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Abstract 

This study presents a pioneering investigation into the complex Holocene paleo‑morphologies of the Yilan Plain, 
located at the southwestern edge of the Okinawa Trough. We employed a novel approach that synergized resistivity 
measurements with machine learning techniques to unlock valuable insights into the geological history, sedimentary 
patterns, and seismic activity of this dynamic region. Our methodology involved the creation of an Apparent Geo‑
logical Model (AGM) through the interpolation of inverted resistivity data and the application of supervised machine 
learning algorithms. Classification criteria, derived from the relationship between resistivity values and sediment 
types found in nearby boreholes, were developed using the random forest machine‑learning method. The resultant 
3D resistivity model was transformed into a clay‑sand‑gravel model, offering a comprehensive depiction of sediment 
distribution within the Yilan Plain. Notably, our findings revealed distinct sedimentary patterns. Gravel‑dominated 
regions, characterized by resistivity values above 140 Ohm‑m, were identified alongside areas dominated by sand 
and clay sediments. The Carbon‑14 dating ages in the sand sediments exhibited remarkable consistency, shedding 
light on the depositional history of the region. Furthermore, our research unveiled a previously unknown phenom‑
enon of rapid subsidence in the Yilan Plain. Through meticulous analysis and correction for sea‑level changes, we esti‑
mated an average subsidence rate of approximately 8.5 mm/year. This subsidence was punctuated by abrupt events 
around 6000–7000 years BP and 2000–3000 years BP, associated with a sudden increase. These events suggested 
a potential link to prehistoric seismic activity, with variable subsidence rates between episodes hinting at recurrent 
active seismic periods every 4000–5000 years. In conclusion, our multidisciplinary approach has provided unprec‑
edented insights into the Holocene paleo‑morphologies of the Yilan Plain. By combining resistivity measurements, 
machine learning, and geological analysis, we have enriched our understanding of the region’s geological history, sed‑
imentary dynamics, and seismic behavior. These findings not only contribute to the knowledge of Yilan’s past but also 
offer vital data for future environmental and geological studies in similarly dynamic regions.
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Key Points 

• The study investigates Holocene paleo‑morphologies in Taiwan’s Yilan Plain, providing insights into its geological 
history.

• By combining resistivity measurements with machine learning, the research unveils valuable data on sedimen‑
tary patterns and seismic activity in the region.

• The methodology includes creating an Apparent Geological Model (AGM) using machine learning algorithms 
and resistivity data interpolation.

• The study establishes classification criteria and models sediment distribution, identifying distinct patterns in clay, 
sand, and gravel.

• The research reveals rapid subsidence and suggests links to prehistoric seismic events with a 4000‑5000 recur‑
rence period.

Keywords Apparent Geological Model (AGM), Resistivity measurements, Machine learning, Okinawa Trough

Introduction
In the study we attempted to use both the resistivity 
measurements and the core records for reconstructing 
the 3D geological model via machine learning to ana-
lyze the evolution of Holocene paleo-morphologies of 
the Yilan plain in the northeastern Taiwan. The plain is 
located on the southwest tip of the Okinawa Trough 
(Fig. 1). Since the Okinawa Trough is thought to be the 
back-arc opening related to the convergence of the Phil-
ippine Sea Plate and the Eurasian Plate, the Yilan Plain 
is considered crucial for understanding the recent back-
arc opening mode of the Okinawa Trough. Researchers 
usually rely on the wellbore logs and core samples to 
determine the subsurface stratigraphy of unconsolidated 
Holocene sediments [Izquierdo, 2014]. Marine seis-
mic explorations have shown that the extension of the 
Okinawa Trough has undergone two phases: the Pleisto-
cene phase from 2 to 0.1 million years ago, and the recent 
phase from 0.1 million years ago to the present (Sibuet 
et al. 1998). And that extension in the last phase involves 
activities of nearly EW-trending normal faults dipping 
toward the Okinawa Trough axis with offsets ranging in 
length from a few meters to tens of meters (Lai et al. 2009; 
Sibuet et al. 1998) in the westernmost part of the trough 
off the Yilan Plain. From their on-land seismic explora-
tions in the Yilan Plain, Chiang (1976) showed that there 
are also mainly EW-trending faults dipping south in the 
Yilan Plain. Chang et al. (2020) found that the Yilan area 
features a series of N-S trending fracture zones in addi-
tion to the normal fault systems from the results of the 
AMT, deep borehole logs, and reinterpreted seismic sur-
veys. However, the amount of accountable wellbore logs 
is few because of their high costs and time consuming 
in drilling wells [Wojda and Brouyère, 2013]. Therefore, 
geologists usually construct the fence diagrams or the 
conceptual geological models, which show rough trends 

