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Abstract 

This study aimed to identify the optimal configuration for neural network (NN) emulators in numerical weather 
prediction, minimizing trial and error by comparing emulator performance across multiple hidden layers (1–5 layers), 
as automatically defined by the Sherpa library. Our findings revealed that Sherpa-applied emulators consistently 
demonstrated good results and stable performance with low errors in numerical simulations. The optimal configura‑
tions were observed with one and two hidden layers, improving results when two hidden layers were employed. 
The Sherpa-defined average neurons per hidden layer ranged between 153 and 440, resulting in a speedup relative 
to the CNT of 7–12 times. These results provide valuable insights for developing radiative physical NN emulators. Uti‑
lizing automatically determined hyperparameters can effectively reduce trial-and-error processes while maintaining 
stable outcomes. However, further experimentation is needed to establish the most suitable hyperparameter values 
that balance both speed and accuracy, as this study did not identify optimized values for all hyperparameters.

Highlights 

•	 The study aimed to  enhance the  efficiency of  neural network emulators for  numerical weather prediction 
by reducing trial and error through the use of Sherpa-defined neurons across multiple hidden layers.

•	 Optimal configurations with  one and  two hidden layers were identified, leading to  a  speed increase of  7–12 
times and maintaining stable performance with minimal errors.

•	 While automatically determined hyperparameters have shown promise in decreasing trial and error, additional 
research is needed to achieve the optimal balance between speed and accuracy in weather prediction.
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Introduction
Abnormal weather patterns, encompassing extreme 
heatwaves, severe storms, and prolonged droughts, have 
emerged as a significant global concern. Improving the 
accuracy of predictions for sudden local heavy rainfalls 
caused by the tropicalization of the Korean peninsula, 
the implementation of high-resolution and computa-
tionally intensive numerical weather prediction (NWP) 
models is necessary. Machine learning (ML) technol-
ogy has become popular as an alternative to providing 
high-level rapid service in huge NWP models. However, 
applying ML to physics parameterization, where direct 
weather prediction is calculated, presents more chal-
lenges compared to its use in data assimilation and pre-/
post-processing. This is because the interactions between 
complex equations of physics parameterization through-
out the model require sophisticated handling to suppress 
the prediction error over time. Radiation parameteriza-
tion, which is a significant factor controlling the energy 
circulation of the Earth, consisting of scattering, penetra-
tion, and reflection of radiant energy is notably complex. 
As a result, radiation puts a significant burden on driv-
ing high-resolution models. Traditional approaches to 
alleviate this burden have involved intermittent driving 
of the radiation parameterization. Recently, organiza-
tions including the European Center for Medium-Range 
Weather Forecasts (ECMWF), National Oceanic and 
Atmospheric Administration (NOAA), and various 
national meteorological administrations, have been 
advocating for the use of state-of-the-art ML technol-
ogy (Chevallier et  al. 1998, 2000; Krasnopolsky et  al. 
2005, 2008, 2010, 2012; Lagerquist et  al. 2021; Pal et  al. 
2019; Roh and Song 2020; Song and Roh 2021; Song et al. 
2021; Song and Kim 2022; Song et  al. 2022; Ukkonen 
et  al. 2020; Veerman et  al. 2021) to facilitate radiation 
parameterization.

Previous studies (Chevallier et  al. 1998, 2000) have 
investigated the use of emulators for radiation, specifi-
cally for LW (longwave radiation) and SW (shortwave 
radiation), under clear and cloudy sky conditions. The 
ECMWF devised an advanced LW emulator, termed 
the control run (CNT), exhibiting a tenfold acceleration 
compared to the initial radiation scheme. This emulator 
employs a variable neuron count with a single hidden 
layer neural network (SHLNN), and utilizes a hyper-
bolic tangent (tanh) as the activation function (AF). The 
root-mean-square error (RMSE) between the emulator 
and CNT was less than 1.7 W  m–2. Similarly, the Cli-
mate Forecasting System model of the National Cent-
ers for Environmental Prediction (NCEP) developed a 
LW emulator that was 16–20 times faster and had 556 
inputs, 69 outputs, and 50–200 neurons SHLNN. The 
SW emulator was 60 times faster on average, with 562 

