of maximum daily rainfall for H4X5‑MSRN, D20‑MSRN and linear interpolation

The MAE and improve ratio relative to the linear interpolation are calculated in three criteria: maximum daily rainfall < 100 mm, 100 mm ≤ maximum daily 
rainfall < 100 mm, and maximum daily rainfall ≥ 300 mm

The best score for each metric is highlighted in bold

Maximum daily rainfall range (mm  day−1) Linear (MAE/improve ratio %) D20‑MSRN (MAE/improve ratio %) H4X5‑MSRN 
(MAE/improve 
ratio %)

 < 100 39.630 33.648/15.1 31.253/21.1
100–300 123.181 94.863/23.0 106.048/13.9

 ≥ 300 274.196 209.502/23.6 199.418/27.3

Fig. 4 Evaluation scores at rainfall thresholds of 1, 10, 40, 80, 100, 150, 200, 350, and 500 mm  day−1. a TPR (lines) and F1 scores (bars). b BS (lines) 
and FPR (bars). c TS. d Daily averaged FSS. Solid lines and dark blue bars represent H4X5‑MSRN. Dashed lines and light blue bars represent 
D20‑MSRN. Dotted lines and white bars show the results of linear interpolation
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FSS allows the forecast to exceed the threshold within 
a given neighborhood size (approximately 5 × 5   km2 in 
this study). Therefore, the scores of D20-MSRN are not 
significantly different from those of H4X5-MSRN for 
thresholds between 40 and 200  mm   day−1. However, 
H4X5-MSRN consistently outperforms the others, even 
when we increase the neighborhood size to approxi-
mately 11 × 11   km2 (figure not shown), especially for 
rainfall thresholds higher than 350 mm  day−1.

Figure 5 presents examples of H4X5-MSRN and D20-
MSRN, illustrating the various precipitation distribu-
tions associated with different meteorological conditions. 
The results depicted in Fig.  5 unmistakably emphasize 
H4X5-MSRN’s capability to accurately recreate fine-
grained rainfall distribution and intense rainfall areas. 
This results in a more realistic visual representation due 
to its sharply defined spatial structure. In contrast, while 
D20-MSRN can also generate intense rainfall, it occa-
sionally falls short in precisely reconstructing the spatial 
distribution. For instance, on October 11, 2009, and May 
19, 2014, D20-MSRN successfully reproduced the local 
rainfall maxima in northeastern and mid-western Tai-
wan, respectively. However, it encounters challenges in 
faithfully reproducing the rainfall distribution in south-
eastern and southwestern Taiwan. It is notable that the 
D20-MSRN method appears to artificially generate many 
light rain areas from the low-resolution data. This is due 
to its tendency to increase the number of grid points with 
rainfall < 5 mm  day−1.

Evaluations of applying hierarchical MSRN to GCM 
precipitation data
This section evaluates the performance of the hierarchi-
cal MSRN approach (H4X5-MSRN) in improving the 
rainfall forecast for Taiwan produced by a global model. 
We utilize real-time, open data downloaded from the 
ECMWF website (www. ecmwf. int). The data are cov-
ered by the Creative Commons Attribution 4.0 Interna-
tional (CC BY 4.0) license (https:// creat iveco mmons. 
org/ licen ses/ by/4. 0/). This open data is a subset of the 
ECMWF real-time products based on a high-resolution 
single forecast model (HRES) and ensemble forecasts 
(Copyright © 2023 by the European Centre for Medium-
Range Weather Forecasts (ECMWF)). The HRES model 
has an approximately 9  km horizontal resolution, while 
the open data are produced at a 0.4-degree resolution. To 
assess H4X5-MSRN’s effectiveness, we collected ECM-
WF’s daily rainfall forecasts initialized from 00 UTC for 
December 2022 to November 2023. The rainfall forecast 
data are first interpolated to 0.25-degree mesh covering 
Taiwan to match the input format of the H4X5-MSRN 
model. Figure  6 displays rainfall maps for some exam-
ple cases using ECMWF’s day-1 forecast data. These 

examples indicate that the H4X5-MSRN model gener-
ates more detailed structures and a more realistic visual 
representation of rainfall distribution compared to the 
other methods. The H4X5-MSRN model is capable of 
improving the forecasted rainfall and clearly enhances 
the intense rainfall areas in comparison with the linearly 
interpolated rainfall and the low-resolution rainfall.

The TPR, FAR, F1 score and TS at various rainfall 
thresholds for lead times of 1–3, 4–6, and 7–9  days 
are shown in Fig.  7. Figure  7a indicates that the H4X5-
MSRN improves the TPR at rainfall thresholds greater 
than 10 mm  day−1 overall. Specifically, the most signifi-
cant improvement occurs at rainfall thresholds greater 
than 100 mm  day−1 for the 1- to 3-day lead time. While 
the H4X5-MSRN improves the 1- to 3-day TPR, it only 
slightly increases the FAR (Fig.  7b). Note that both the 
TPR and FAR are zero for the 1- to 3-day linear experi-
ment, indicating that the linear experiment cannot fore-
cast 500 mm  day−1 cases. For the 4- to 6- and 7- to 9-day 
leads, the linear method shows low TPR and high FAR at 
large rainfall thresholds, consistent with decreased model 
predictability at longer lead times. Thus, the H4X5-
MSRN improvement is less significant compared to the 
1- to 3-day lead results. Overall, the two aggregative indi-
ces, F1 score and TS, show similar characteristics (Fig. 7c, 
d). The H4X5-MSRN is more effective for rainfall greater 
than 100 mm  day−1 and a 1- to 3-day lead, also depend-
ing on the predictability of the GCM results. If the GCM 
forecast is completely inaccurate, the H4X5-MSRN 
cannot correct the rainfall forecast to a very different 
scenario.