of the geological structures in the subsurface from lim-
ited number of wellbore logs, to describe the stratigraphy 
of unconsolidated sediments in regional scale. Unfortu-
nately, these models may miss the local heterogeneity, for 
instance, the local coarse-grain river channels or oxbow 
lake deposits because there are usually few wellbore data 
accessible in the area. As a result, one may have very dif-
ferent explanations for the conceptual model due to the 
insufficient well logs and the subjective judgment in the 
correlation processes.

In recent years, researchers (i.e.,Beresnev et  al. 2002; 
Bersezio et  al. 2007; Rucker et  al. 2011) applied surface 
electrical resistivity to facilitate the identification of sedi-
ment structure for a local area. The interpretation of 
acquired electrical resistivity data were made based on 
the resistivity range of different sediment types in some 
researches (i.e., Pellicer & Gibson 2011). To integrate the 
resistivity measurements and the wellbore data, we first 
interpolated the inverted resistivity data with inverse dis-
tance method to construct the 3D model. Then we devel-
oped the classification criteria based on the relationships 
of resistivity values and the registered sediment types in 
the nearby boreholes with the supervised machine-learn-
ing optimization method. Then we Lastly, we applied 
the aforementioned classification criteria to transform 
the model of resistivities into sediment types in order to 
delineate the three-dimensional stratigraphy of uncon-
solidated sediments (i.e. the apparent geological model, 
AGM). The derived high-resolution AGM model can be 
used for further analyze the depositional environment in 
our study area and compare the estimated sedimentary 
features with the history of environmental evolution.
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Geological setting of the study area
The Yilan Plain is located in northeastern Taiwan and is 
thought to be an extension of the Okinawa Trough within 
the Eurasian continental lithosphere (Lai et al. 2009). The 
recent extension of the Okinawa Trough started approxi-
mately 0.1 million years ago. This extension movement 
involved ENE- and WSW-trending normal faults that 
dip toward the axis of the Okinawa Trough, with offsets 
ranging from a few meters to tens of meters (Lai et  al. 
2009; Sibuet et al. 1998).

The triangular plain is geographically bounded by the 
Hsueshan Mountain Range to the north, the Central 
Mountain Range to the south, and the Pacific Ocean to 
the east. Unconsolidated alluvial deposits from the Lan-
yang River and Lotung River were laid over the Paleo-
gene rock basement, exhibiting normal faults(Chiang 

1976; Hsu et al. 1996), identified from seismic reflection 
and refraction profiles. Figure 2 shows the borehole logs, 
carbon-14 dating records, and interpretations of the 
sedimentary environments of selected boreholes from 
the upper fan to the lower fan in Yilan (W. S. Chen 2000; 
GSMMA 2001a, b). In general, the upper fan mainly con-
sists of gravel, and sediments gradually transition into 
clay-dominated ones towards the lower fan. In addition, 
young sediment has been deposited on the plain at an 
extremely high deposition rate, exceeding a thickness of 
20 m within the last 3,000 years, as indicated by wellbore 
drilling data. Consequently, the thickness of the uncon-
solidated deposits can range from 100 m to over 800 m 
thick in the Yilan plain. These findings imply that the 
plain has undergone rapid subsidence recently.