inputs, 73 outputs, and 50–200 neurons. Krasnopolsky 
et al. (2012) replaced the LW/SW radiations of the Rapid 
Radiative Transfer Model for General Circulation Models 
(RRTMG) with an NN emulator, respectively, resulting in 
a 20- to 100-fold increase in speed compared to the origi-
nal radiation parameterization. Bellochiski et  al. (2011) 
explored various methods for LW emulators, including 
approximate nearest neighborhood, classification, and 
regression tree (CART) and random forest methods, 
all of which exhibited higher RMSEs than those using 
a SHLNN configuration with 80 neurons. The Depart-
ment of Energy Super-Parameterized Energy Exascale 
Earth System Model developed an NN-based emulator 
for LW and SW based on RRTMG-P. This NN consists 
of 32 neurons across three hidden layers, utilizes a sig-
moid activation function, and achieves a speedup factor 
of 10 with a 90–95% accuracy compared to the CNT. Liu 
et al. (2020) reported that emulators based on a convolu-
tional neural network (CNN) reduced the RMSE of the 
LW cooling rate by 41–51% compared with those using 
a deep neural network (DNN) with three hidden layers, 
although the CNN was approximately 100 times slower 
than the DNN. Additionally, AI-based methods for radia-
tive transfer parameterization have also been developed, 
including gas optical characteristic parameterization 
(Ukkonen et al. 2020; Veerman et al. 2021) and SW radia-
tive transfer parameterization methods (Lagerquist et al. 
2021) for RRTMG-P. However, these emulators have not 
yet tested online nor have they been fully integrated with 
operational numerical weather models. Veerman et  al. 
(2021) investigated the performance of emulators that 
use a combination of neurons and hidden layers. They 
found that architectures with a high number of neurons 
in deep layers had small RMSEs but were computation-
ally intensive. In the best performance, the emulator 
accurately predicted optical characteristics with an aver-
age error of less than 0.5 W m−2.

Recent studies by Roh and Song (2020), Song and Roh 
(2021, 2023) and Song et  al. (2021, 2022), have signifi-
cantly advanced the use of neural network (NN) emula-
tors for radiation parameterization in numerical weather 
prediction (NWP), focusing on the RRTMG-K radiation 
scheme, detailed by Baek (2017). Beginning with ideal-
ized cases (Roh and Song (2020) and extending to real-
world applications, particularly precipitation events in 
the Korean Peninsula, these works have demonstrated 
the effectiveness of NN emulators at a high resolution 
and universal application (Song and Roh 2023). Lever-
aging the Stochastic Weight Averaging technique, Song 
et  al. (2022) significantly advanced the field by accel-
erating radiative physics parameterization speeds by 
a factor of 60, which led to a substantial reduction in 
computing times by 84–87%. This enhancement was 
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further complemented by improvements in the perfor-
mance of the emulator, showcasing a 12.30% increase in 
longwave flux, a 7.16% increase in shortwave flux, and 
a 3.23% increase in skin temperature, alongside a slight 
0.56% decrease in 2-m temperature. These advance-
ments underscore the superior efficacy of the emulator 
and forecast precision improvements of 18.2–26.9% over 
the SHLNN model from Song et al. (2021), affirming the 
operational effectiveness of the emulators.

These advancements underscore the significance of 
techniques like SWA in hyperparameter optimization, 
emphasizing the need for diverse approaches to refine 
hyperparameter settings. This research, by exploring 
various techniques and balancing computational effi-
ciency with predictive accuracy, not only achieves break-
throughs in atmospheric modeling, but also heralds a 
promising future for NNs in environmental simulations. 
The above research demonstrates that optimizing the 
performance of ML models hinges on emulator design 
and meticulous parameter construction. Consequently, 
achieving peak effectiveness is imperative through hyper-
parameters, such as neuron count, layer quantity, and 
epochs, as well as input/output training data set regulari-
zation, batch size, optimal options, AF, and DNN-based 
ML learning rate (LR). Most studies have empirically 
determined optimized hyperparameters during train-
ing and validation, leading to numerous cases that must 
be evaluated to select the optimal choice. Recently, sev-
eral packages offering various optimization methods 
for hyperparameters, such as the Sherpa software, have 
become available. Sherpa can streamline the trial-and-
error process using powerful and versatile algorithms 
(Hertel et  al. 2020). For instance, Kim and Song (2022) 
used the Sherpa-automated optimizer to obtain the 
optimal LR for ML training, resulting in substantially 
better performance compared to manually controlled 
LRs. Optimization technology of Sherpa also signifi-
cantly reduced the time required for hyperparameter 
optimization.

These advancements emphasize the importance of 
hyperparameter optimization techniques (Akiba et  al. 
2019; Gustafson 2018; Liaw et  al. 2018) such as SWA, 
highlighting the necessity for a variety of methods to 
fine-tune hyperparameter settings for ML models. This 
research explores multiple techniques to achieve a balance 
between computational efficiency and predictive accuracy, 
leading to significant breakthroughs in atmospheric mod-
eling and forecasting a promising future for the use of NNs 
in environmental simulations. The optimization of ML 
model performance is shown to be crucially dependent on 
emulator design and meticulous parameter construction, 
including critical hyperparameters such as neuron count, 
layer quantity, epochs, input/output training dataset 

regularization, batch size, optimal options, AF, and LR. 
While most studies have relied on empirical methods to 
determine optimized hyperparameters during training and 
validation, the advent of optimization packages like Sherpa 
software offers a new avenue for streamlining the trial-
and-error process with powerful and versatile algorithms 
(Hertel et al. 2020). For example, the utilization of Sherpa-
automated optimizer by Kim and Song (2022) to find the 
optimal LR for ML training significantly improved perfor-
mance compared to manually adjusted LRs and reduced 
the time required for hyperparameter optimization.