Conclusions and discussions
In recent years, there has been a growing demand for 
rainfall data with a spatial resolution smaller than 5 km to 
effectively support disaster prevention efforts in various 
regions of Taiwan. It is important to note that users typi-
cally access GCM’s rainfall data with a resolution rang-
ing from 25 to 80 km. Therefore, the use of downscaling 
techniques has become crucial for generating higher-res-
olution rainfall data from coarser reanalysis or forecast 
rainfall datasets. We employed a CNN-based Multi-Scale 
Residual Network (MSRN) approach to downscale pre-
cipitation from a 0.25-degree resolution to a much finer 
0.0125-degree resolution. To tackle the significant chal-
lenge of increasing resolution by over 20 times, we devel-
oped a hierarchical architecture for MSRN. The model 
was trained using high-resolution radar-derived precipi-
tation data and subsequently applied to GCM’s low-reso-
lution rainfall forecasts for Taiwan.

The hierarchical MSRN (H4X5-MSRN) outperforms 
both the one-step MSRN (D20-MSRN) and linear inter-
polation methods. The MAE and RMSE of daily rainfall 

http://www.ecmwf.int
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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for the H4X5-MSRN are 2.60 and 5.54 mm, respectively. 
This represents a 15.1% improvement in MAE and a 9.1% 
improvement in RMSE compared to the linear interpo-
lation method. We also examined the evaluation metrics 
based on the error matrix for various rainfall thresholds. 

The H4X5-MSRN consistently outperforms the other 
two methods in accurately reconstructing high-reso-
lution rainfall, showing nearly no biases for all rainfall 
thresholds. The TS indicates that H4X5-MSRN excels 
in reproducing extreme rainfall events. TS scores for 

Fig. 5 Comparison of reconstructed high‑resolution rainfall maps with low‑resolution (0.25‑degree) rainfall maps for five selected cases. 
Rainfall maps from top to bottom are: the high‑resolution observational rainfall data, the H4X5‑MSRN reconstructed rainfall data, the D20‑MSRN 
reconstructed rainfall data, the linear interpolated rainfall data, and the low‑resolution rainfall data



Page 10 of 13Hsu et al. Geoscience Letters           (2024) 11:23 

H4X5-MSRN exceed 0.54 and 0.46 at rainfall thresholds 
of 350 and 500  mm per day, respectively, significantly 
outperforming the other two methods (0.42/0.41 and 
0.09/0.26 for linear/D20-MSRN experiments). Further-
more, H4X5-MSRN accurately reproduces fine-grained 
rainfall distribution, resulting in a more realistic visual 
representation compared to the other two methods. 
The ECMWF daily rainfall forecasts over Taiwan from 
December 2022 to November 2023 are used to exam-
ine the effectiveness of the H4X5-MSRN. The evalua-
tion results indicate that the H4X5-MSRN is effective 
at improving rainfall forecasts for thresholds greater 
than 100 mm per day. However, the performance is also 

affected by the predictability of the original GCM results, 
with more significant improvement for 1- to 3-day lead 
forecast compared to longer lead times.

Many previous studies have also considered bias cor-
rection during downscaling. In our work, we trained the 
model using high-resolution radar-derived precipitation 
data, indicating that the learning processes did not cor-
rect the biases specific to numerical models. Model biases 
may arise not only from differences in horizontal resolu-
tions of data and topography, but also from assumptions 
made in various physic schemes and energy conservation 
during integration. We regard high-resolution radar-
derived precipitation data as our learning target, with 

Fig. 6 Comparison of reconstructed high‑resolution rainfall maps with low‑resolution (0.25‑degree) rainfall maps using ECMWF’s day‑1 forecast 
data for five selected cases. The rainfall maps from top to bottom are: the high‑resolution observational rainfall data, the H4X5‑MSRN reconstructed 
rainfall data, the linear interpolated rainfall data, and the low‑resolution rainfall data
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the expectation that the model can learn the processes 
related to varying horizontal data resolutions, includ-
ing the inherent relationships between high-resolution 
observational data and topography. Harris et  al. (2022) 
addressed this problem by separating it into two parts: 
pure super-resolution and bias/spread correction. Their 
model aims to both increase the resolution of the original 
forecast and provide error correction in a probabilistic 
sense. In practice, users typically access rainfall data from 
a modern ensemble forecast system, which may include 
results generated by various dynamic models. Correct-
ing biases for each individual model can be challenging 
for users. Our method provides a universal approach 
for efficiently downscaling ensemble daily rainfall data. 
The availability of high-resolution rainfall data can fur-
ther enhance its application in downstream hydrological 
modeling for disaster impact assessment. One current 
limitation is that our method, designed for daily data, 
does not generate hourly rainfall outputs. Thus, it may 
be unsuitable for applications requiring higher temporal 
rainfall data resolution. Moving forward, it is practical 
to integrate coarse- or fine-scale bias correction mecha-
nisms into our downscaling process for future research.
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