Fig. 1 The Yilan plain is located in northeastern Taiwan and on the southwestern tip of the Okinawa Trough. Red circles and yellow squares show 
the locations of Vertical Electrical Sounding (VES) measurements and the Borehole Records data from the observation wells, respectively. The AA’ 
and BB’ depicted the cross‑section profiles from GSMMA and 3D AGM (This study)
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Three major factors could affect the changes in Holo-
cene coastal plain morphologies, including sea-level 
changes, sedimentation rates, and basin subsidence in 

the Yilan plain. In most low-lying areas around the world, 
rapid sea-level rise in the early Holocene dominated the 
evolution of coastal environments (Amato et  al. 2013; 

Fig. 2 a Selected borehole logs, sedimentary environments, and dating records of the AA’ profile in Fig. 1 (W. S. Chen 2000; GSMMA 2001a, b; 
GSMMA 2001a, b). Borehole logs are resampled and modified from (GSMMA 2001a, b). The blue color represents gravels, yellow color shows 
sand, and orange color represents clays. b The Cross‑section of AA’ profile after GSMMA (2023). The dashed black box (BB’ profile) depicts 
the cross‑sectional view derived from the 3D AGM
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Stanley & Warne 1994). After the sea level stabilized 
during the mid- to late Holocene, propagation and neo-
tectonics became the major factors controlling changes 
in the coastal environment (Antonioli et  al. 2009; Bird 
et al. 2010; Li et al. 2014). The interaction between these 
factors resulted in the complicated morphologies of the 
coastal environment in the Yilan plain. To reconstruct the 
paleomorphology, it is necessary to use non-destructive, 
high-resolution geophysical methods to better resolve 
the subsurface structure of sediment imaging.

The resistivity measurements and wellbore data
The data used in the study include 75 surface resistivity 
surveys, and 30 wellbore logs from different depths of 
the groundwater monitoring wells maintained by Tai-
wan’s Water Resource Agency. 57 of the resistivity meas-
urements were one-dimensional (1D) Vertical Electrical 
Sounding Surveys (VES) collected by Taiwan’s Geologi-
cal Survey and Mining Management Agency (GSMMA 
2001a, b) with the Schlumberger arrays. The half-spacing 
between the two current electrodes (AB/2) was increased 
from 8-m to 800-m. And the half-spacing of the potential 
electrodes (MN/2) was 3-m, 30-m for AB/2 larger than 
80-m, and 200-m for AB/2 larger than 200-m. The origi-
nal VES measurements are apparent resistivity and are 
inverted individually to provide the 1D vertical resistivity 

model at each survey location. This inversion process 
utilized an open-source Python package named SimPEG 
(Simulation and Parameter Estimation in Geophysics). 
For a comprehensive understanding of the inversion pro-
cedure, we forward readers to Cockett et al. (2015). Orig-
inally, the 1D inverted VES result extended to a depth 
of 250  m. However, considering the decrease in resolu-
tion of the VES with increasing depth, we limited the 
utilization of the inversion result to depths up to 100 m. 
In addition, we collected two dimensional (2D) electri-
cal resistivity imaging (ERI) surveys at 14 locations with 
Wenner-Schlumberger arrays recently. The electrode 
spacing is 10-m and the maximum length of the survey 
line is 330-m in the ERI surveys. The 2D data are inverted 
with the  EarthImager2D™ code for construct the 2D 
resistivity profile. We then extract the selected 1D resis-
tivity column from the profile for representing the verti-
cal resistivity change at the survey site. All the resistivity 
measurements were then combined and will be used for 
constructing the regional 3D resistivity model with the 
inverse distance interpolation methods.