Crucially, the development of emulators is signifi-
cantly influenced by the number of hidden layers and 
the overall neuron count. Generally, an increase in the 
number of hidden layers and neurons is associated with 
enhanced NN training model performance for complex 
input–output structures. However, this improvement is 
not universal and applies selectively based on specific cir-
cumstances. Given that the input and output structures 
are predetermined through optimization processes and 
are immutable, the neuron count emerges as a pivotal 
factor representing emulator speed, occasionally exhib-
iting an inverse relationship with performance metrics. 
This underscores the necessity to predict the optimal 
number of hidden layers and neurons tailored to the spe-
cific problem, a task that is challenging and time-inten-
sive when solely relying on empirical evidence. The use 
of predetermined values for epochs, LR, optimizers, and 
data normalization, derived from previous experience, 
aims to concentrate efforts on the automatic optimiza-
tion of neuron numbers and hidden layers. This approach 
enables speed enhancements through computational 
complexity analysis. Extending the findings of Kim and 
Song (2022), this study seeks to evaluate the performance 
of automatically optimized neurons across a spectrum of 
NN performance, from minimum to maximum. Utilizing 
data from 2009 to 2020 provided by Song et  al. (2022), 
the research will employ the SWA technique with Sherpa 
software to predict the optimal configurations of hid-
den layers and corresponding neurons, integrating these 
insights to push the boundaries of emulator efficiency 
and NN performance in environmental modeling.

Data and methods
Sherpa model
Sherpa is a library focused on automating the hyperpa-
rameter optimization process for NNs, aiming to maxi-
mize model performance. It seeks to optimize crucial 
variables in network structure and the learning process, 
such as the number of neurons per layer, by defining 
a parameter search space and utilizing a genetic algo-
rithm to find the optimal values. In our experiments, we 
adjusted the neuron parameter within a range of 5–1098 
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(Table  1), with the optimization limited to a maximum 
of five attempts. The basic definitions used in Sherpa 
experiments encompass various optimization and model 
configuration components. The maximum number of 
epochs, which determines the repetition count for the 
learning process of the model, was limited to 3000 (clear 
sky) and 2200 (cloudy sky) proposed by Song et al. (2022), 
focusing our experiment on the dependency on neu-
ron numbers. The learning rate is set at a default of 0.5 
(Kim and Song 2022), with the SGD (Stochastic Gradi-
ent Descent) optimizer applying a momentum of 0.9, 
enhancing adjustability during the learning process. Gra-
dient clipping is also employed to prevent gradient explo-
sion issues associated with gradient descent methods. 
The structure of the model employs a multi-layer per-
ceptron (MLP), with the number of neurons in the hid-
den layers optimized through Sherpa to maximize model 
performance. In this case, we are dealing with fully con-
nected feed-forward NNs that feature 1–5 hidden layers, 
with the same number of neurons in each hidden layer. 
A batch size of 500 (Kim and Song 2022) increases data 
processing efficiency. The models employed a tanh AF. 
And CosineAnnealingLR scheduler was used for learn-
ing rate adjustment. The loss function primarily used is 
MSE (mean squared error). Additional settings include 
batch normalization, minimum variance settings, Early 
Stopping conditions, and checkpoint saving, optimizing 
the model learning and validation process, preventing 
overfitting, and enhancing the generalization capability 
of model.

In this case, the application of SWA improves learn-
ing stability. SWA models, introduced by Izmailov et al. 
in 2018, were employed to enhance the generalization of 
NN training. SWA is a machine learning technique that 
improves the generalization performance of NN train-
ing by averaging the network weights at various points 
during SGD. Unlike traditional ensemble methods, SWA 
is computationally efficient and results in broader, flat-
ter solutions that enhance generalization, as opposed 
to SGD, which can converge to sharp minima. Izmailov 
et  al. (2018) demonstrated the superior performance of 
SWA in benchmark tests compared to SGD. In the con-
text of emulators for General Circulation Models and 
NWP, SWA shows promise in addressing generalization 
challenges caused by accumulated errors during long-
term integration. Generalization remains a significant 
concern when developing universal emulators, especially 
in cases where an infinite amount of training data is not 
available. The SWA mode was applied during the final 
25% of epochs, in contrast to the initial 75% utilizing con-
ventional SGD.

The use of Sherpa significantly reduces the manual 
labor and time required for tuning of the model by swiftly 
identifying the most efficient configuration among vari-
ous options. This optimization tool automates the pro-
cess of enhancing the ability of the model to learn from 
and predict data, thereby improving both accuracy and 
execution speed. Applying a scientific experiment meth-
odology, it adjusts the impact of specific hyperparam-
eters to achieve optimal performance. The goal is to find 

Table 1  Number of neurons (N) derived from NC

Parentheses show the NC of the given mean input (I = 175), output (O = 42), and the number of hidden layers (H)

Number of hidden layers (H)

1 2 3 4 5

Speedup (fold) 5 1098 392 295 248 218

(264,660) (248,570) (245,777) (245,066) (243,548)

10 549 253 196 166 147

(132,351) (125,277) (124,502) (123,214) (122,493)

20 274 158 126 109 98

(66,076) (63,242) (62,412) (62,281) (62,468)

50 110 80 68 60 54

(26,552) (25,802) (25,814) (25,482) (24,936)

100 55 45 40 36 34

(13,297) (12,957) (12,962) (12,714) (12,996)

200 27 24 22 21 20

(6549) (6426) (6356) (6489) (6542)

500 11 10 10 10 9

(2693) (2562) (2672) (2782) (2571)

1000 5 5 5 5 5

(1247) (1277) (1307) (1337) (1367)
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the best hyperparameter configuration that maximizes 
model performance while minimizing computational 
costs. Sherpa enables learning and improvement through 
trial and error, offering a considerable advantage by facili-
tating rapid experimentation cycles to efficiently identify 
the best model configuration.

