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Abstract 

In this research, we explore the application of artificial neural networks, specifically the vector-quantized tempo-
ral associative memory (VQTAM) and VQTAM coupled with locally linear embedding (VQTAM-LLE) techniques, 
for simulating 2-D magnetotelluric forward modeling. The study introduces the concepts of VQTAM and VQTAM-
LLE in the context of simulating 2-D magnetotelluric responses, outlining their underlying principles. We rigorously 
evaluate the accuracy and efficiency of both VQTAM variants through extensive numerical experiments conducted 
on diverse benchmark resistivity and real-terrain models. The results demonstrate the remarkable capability of VQTAM 
and VQTAM-LLE in accurately and efficiently predicting apparent resistivity and impedance phases, surpassing 
the performance of traditional numerical methods. This study underscores the potential of VQTAM and VQTAM-LLE 
as valuable computational alternatives for simulating magnetotelluric responses, offering a viable choice along-
side conventional methods.
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Introduction
In the traditional approach, magnetotelluric (MT) 
modeling is described using boundary-valued prob-
lems (BVP) of partial differential equations (PDEs). The 
approximated solutions are derived through classical 
numerical methods, including finite difference method 
(FDM) (Mackie et  al. 1994; Siripunvaraporn et  al. 2002; 
Tan et al. 2003; Tong et al. 2018), finite element method 
(FEM) (Wannamaker et al. 1987; Mogi 1996; Franke et al. 
2007; Sarakorn 2017; Sarakorn and Vachiratienchai 2018; 

da Conceição Batista and Sampaio 2019), finite volume 
method (FVM) (Jahandari and Farquharson 2015; Du 
et al. 2016; Han et al. 2018; Wang et al. 2019; Khampichit 
and Sarakorn 2021), boundary element method (BEM) 
(Xu and Zhou 1997; Ren et  al. 2014; Wittke and Tez-
kan 2014; Yang et al. 2019), hybrid mixed finite element 
domain decomposition method (HMFEDDM) Zyserman 
et  al. (1999), and hybrid finite difference-finite element 
method (HBFDFEM) (Sarakorn and Vachiratienchai 
2018). Each method has its own set of advantages and 
disadvantages. FDM is known for its speed and accuracy 
in handling simple models, while FEM, although slower, 
provides superior accuracy for more realistic models. 
Similarly, FVM and BEM offer comparable accuracy 
but require higher computational resources. HBFDFEM 
combines the strengths of both FDM and FEM, but its 
speed diminishes compared to FDM.
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In recent years, artificial neural networks (ANN), 
computational models inspired by the human nervous 
system, have witnessed significant advancements in solv-
ing, simulating, and optimizing problems across diverse 
fields. Their applications in electromagnetic problems 
have been notable. For instance, in 2003, ANN were uti-
lized to analyze magnetotelluric time-series data Manoj 
and Nagarajan (2003). Subsequently, during 2005–2006, 
ANN employing different learning paradigms were 
applied to determine subsurface layer structures from 
magnetotelluric data Khalil et al. (2006) and inversion of 
geo-electrical resistivity sounding data Singh et al. (2005). 
Developing convolutional neural networks (CNN) led to 
their use in MT inversion (Puzyrev 2019; Puzyrev and 
Swidinsky 2021). Furthermore, in 2021, ANN with mul-
titask learning were employed in 2-D MT forward mod-
eling to predict apparent resistivity and phase (Shan et al. 
2021). Recent work in 2023 introduced Deep Learning 
MT forward modeling and its application in inversion 
Deng et al. (2023). Despite these advancements, improv-
ing the accuracy and efficiency of these ANN models 
remains challenging.

Among these ANN techniques, the vector-quantized 
temporal associative memory (VQTAM) method (Bar-
reto and Araujo 2004) is one of the most efficient super-
vised neural network models. It was developed based on 
the self-organizing map (SOM) architecture (Kohonen 
2013), an unsupervised clustering method that allows 
VQTAM to perform both recognition and cluster-
ing simultaneously. Originally, SOM was an unsuper-
vised neural algorithm utilizing competitive learning 
to represent spatial neighborhood relationships within 
unlabeled datasets, designed to uncover topological 
structures within multidimensional data spaces. SOM 
has found applications in diverse fields, such as pat-
tern classification (Chetchotsak et  al. 2015), machine 
vision (Wongsriworaphon et  al. 2015), image compres-
sion (Arnonkijpanich et  al. 2011), data visualization 
(Arnonkijpanich et  al. 2010), and even kinematic mod-
eling of parallel manipulators (Limtrakul and Arnon-
kijpanich 2019). Subsequently, an improved version of 
VQTAM, known as vector-quantized temporal associa-
tive memory with locally linear embedding (VQTAM-
LLE) technique, was introduced to enhance its accuracy 
(Wongsriworaphon et al. 2015; Limtrakul and Arnonkij-
panich 2019).

This study employed VQTAM and VQTAM-LLE tech-
niques alongside the traditional FE method to simulate 
2-D magnetotelluric responses, specifically apparent 
resistivity and phases. In addition, the possibility of our 
technique to generate additional reliable data for the 
restricted cases where the MT survey cannot be done 
due to some limitations, such as the topographic zone 

in the pre-inversion process, was presented. Various 
benchmark resistivity models and real-terrain models 
were selected. The training dataset was generated using 
the Finite Element (FE) approach (Sarakorn 2017), and 
another dataset of responses was estimated using these 
two neural networks. The accuracy and efficiency of both 
VQTAM and VQTAM-LLE were thoroughly examined, 
analyzed, and discussed.