To see the relationships between the resistivity and 
the sediments, we compared the resistivity measured 
near the boreholes to the predominant sediment types 
recorded at the same depth range in the borehole logs. 
The wellbore logs were registered in 10-cm intervals and 

Fig. 3 The statistics for measured bulk resistivity of different sediment types from the borehole logging measurements and the groundwater 
resistivity
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provided by the Geological Survey and Mining Man-
agement Agency (GSMMA 2001a, b). To develop a cor-
relation between sediment types and formation factors 
(resistivity), we categorize the sediment types from the 
wellbore logs into only gravel, sand, and clay types. Fig-
ure  3 shows the statistics for the resistivity of different 
sediments. Archie (1942) suggested that the relationships 
between the in-situ resistivity of a saturated sedimen-
tary rock to its porosity and pore-water resistivity can be 
described as follows:

where ρb is the bulk resistivity, a is the tortuosity factor, 
ρw is the pore-water resistivity, ∅ represents the porosity, 
and m represents the cementation exponent relative to 
the rock. In Eq. (1), the measured bulk resistivity is influ-
enced by the resistivity of pore water. Thus, if the resis-
tivities in the pore water vary widely, the bulk resistivity 
of the same sediment type can also vary significantly, 
irrespective of the sediment type. Conversely, when the 
resistivity of the groundwater is similar, the distribution 
of resistivities in sediment will display a consistent pat-
tern that reflects various sediment types. Figure 3 shows 
the groundwater resistivity collected from the observa-
tion wells in Yilan plain. We may conclude from Fig.  3 
that one can roughly differentiate gravel, sand from clay 
sediments based on their measured resistivity, since the 
groundwater resistivities are mainly focused within the 
range of 5 to 50 Ohm-m, similar to that of the mud sedi-
ments, and do not affect the classification analysis.

(1)ρb = a · ρw ·∅
−m

,

Geological model construction with machine 
learning
Supervised machine learning procedure
To transfer the resistivity model in Fig. 3 into the geol-
ogy model, it is crucial to correlate the resistivity data 
with the sediment types. Without knowledge of the 
petrophysical relationships, one feasible way to trans-
fer the resistivity model into the geology model is 
through machine learning approaches. Several steps 
are involved in interpreting the resistivity data using 
machine learning techniques, as depicted in Fig. 4.

Initially, a ground truth dataset is compiled for the 
Supervised Machine Learning (SML) process. This 
dataset comprises information extracted from records 
of 30 boreholes within the study area, encompassing 
data on both sediment type and resistivity logs. The 
sediment type serves as the target data (label), while the 
resistivity log acts as the feature data.

It is important to highlight that the resistivity val-
ues obtained from borehole data underwent multiple 
treatments before being employed to SML procedure. 
Firstly, a pre-processing step involved data inversion to 
obtain the true resistivity distribution from the appar-
ent resistivity data. Secondly, a crucial labeling step was 
conducted, where the inverted resistivity values were 
resampled, digitized and labeled with their correspond-
ing sediment types at 1-m interval. This procedure was 
facilitated by the resistivity log complemented with 
sediment type information from the borehole, ena-
bling a direct correlation between resistivity values and 
sediment types. The labeling comprised three distinct 

Fig. 4 A framework of the machine learning procedure to transfer resistivity model to apparent geological model
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categories: Clay (C-fS), Sand (mS-vcS), and Gravel (fG-
vcG). It is noteworthy that in this study, we combined 
clay (orange color) and very fine to fine sand (yellow 
color) into single category, as shown in Fig. 4. The final 
stage of borehole data preparation involved Exploratory 
Data Analysis (EDA) to delve deeper into the dataset, 
identifying any missing data or outliers.

Next, the borehole dataset was fed into three distinct 
SML algorithms, with the data partitioned into training 
and testing sets at a ratio of 70% for training and 30% for 
testing. These algorithms include Random Forest (Brei-
man 2001), Support Vector Machine (Lorena et al. 2011; 
Singh et  al. 2016; Vapnik 1999), and Naive Bayes (H. 
Chen et al. 2021a, b; Lorena et al. 2011).