Training and validation sets
In the real-case study, a horizontal domain featuring a 
234 × 282 grid layout for east–west and north–south 
directions was employed, covering the Korean peninsula. 
This setup mirrors the configuration of the Korea Local 
Analysis and Prediction System (KLAPS), an operational 
numerical weather prediction (NWP) model utilized 
by the Korea Meteorological Administration (KMA). 
KLAPS is designed for short-range weather forecasting, 
with a primary focus on the rapid analysis of changing 
weather phenomena over brief periods, as documented 
by Shin et  al. (2022). The system operates with a 5-km 
spatial resolution and is composed of 39 vertical layers, 
extending up to 50 hPa. Note that the dynamics and phys-
ical processes of KLAPS are grounded in the Weather 
Research and Forecasting (WRF) model  (Skamarock 
et  al.  2019). The radiation emulator for this framework 
targets the RRTMG-K radiation scheme (Baek 2017), 
capable of calculating vertical heating rates, LW fluxes 
across 16 bands using 256-g points, and SW fluxes across 
14 bands using 224-g points. The simulation incorpo-
rated the WRF double moment 7-Class microphysics 
scheme (Bae et al. 2019), the KIAPS Simplified Arakawa–
Schubert cumulus (Kwon and Hong 2017), the Shin and 
Hong planetary boundary layer (Shin and Hong 2015), 
the revised MM5 Monin–Obukhov surface layer (Jimé-
nez et al. 2012), and the Unified Noah land surface model 
(Tewari et al. 2004). Initialization for the real case frame-
work was done using data from the European Center for 
Medium-Range Weather Forecasts Reanalysis v5 (ERA5) 
(Hersbach et al. 2020) with a 0.25° grid and 3-h intervals.

In this study, we adopted the CNT established by Song 
et al. (2022) to develop the RRTMG-K emulator operating 
within the KLAPS environment using WRF, covering the 
period from 2009 to 2020. Our focus was on July, which is 
known as a period when severe weather events frequently 
occur on the Korean peninsula, for the development of 
the emulator through the Sherpa experiment. The data 
used for this study comprised July of each year from 2009 
to 2019 as the training set. We targeted July for the period 
from 2009 to 2019, selecting 2 days of maximum precipita-
tion and obtaining 2 days without precipitation randomly 
to use training data for a total of 44 days. The independ-
ent validation sets were composed of days corresponding 
to the third and fourth maximum precipitation events in 
July during the period from 2009 to 2019, along with 22 

non-precipitating days that were not used in the training 
sets. This segmentation was strategically chosen to ensure a 
comprehensive training and validation process for the emu-
lator. The rationale behind using a large training dataset is 
to adequately cover the complexity of weather situations 
and address the uncertainties in meteorological variables 
caused by factors such as complex weather patterns and 
global warming. Our objective was to create an emulator 
capable of replacing the RRTMG-K radiation scheme in 
the WRF model, enabling the calculation of radiation flux 
and heating rates solely through NN inference. To assess 
the emulator performance in an operational setting, an 
independent verification targeted July 2020 for an online 
test. The results of this online test, which demonstrate the 
accurate prediction of radiation fluxes and heating rates by 
the emulator without relying on the traditional RRTMG-K 
radiation scheme, are detailed in chapter 3.

Traditionally, radiative transfer parameterization 
involves conducting one-dimensional numerical calcula-
tions of the radiative heating rate at specific grid points. 
Input variables encompassed vertical profiles of pressure, 
temperature, water vapor, ozone, and cloud fraction, skin 
temperature (LW) and surface emissivity (LW), insola-
tion (SW), and surface albedo (SW). Output variables 
included all-sky heating rate profiles, upward fluxes at 
both the top and bottom of the atmosphere, and down-
ward flux at the bottom. In this study, LW/SW fluxes 
were calculated as the average of the three fluxes at both 
the upward fluxes and downward flux. Individual fluxes 
at the top or bottom were also analyzed statistically. The 
datasets were divided into eight groups based on radia-
tion types (LW and SW), atmospheric conditions (clear 
and cloudy sky), and geographic scenarios (land and 
ocean). Surface data (land or ocean) and cloud fraction 
data (clear or cloudy sky) provided horizontal informa-
tion, along with time data for solar angles (applied to 
LW or SW) for specific months. Solar zenith angle deter-
mined the application of LW and SW radiation, with 
LW active during nighttime when the solar zenith angle 
is negative and both LW and SW active during daytime 
when the solar zenith angle is positive. Each category 
contains approximately 3 million data points.

NN complexity
The NC of a DNN can be defined as:

where I and O denote the input and output variables, 
respectively, N represents the number of neurons per 
hidden layer, and H corresponds to the number of hid-
den layers. This complexity enables the calculation of the 
speedup based on N and H, considering the dimensions 

(1)
NC = I × N + N + (H − 1)

× (N × N + N) + N × O + O,
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(I and O) of the provided training data. Notably, the 
NWP model supplies cloud fraction data across 39 verti-
cal layers; however, observations reveal that the upper 4 
layers (layers 36 to 39) are typically devoid of clouds in 
July. To enhance performance, we refined our dataset to 
focus on the 35 lower layers for modeling conditions of 
a cloudy sky, effectively reducing NC and, consequently, 
accelerating the NN. In our model for a cloudy sky, I is 
set to 193, reflecting the inclusion of data from these 35 
layers. For conditions of a clear sky, where the vertical 
cloud fraction values at the numerical grid points equal 
0, we omitted the cloud fraction data for all 39 layers 
from the input, resulting in 158 variables. The output O, 
which represents 8 categories in the training, is fixed at 
42. Based on the I/O provided by Song et  al. 2021 and 
Song et al. 2022, we adopted the result that using 90 neu-
rons led to a 60-fold speed improvement in the emula-
tor, as measured by NC. Therefore, future calculations of 
speedup were performed based on this benchmark.

Performance of Sherpa in the NN‑based emulator
Speedup
Table 1 details the structure of NNs, specifying the num-
ber of neurons across varying hidden layers with a set 
mean input of 175, indicative of average clear and cloudy 
sky conditions, and a fixed output of 42. The exploration 
spans one to five hidden layers (H), with neuron counts 
adjusted for speed enhancements ranging from 5- to 
1000-fold to optimize experimental efficiency. For the 
fivefold speedup, 1098 neurons are used, while at 1000-
fold, the count is reduced to just 5 neurons. Ultimately, 
this establishes a fundamental framework for utilizing 
Sherpa to search for an optimal neuron count within the 
range of 5 to 1098. The NC is calculated to quantify of NN 

structural complexity, facilitating comparison in terms of 
size and architecture. Higher NC values correlate with an 
increased number of neurons and connections, suggest-
ing a potential to learn more complex patterns. However, 
this complexity can also predispose networks to overfit-
ting and elevate computational demands (Bellochiski 
et  al. 2011, Belochitski and Krasnopolsky 2021, Song 
et  al. 2022). Certainly, the table shows the reduction in 
neuron quantity with accelerated computational speeds, 
implying a preference for simpler network structures for 
faster processing. Additionally, in this framework, an 
increase in hidden layers corresponds with a decrease in 
neurons per layer, indicating a balance between network 
depth and complexity management. In summary, the 
table demonstrates how increases in speed and hidden 
layer count influence neuron numbers and NC, serving 
as a vital reference for NN design and optimization.

Table  2 illustrates the outcomes derived using the 
Sherpa algorithm, encompassing results for neuron, 
speedup, and reduction rates across 1 to 5 hidden layers. 
The data are segregated based on LW and SW radiation, 
clear and cloudy skies, and land and ocean scenarios. 
The metrics for speedup and reduction are computed by 
averaging the neuron counts deduced by Sherpa for the 
respective hidden layers. These neurons are obtained 
through five iterations using genetic algorithm of Sherpa, 
demonstrating the algorithm efficiency in optimizing NN 
configurations under various environmental conditions 
and hidden layer quantities. The speedup and reduction 
metrics serve as crucial elements for improving the NN 
performance and efficiency, offering essential informa-
tion for radiative physics calculations and applications 
across different meteorological and geographical envi-
ronment. Through experimentation, we explored the 

Table 2  Neurons, speedup and reduction across 1 to 5 hidden layers as derived from Sherpa

It includes distinctions for LW and SW radiation, clear and cloudy sky, and land and ocean scenarios. The speedup and reduction are based on Sherpa-derived average 
neurons

Atmospheric condition Radiation type Geographic type Number of hidden layers (H)

1 2 3 4 5

Clear sky LW Land 436 379 231 219 166

Ocean 966 119 249 184 168

SW Land 505 379 274 242 144

Ocean 130 79 138 156 148

Cloudy sky LW Land 471 370 263 237 123

Ocean 384 275 253 187 138

SW Land 443 217 190 234 206

Ocean 188 304 284 164 130

Sherpa-derived average neurons 440.4 265.3 235.3 202.9 152.9

Speedup (fold) 12.4 9.3 7.4 7.1 9.4

Reduction (%) 18.1 13.5 10.7 10.3 13.6
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correlation between optimized neurons and categories. A 
trend was observed where the required neuron decreases 
with an increase in the number of hidden layers, suggest-
ing that DNNs do not necessarily require more neurons, 
highlighting the importance of finding a balance between 
efficiency and complexity. Depending on the type of 
radiation, LW generally necessitates more neurons than 
SW, likely due to closer of LW radiation association with 
the complex thermal characteristics of the Earth surface. 
Conversely, in SW, NNs can effectively learn with fewer 
neurons, primarily because solar radiation calculations 
are more direct and based on specific values. Under dif-
ferent atmospheric conditions, clear skies enable a clearer 
learning of meteorological variables by the NN due to the 