The performance of these models was subsequently 
evaluated to identify the most suitable algorithm for rep-
resenting the dataset. Ultimately, predictions were made 
regarding the sediment type of the 1D measured resis-
tivity data. It is imperative to note that this 1D data was 
resampled into 1-m interval using the Piecewise Cubic 
Hermite Interpolating Polynomial (PCHIP) (Rabbath & 
Corriveau 2019) before being utilized in the SML pro-
cess, ensuring consistent intervals aligned with the bore-
hole data.

Supervised machine learning evaluation.
We assessed the model performance and tuning param-
eters with cross-validation method, utilizing several indi-
ces, including accuracy, F1 score, precision, and recall. In 
this context, accuracy is the proportion of correctly clas-
sified examples, F1 score is a weighted harmonic mean 
of precision and recall, precision is the proportion of 
true positives among instances classified as positive, and 
recall is the proportion of true positives among all posi-
tive instances in the data.

Table  1 presents the evaluation of the three different 
SML approaches. Among these SML methods, Random 
Forest yielded the best classification performance, and 
therefore, we selected the classification criteria from 
Random Forest to transfer the resistivity model into the 
AGM. Figure 5 showcases the predicted sediment types 
of the borehole logs obtained through all three SML algo-
rithms, alongside the actual sediment types obtained 
from the borehole record.

Furthermore, to enhance the clarity and interpretabil-
ity of the SML results, we introduce the cross-sectional 
model (BB’ profile) derived from the 3D resistivity model 
in this study (Fig. 6a), alongside the corresponding cross-
sectional model derived from the AGM of the SML out-
put (Fig. 6b), both at a depth of 100 m. The BB’ profile is 
situated proximate to the AA’ profile (See Fig. 1, 2) pro-
vided by GSMMA (2023), where the elevation gradually 
decreases from the western to the eastern area. The clos-
est projected borehole location is denoted by the dashed 
black line. Upon comparison with the GSMMA’s cross-
section, our findings exhibit notable concordance, with 
the western region predominantly comprising gravel lay-
ers, while the eastern area is predominantly covered by 
mixed clay and sand layers.

Although our findings align with the previous study 
conducted by GSMMA, the vertical resolution (dz) of our 
3D modeling results has been reduced due to computa-
tional constraints. Initially, both the resistivity dataset 
from borehole logs and geoelectrical measurements were 
resampled into the same 1-m interval. However, for the 
3D model, the vertical resolution has been adjusted to 
2 m. This adjustment was necessary to accommodate the 
limitations of the available computing resources during 
the modeling process.

Despite this change, our model has notably enhanced 
the spatial resolution to 250 m in both horizontal direc-
tions (dx, dy). This improvement was achieved by incorpo-
rating additional geoelectrical measurements, resulting 
in a denser distribution of data points compared to utiliz-
ing borehole data alone to construct the model.

Results of the apparent geological model
Using the classification criteria built by correlating 
the lithology and resistivity with the machine-learn-
ing method, we can relate the regions with resistiv-
ity higher than 140 Ohm-m to the regions consisting 
mainly the gravels, the regions with resistivity between 
60 and 140 Ohm-m to the sand sediments, and those 
with resistivity less than 60 Ohm-m to the sediments 
mainly composed of clays. Figure 7 shows the 3D resis-
tivity model of the Yilan plain based on the resistivity 
measurements. In Fig. 7, the Isosurfaces of 140 Ohm-m 
and 60 Ohm-m were shown in the image to illustrate 

Table 1 The supervised machine learning evaluation

Algorithm Accuracy F1 Precision Recall Resistivity boundary (Ωm)