absence of clouds, necessitating the network to finely 
detect and predict subtle changes in variables like surface 
temperature, humidity, and albedo. In cloudy conditions, 
the presence of clouds directly affects the transmission 
and distribution of radiative energy. Geographically, ter-
restrial areas, due to their rapid heating and cooling, can 
generate complex weather patterns, implying a need for 
more neurons in the NN. In contrast, the ocean shows 
more uniform and steady temperature changes, allowing 
the NN to achieve sufficient predictive performance with 
fewer neurons. This analysis provides important insights 
into the complexities of LW and SW radiation, clear 
and cloudy skies, and land and ocean conditions. It con-
firms the significant impact of each condition physical 

Fig. 1  Learning curves displaying the RMSEs from emulators with various speedups (5, 10, 20, 50, 100, 200, 500, and 1000) and Sherpa-applied 
emulator with SHLNN. The maximum epoch was set to 2200. Each line represents the average of four categories (land, ocean, clear, and cloudy sky)
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characteristics and the interaction with meteorologi-
cal variables on the model structure and computational 
capabilities. According to the study by Song et al. (2022), 
the radiation emulator achieved a speed enhancement of 
60-fold compared to the CNT, reducing the total compu-
tational time of NWP by approximately 87%. Using lin-
ear interpolation, it was determined that at a maximum 
speed enhancement of 1000 times, the computational 
time is reduced by 1450% compared to the CNT, and at a 
minimum speed enhancement of 5 times, it is reduced by 
7.3%. The NN emulators, utilizing neuron counts auto-
matically determined by Sherpa across 1 to 5 hidden lay-
ers, showed a 7–12 times speed enhancement (average 
9 times), consequently reducing the total computational 
time of NWP by 10–18% (average 13.2%).

Accuracy
Figure  1 illustrates the learning curves with RMSEs for 
the SHLNN, detailed in Table 2. The training was stopped 

at 3000 epochs for clear skies and 2200 epochs for cloudy 
sky. Here, the comparison includes average results up to 
2200 epochs. In the figure, various colors indicate results 
from different speedup conditions, while solid red line 
denotes the Sherpa result (12.5-fold speedup as detailed 
in Table  2). Here, (a) and (b) account for the averaged 
heating rates summed across vertical layers. Figure 1c and 
d represent the average of 3 fluxes: upward fluxes at the 
top and bottom of the atmosphere, and downward flux 
at the bottom for LW and SW, respectively. Each learn-
ing curve is an average of four categories (land, ocean, 
clear, and cloudy sky) and corresponds to speedups of 5, 
10, 20, 50, 100, 200, 500, and 1000-fold, as well as Sherpa 
experiment with SHLNN. Generally, RMSEs slightly 
decreased with an increase in epochs. In the figure, SGD 
is applied for epochs less than 1650, whereas consti-
tute approximately 75% of the total 2200 epochs, while 
the SWA model (Song et al., 2022) exhibits quasi-stable 
RMSEs for the remaining 25% of epochs. For heating 

Fig. 2  RMSEs of LW/SW heating rates and fluxes from emulators with varying speedups (•) and Sherpa-applied emulator (×). Different colors denote 
number of hidden layer (NHL), ranging from 1 to 5
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rate and flux, curves with less than 100-fold speedup 
had relatively small errors due to high NC. For LW and 
SW heating rates, the averaged RMSEs with less than a 
50-fold speedup at the 2200th epoch was 0.791 day−1 and 
0.378  K  day−1, respectively. The fluxes for LW and SW 
were 9.238 and 29.225 W m−2, respectively. Compared 
to the Sherpa result in Table  2, the speedups of 12.28-
fold were located between the 10- to 20-fold speedups 
of Fig.  1. For Sherpa at the 2200th epoch, the RMSEs 
of LW and SW heating rates and fluxes were 0.736 and 
0.369 K day−1 and 9.052 and 27.440 W m−2, respectively. 
Although these values were slightly lower than the LW 
and SW heating rates of 0.756–0.762 K day−1 and 0.373–
0.376 K day−1, respectively, they fell within the ranges of 
8.904–9.292 W m−2 and 25.766–29.324 W m−2 for LW 
and SW fluxes at approximately 10–20-fold speedup at 
the same epoch, respectively. In summary, the learning 
curves for different speedup conditions show varying 
patterns, with Sherpa results generally achieving lower 
RMSEs compared to other speedup conditions. The rela-
tionship between speedup, NC, and model stability influ-
enced the overall performance of the NN emulators.

Figure  2 shows the RMSEs of emulator using neuron 
determined by the speedup for given NHLs (Table 1) and 
Sherpa. The circle symbols represent the RMSEs of the 
heating rate for LW (a) and SW (b), and the average of 
three fluxes for LW (c) and SW (d), respectively. The fig-
ure reveals that, for a given hidden layer, error decreases 
when there is a minor speed improvement (using a larger 
number of neurons). For most of the results, barring SW 
flux, it becomes evident that the deeper the layer is for a 

specific speed improvement, the larger the error. Among 
all results, SHLNN demonstrated the best performance. 
This finding indicates that developing more complex 
structures in the emulator does not always yield better 
results, supporting the conclusions of previous studies, 
such as Song et al., 2022. In other words, this insight can 
be used in future research as an indicator that helps strike 
a balance between speed improvement and DNN struc-
ture. For SHLNN, the LW heating rate and fluxes had 
RMSEs of 0.45 K day−1 or less and 3.8 W m−2 or less for a 
speed improvement of 100 times or less. The SW showed 
0.23 K day−1 or less measurements and 24 W m−2 or less.

In this experiment, Sherpa were assumed to be compa-
rable to a tenfold improvement. In the experiment with 
a speedup of 5, the RMSE of Sherpa was smaller than 
that for the cases with 4–5 hidden layers, and larger than 
those with 1–3 hidden layers. For the SW heating rate, 
the RMSE decreased as the speedup was reduced for 
each hidden layer, becoming nearly constant when the 
speedup was 50 or below. With a speedup of 5, the case 
with two hidden layers displayed the smallest RMSE for 
the SW heating rate. In the Sherpa experiment with one 
and two hidden layers, the RMSE was almost identical 
and exhibited the minimum value. The LW flux experi-
enced a decrease in RMSE for 1 to 5 hidden layers as the 
speedup decreased. When the speedup was less than 10, 
the RMSE showed minimal reductions across most hid-
den layers. With a speedup of 5, the RMSE achieved the 
minimum value in the entire experiment using two hid-
den layers. Sherpa RMSE was similarly small for one and 
two hidden layers. However, the SW flux demonstrated 

Fig. 3  Spatial distribution of fluxes. The top row display OLR, while the bottom row show OSR, respectively. It represents the CNT (a, f), the emulator 
with a NN 1000-fold speedup in SHLNN (b, g), the emulator resulting in Sherpa (c, h), the difference between the CNT and the 1000-fold emulators 
in SHLNN (d, i), and the difference between the CNT and the Sherpa-applied emulator (i.e., SHLNN) emulators (e, j) for OLR and OSR, respectively. 
This image illustrates the spatial distribution for 0300 UTC on 28 July 2020, integrated with the forecast results from 156 to 356 h, initiated at 1500 
UTC on 21 July 2020
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a different trend than the abovementioned variables. The 
RMSE of SW flux with 1, 4, and 5 hidden layers decreased 
as the speedup dropped, but the RMSE rose again at a 
speedup of 5. With five hidden layers, the RMSE of SW 
flux went down at a speedup of 1000 to 100, increased 
slightly, and then decreased at a speedup of 20.

Figure  3 exhibits the spatial distributions of OLR 
fluxes (upper panel) and OSR fluxes (lower panel). The 
depiction data accrued over 156 h in the WRF amid the 
extreme weather occurrence marked by the Changma 
front on the Korean Peninsula. The figures demonstrate 
the CNT (a and f ), the 1000-fold speedup emulator (b 
and g), and Sherpa-applied emulator (c and h). For com-
parison, the difference between CNT and experiments 
is shown in (d and e) for OLR and (e and j) for OSR, 
respectively. The emulator experiments aimed to discern 
the maximal difference between the lowest performance 
(1000-fold speedup) and optimized performance utilizing 
Sherpa with the SHLNN framework. The OLR depicted 
the clear sky area with elevated LW radiation flux as a red 
zone in panel (a–c). Panels (d) and (e) show the difference 
between CNT and experiments. The difference shown in 
(e) is smaller than (d). Conversely, OLR fluxes in cloudy 
sky areas were diminished due to obscured surfaces by 

dense cloud cover. Comparing the distributions, the 
Sherpa result was found to be more congruent with (a). 
The OSR (lower two panels) displayed augmented values 
where the reflection effect was more pronounced due to 
cloud-covered surfaces, resulting in reduced OSR flux in 
areas where the surface absorbed it. Analogous to the LW 
outcome, the Sherpa-output was more akin to the OSR 
CNT than the emulator result.

The RMSEs of the spatial distribution, obtained by 
averaging three of each LW/SW flux and skin tempera-
ture, are presented in Figs. 4, 5, 6 to illustrate the extreme 
difference between the CNT and experiments using vari-
ous hidden layers. Figures 4a, 5a, and 6a show the RMSE 
spatial distributions of the CNT versus the emulator 
designed using neurons with a 1000-fold speedup under 
the SHLNN. Figures  4b–f, 5b–f, and 6b–f depict the 
RMSEs obtained by using the number of neuron results 
in Sherpa that were evaluated by the CNT. The emula-
tor used hidden layers with 1 to 5 layers. All data were 
collected over 4  weeks from 1500 UTC 21 July 2020 to 
1500 UTC 21 August 2020 and predicted for 7  days 
once. The results of the 4-week prediction were applied 
to find the RMSEs at each grid point. The LW and SW 
fluxes were considered as the average of three surface 