Clay Sand Gravel

Random forest 0.91 0.90 0.90 0.91 0.01~60.60 60.64~140.01 140.18~1009.73

Support vector machine 0.88 0.87 0.84 0.90 0.01~60.48 60.53~141.55 141.67~1009.73

Naïve bayes 0.83 0.77 0.79 0.75 0.01~67.48 67.49~126.74 126.85~1009.73
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the resistivity variations in 3D sense. The regions with 
the resistivity higher than 140 Ohm-m are located at 
the upper fan and along the margin of the Yilan plain. 
And the yellow areas represent the regions having a 
resistivity between 60 and 140 Ohm-m. In Fig.  7, we 
transparent the conductive regions with resistivity 
less than 60 Ohm-m that should have blue and purple 
colors, in order to show the fluvial-delta sedimentary 
structures formed by mainly the sand and the gravels.

We further converted the 3D resistivity model into 
the clay-sand-gravel model based on the aforemen-
tioned criteria determined from machine learning. 
Figure 8a–j show the horizontal slices of sediment dis-
tribution at different depths in the Yilan Plain. Dating 
records from the borehole cores (GSMMA 2020) were 
also plotted in the figures to provide age references for 
the sediments. In general, the Carbon-14 dating ages 
decreased from about 8050–9,900 years before present 

(yrBP) at 100-m deep to about 2,200–2,600 yrBP at a 
depth of 10-m deep. Furthermore, there are more Car-
bon-14 dating measurements collected in the sand area 
compared to the gravel and clay areas. Additionally, 
the dated ages roughly correspond to the depth for the 
measurements obtained in the sand area.

In Fig.  8, we observed several extruded gravel lobes 
associated with different river systems. For instance, 
there are two lobes in the southern part of the plain at a 
depth from 100 to 50 m. These two gravel lobes are asso-
ciated with the Donshan and Lotung river systems. How-
ever, from 50 m to the surface, the gravel lobes associated 
with the Lanyang river and Lotung river became more 
distinct, while the gravel lobe of the Donshan river dis-
appeared. These findings suggest that the Donshan river 
may have been more active than the Lotung and Lanyang 
rivers from 9,000–10,000 to about 5,000–5,500 yrBP. Yet 
the Lotung and Lanyang rivers became more active and 

Fig. 5 The left panel displays the 1D resistivity log and core extracted from the borehole record, while the right panel shows the sediment types 
predcted by all three SML Algorithms. Clay is represented by orange, sand by green, and gravel by cyan
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dominated the fluvial system in the Yilan Plain after 5,800 
yrBP.

Furthermore, the recently active Lanyang and Lotung 
rivers have caused the sand sediments to form a shape 
similar to the river mouth sandbar of the delta system 
after about 3,200 yrBP. The sandbar is oriented parallel to 
the modern coastline. The sedimentary facies determined 
from the sedimentary environment analysis (Su 2011) are 
roughly consistent with the distribution geometry of the 
sediments. Most of the environments in the boreholes 
remained quite stable and similar from about 10,000 yrBP 
to the present. However, at the Wujie (WG) observation 

well, the environment changes from shoreface to back-
shore at a depth of 60  m and turns into a meandering 
river at a depth of 20 m. In addition, the environment in 
Dajinzha (DJZ) changed from shoreface to backshore at 
a depth of 20 m. These findings also suggest that the the 
Lanyang and Lotung river systems gradually became the 
major fluvial systems in the Yilan Plain in the latest 5,000 
yrBP to the present.