Fig. 4  Spatial distributions of the RMSEs for averaged LW fluxes (upward fluxes at the top and bottom of the atmosphere, and downward flux 
at the bottom) from emulators trained with a speedup of 1000-fold in SHLNN (a) and Sherpa-applied emulator with 1–5 hidden layers (b–f)
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outputs. Overall, the RMSE distribution of NN 1000-fold 
was larger than that of the Sherpa experiments, as shown 
in Figures  4b–f, 5b–f, and 6b–f. Furthermore, RMSEs 
were enhanced towards the deep layers. In detail, NN 
1000-fold in Fig. 4 showed large errors in high mountain 
locations, such as North Korea and Jeju Halla Moun-
tain, because the elevation of the terrain was not con-
sidered during the ML training. Moreover, the error for 
the ocean region was significantly larger, approximately 
one order of magnitude, than the error in Sherpa experi-
ments. Figure  5a–f shows higher RMSEs with similar 
patterns for the SW fluxes for the mountainous region 
in North Korea. However, NN 1000-fold had the larg-
est RMSE (reddening area) not only in the high moun-
tain region (up to 150 W m−2), but also for a broad area 
of the northern ocean (Fig.  5a). Moreover, overall, the 
results of NN 1000-fold had higher errors than those 
of the LW experiment (Fig. 4). For Sherpa experiments, 
the high mountain location in North Korea still showed 
large RMSEs distribution, but the emulators with Sherpa 
experiment well-imitated the ocean regions. This pattern 
is also well demonstrated by skin temperature in Fig.  6. 
The skin temperatures for ocean regions were well-emu-
lated with almost zero value. For the land, the northern 

Korean peninsula is illustrated up to 3 K, and a difference 
was found between Sherpa experiments showing over 
2.5 K.

Figure 7 presents the time series of improvement rates 
for the RMSE calculated using Sherpa, based on the 
number of hidden layers, in comparison with the RMSE 
in SHLNN, which has a speedup of 1000-fold for LW/
SW fluxes, skin temperature, and precipitation. The sta-
tistics were derived by considering the spatial and time 
evolutions over a 4-week period. For the RMSE of the 
LW flux, the improvement rate increased as the number 
of hidden layers decreased (Fig.  7a). The improvement 
rate of RMSE with two hidden layers was almost the 
same or slightly higher than that with one hidden layer. 
As the 7-day forecast hours progressed, the improve-
ment rate of RMSE exhibited daily fluctuations and sub-
sequently decreased over time. Similarly, the RMSE of 
the SW flux saw an improvement with a lower number 
of hidden layers (Fig.  7b). However, the improvement 
rate of RMSE for the SW flux was slightly higher with 
two hidden layers compared to one hidden layer. For the 
7-day forecast hours, the improvement rate of RMSE 
diminished over time. It should be noted that only day-
time results when SW radiation occurred are displayed. 

Fig. 5  Spatial distributions of the RMSEs for averaged SW fluxes (upward fluxes at the top and bottom of the atmosphere, and downward flux 
at the bottom) from emulators trained with a speedup of 1000-fold in SHLNN (a) and Sherpa-applied emulator with 1–5 hidden layers (b–f)
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Regarding the RMSE of skin temperature, the improve-
ment rate increased as the number of hidden layers 
became smaller, but the difference in the improvement 
rate of RMSE between the number of hidden layers was 
not significant (Fig. 7c). Across the 7-day forecast hours, 
the improvement rate of RMSE exhibited daily fluctua-
tions and decreased over time. Lastly, for precipitation, 
the improvement rate of RMSE did not display any spe-
cific characteristics concerning the hidden layers, and no 
discernible trend was observed as time progressed.

Summary and conclusions
In this study, we compared the performance of emula-
tors considering neurons obtained from multiple hidden 
layers (1–5 layers), automatically defined by the Sherpa 
library, in the context of numerical weather prediction. 
Our goal was to determine the most efficient and accu-
rate configuration for NN emulators while minimizing 

trial-and-error processes. Our findings revealed that 
emulators with neurons determined by Sherpa consist-
ently demonstrated good results and stable performance 
with low errors in numerical simulations. The optimal 
configurations were observed with one and two hidden 
layers, slightly improving results when two hidden layers 
were employed. The Sherpa-defined average neurons per 
hidden layer ranged between 153 and 440, resulting in a 
speedup relative to the CNT of 7–12 times. These results 
provide valuable insights for developing radiative physi-
cal NN emulators. Utilizing automatically determined 
hyperparameters can effectively reduce trial-and-error 
processes while maintaining stable outcomes. However, 
further experimentation is recommended to establish the 
most suitable hyperparameter values that balance both 
speed and accuracy, as this study did not identify opti-
mized values for all hyperparameters.

Fig. 6  Spatial distributions of the RMSEs of skin temperature from emulators trained with a speedup of 1000-fold in SHLNN (a) and Sherpa-applied 
emulator with 1 to 5 hidden layers (b–f)
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