Fig. 6 a The cross‑section of the resistivity model derived from the 3D model (BB’ profile), and (b) the corresponding cross‑section presenting 
the predicted sediment types obtained through the SML approach. The dashed‑black line marking the nearest projected borehole sites of the AA’ 
profile
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Discussion
We can directly observe from Fig.  8a–j that the Yilan 
plain may be undergoing rapid subsidence, as evidenced 
by Carbon-14 dating of sediments in the shoreface envi-
ronment at a depth of 100 m, which indicates an age of 
nearly 10,000  years Before Present (yrBP). There are 
three major factors that could influence changes in the 
morphologies of the Holocene coastal plain, including 
sea-level changes, sedimentation rates, and basin subsid-
ence in the Yilan plain. In many low-lying areas world-
wide, rapid sea-level rise during the early Holocene 
played a dominant role in shaping coastal environments 
(Amato et  al. 2013; Stanley & Warne 1994). Following 
stabilization of sea levels during the mid- to late Holo-
cene, sedimentation rates and neotectonics became the 
primary factors influencing coastal environment changes 
(Antonioli et al. 2009; Bird et al. 2010; Li et al. 2014). The 
interplay of these factors resulted in complex coastal 
morphologies in the Yilan plain. We used the recon-
structed global sea level records from Hsieh et al. (2011) 
to account for the effects of sea-level changes. We spe-
cifically selected data from the same backshore face in 
the sand-dominated sediments to study subsidence due 
to neotectonics. In Hsieh et al. (2011), they assumed that 
the absolute sea-level curve around Taiwan matched the 
relative sea level obtained from the Sunda Shelf in Indo-
nesia (Hanebuth et al. 2000), Singapore (Bird et al. 2007), 
and the Penghu Islands off western Taiwan (Y.-G. Chen & 
Liu 1996) for pre-11 ka, 6–9 ka, and 0–5 ka, respectively.

After correcting for mean sea level variations, we esti-
mated the subsidence rate of the Yilan Basin, located 
at the tip of the Okinawa Trough, by assuming that the 
sedimentation rate of the same type of sediments from 
rivers in Yilan did not change drastically in the past 
10,000 years. Figure 9(a) and Table 2 present Carbon-14 
ages derived from sediments at various depths from 
wells located at Wusha (WS), Liming (LM), Zhunghsing 
(ZH), Beicheng (BC), and Shunan (SA). Additionally, in 
Fig. 9, we offer corrected depths, accounting for sea level 
changes, since the wells are situated at similar distances 
from the coast. After making these corrections and using 
data from the same sedimentary face, we estimated that 
the average subsidence rate in Yilan is approximately 
8.5 mm/year (or 8.5 m/ka).

Additionally, we observed several sudden changes in 
the subsidence rate within the Carbon-14-age to depth 
curve. These abrupt subsidence events in the YYilan Plain 
occurred around 6000–7000  years before the present 
(yrBP) and 2000–3000 yrBP.

In addition, the dating ages and trends within the past 
3000  years may suggest that the present is likely in a 
fast subsidence stage as well, as the youngest dating age 
of 120 yrBP is already at a depth of 5 m. Between these 
sudden subsidence periods, the average subsidence rate 
in the Yilan Plain was approximately 6.3 mm/year before 
7000 yrBP, 10 mm/year between 6000 and 3000 yrBP, and 
5 mm/year between 2000 and 120 yrBP. These subsidence 
rates are consistent with measurements of 5–10 mm/year 

Fig. 7 The 3D resistivity model of the Yilan Plain. Green squares indicate the locations of observation wells. The isosurfaces indicate the resistivity 
distribution at 140 Ohm‑m and 60 Ohm‑m
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Fig. 8 Estimated Sediment Distribution Using Resistivity Measurements and Machine Learning in the Yilan Plain. The red color represents 
a gravel‑dominated region, the white shows the region dominated by sand, and the blue color represents a clay‑dominated region. Triangles 
indicate the locations of observation wells, with numbers representing C‑14 dating ages. Brown characters indicate sedimentary facies along the AA’ 
profile. Abbreviations: GBR—Gravelly Braided River, SHF—Shoreface, BKS—Backshore, MDR—Meandering River
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Fig. 8 continued
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obtained through GNSS observations (H.-Y. Chen et  al. 
2021a, b).

The sudden subsidence may be due to prehistoric 
earthquake events during active seismic periods. The 
findings also suggest a recurrence period of about 

4000–5000  years for active seismic periods in Yilan. 
Compared with the Southern Okinawa Trough (SOT), 
our estimation for the subsidence rate of the Yilan Plain 
is about three to four times the average subsidence rate of 
the southernmost SOT (1.4–2.0 mm/yr) from 0.7 Ma to 

Fig. 8 continued

Fig. 9 a The Carbon‑14 ages of sediments collected in the backshore sandy‑dominated environment at various depths. Triangles represent data 
corrected for sea‑level changes, while crosses represent uncorrected data. The dashed line illustrates the fitted trend for the corrected data. b The 
fitted trend showing the periods between sudden changes in the buried depth of the Carbon‑14 ages‑to‑depth curve. Sudden subsidence may 
indicate seismic activity during these periods
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the present, as analyzed in the offshore data by Fang et al. 
(2020). These findings suggest that the plain at the tip of 
the SOT is still experiencing rapid subsidence, although 
the subsidence rate has decreased.

Conclusions
In this study, we attempt to reconstruct the intricate 
Holocene paleo-morphologies of the Yilan Plain with an 
innovative approach that combined resistivity measure-
ments with machine learning techniques. The Yilan Plain, 
situated at the southwestern tip of the Okinawa Trough, 
held the key to understanding recent back-arc opening 
processes, making it an ideal subject of study. Our pro-
cess involved interpolating inverted resistivity data to 
construct a 3D model, followed by developing classifica-
tion criteria based on the relationship between resistivity 
values and registered sediment types in nearby boreholes 

using supervised machine learning. The culmination of 
this effort was the creation of a high-resolution Apparent 
Geological Model (AGM) that could be used to analyze 
the depositional environment in our study area and com-
pare estimated sedimentary features with the environ-
mental history.

Our classification criteria, based on lithology-resis-
tivity correlations using the random forest machine-
learning method, allowed us to categorize regions 
with resistivity values above 140 Ohm-m as predomi-
nantly gravel, those with resistivity between 60 and 140 
Ohm-m as sand sediments, and regions with resistiv-
ity less than 60 Ohm-m as clay-dominated sediments. 
We then converted this 3D resistivity model into a clay-
sand-gravel model based on the criteria. Our horizon-
tal slices of sediment distribution at various depths in 
the Yilan Plain, complemented by borehole core dating 
records, provided crucial insights. Notably, the Car-
bon-14 dating ages in the sand sediments demonstrated 
greater consistency compared to gravel and clay areas. 
Additionally, we identified extruded gravel lobes asso-
ciated with different river systems, shedding light on 
the historical activity patterns of these rivers.

Our findings also hinted at a phenomenon of rapid 
subsidence in the Yilan Plain. Through meticulous 
analysis and correction for sea-level changes, we esti-
mated an average subsidence rate of approximately 
8.5  mm/year. Intriguingly, we observed abrupt subsid-
ence events at around 6000–7000 yrBP and 2000–3000 
yrBP, accompanied by a sudden increase in depth of 
about 10  m during these periods. Between these epi-
sodes, the average subsidence rates varied, suggesting 
a possible link to prehistoric earthquake events during 
active seismic periods. Moreover, our results pointed to 
a recurrence period of approximately 4000–5000 years 
for active seismic periods in Yilan.

In conclusion, this study has uncovered a wealth of 
information about the Holocene paleo-morphologies 
of the Yilan Plain, leveraging innovative techniques and 
interdisciplinary approaches. Our integration of resis-
tivity measurements, machine learning, and geological 
analysis has provided a deeper understanding of the 
region’s geological history, sedimentary patterns, and 
seismic activity. These insights are not only valuable for 
advancing our knowledge of Yilan’s past but also offer 
essential data for future environmental and geological 
studies in such dynamic regions.
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