2‑D magnetotelluric modeling
In the traditional way, MT modeling describes the nat-
ural electromagnetic (EM) fields interacting with the 
Earth. The EM fields act like a plane wave with harmonic 
diffusion, the displacement currents is neglected, and 
the time-dependent is assumed to be e−iωt , where ω is 
the angular frequency. In the case that the strike direc-
tion is x-direction, the electrical conductivity σ is there-
fore varied in only the y and z-directions, i.e., σ = σ(y, z) , 
the boundary-valued problem of the second-order partial 
equations for the 2-D MT problem is expressed by

The notations α,β and G for two polarizations: E- and 
H-polarizations are denoted as follows:

where Ex and Hx are the strike aligned electric and mag-
netic fields, respectively, µ is the magnetic permeability 
in free space and µ = µ0 = 4π × 10−7(Vs/Am) . The 
computational domain for the 2-D case is considered as a 
region � = �1 ∪�2 ∪ Ŵ ∪ Ŵint ⊂ R2.

As shown in Fig. 1, the subregion �1 is defined as the 
air layer, the subregion �2 is defined as the Earth layer, 
the boundary Ŵ is the outer boundary, and Ŵint is the air–
earth interface. Crossing Ŵint , the electrical conductiv-
ity σ (or the electrical resistivity ρ ) is discontinuous. The 
partial differential equations (1) are subjected to the Dir-
ichlet boundary conditions:

where G0(y, z) is obtained analytically or numerically 
from 1-D MT forward problem. Equation (1) can be 
solved analytically when its model structure is simple. In 
contrast, solving (1) with various numerical techniques 
are more suitable (Wannamaker et  al. 1987; Key and 
Weiss 2006; Franke et al. 2007; Sarakorn 2017; Tong et al. 

(1)

∂

∂y

(

µ−1α
∂Gx

∂y

)

+
∂

∂z

(

µ−1α
∂Gx

∂z

)

+ βGx, = 0.

(2)E -Polarization : α = 1, β = iωσ , G = E,

(3)
H -Polarization : α =

1

σ
, β = iω, G = H ,

(4)G = G0(y, z) on Ŵ,
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2018; Sarakorn and Vachiratienchai 2018; Khampichit 
and Sarakorn 2021). When the electric and magnetic 
fields are obtained for each period, the impedances, the 
apparent resistivity, and phases at each sample station are 
calculated by (5)-(7), respectively,

where i, j = x, y.

The VQTAM and VQTAM‑LLE techniques
VQTAM as SOM‑based neural network
The self-organizing map (SOM) is a neural network based 
on unsupervised learning. SOM is categorized as an unsu-
pervised version of a vector quantization technique with 
topology preservation among the neurons. A SOM consists 
of neurons arranged on a regular two-dimensional grid A . 
Each neuron i on the grid corresponds to a location of the 
prototype vector in the input space, i.e., win

i ∈ R
n . This fea-

ture is used to connect both modules. At each time of pro-
totype adjustment during SOM training, a prototype that 

(5)Zij =
Ei

Hj
, Zii = Zjj = 0,

(6)ρa
ij =

1

ωµ
|Zij|

2,

(7)φij = arg(Zij),

belongs to the winner neuron i∗ and its neighbor neurons 
are updated to approach a fed input sample. Then, an elas-
tic net derived from linking between prototypes is unfolded 
and spanned over input space. This way, SOM can rep-
resent data faithfully using a set of prototypes, in which 
these learned prototypes are considered as centers of sub-
clusters in input space. Thus, SOM is suitable for the task 
of data clustering. Interestingly, the prototype distribution 
still preserves neighborhood-based topology and ordering 
in the 2D neural grid. In addition, another goal of SOM is 
to transform n-dimensional patterns in input space into a 
two-dimensional array of neurons. VQTAM was proposed 
to increase the efficiency of SOM at mapping patterns in 
input space into output space. The space of the outputs 
must be included as the third module in the structure 
of the classical SOM. Thereby, a weight vector in output 
space, wout

i ∈ R
z is also attached to each win

i  which belongs 
to neuron i. The underlying idea of VQTAM is that, dur-
ing training on both spaces, the SOM algorithm adjusts the 
module of prototypes 

{

win
i ,w

out
i

}

 in order to represent the 
data manifold on both input and output spaces. Note that 
a prototype vector win

i  corresponds to wout
i  , which is simi-

lar to the dataset in input space xin that corresponds to the 
target set in output space xout . Then, a mapping from win

i  to 
wout
i  can be considered as forward mapping from the input 

space to the output space. Note that this mapping explic-
itly performs approximator/predictor like supervised ANN 
based on multilayer perceptron (MLP) Wongsriworaphon 
et al. (2015).

Because MT modeling can be considered as nonlinear 
system identification, the neural networks for nonlinear 
MT system can be constructed by training input/output 
data of the system. In this work, the input vector xin con-
tains values from periods and stations, while the output 
vector xout consists of apparent resistivity and phases. 
VQTAM is used to map patterns in input space to desired 
outputs. The training vector x fed into the VQTAM and the 
module of prototypes wi are defined as follows:

During training process, the winning neuron i∗ is deter-
mined by using only the portion corresponding to xin:

Note that, each neuron i is arranged on a 2D lattice struc-
ture A such that prototype vectors or weight vectors in 
input and output spaces, i.e., win

i  and wout
i  , are associated 

to each neuron i. Then, the learning rules are

(8)x =

(

xin

xout

)

and wi =

(

win
i

wout
i

)

.

(9)i∗ = argmin
i∈A

{∥

∥

∥
xin − win

i

∥

∥

∥

}

.

Fig. 1 The computational domain � = �1 ∪�2 ∪ Ŵ ∪ Ŵint for 2-D 
MT case
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Thus, the weight vectors on both input and output spaces 
are updated by

(10)�win
i = a(m)h

(

i∗, i;m
)

[

xin − win
i

]

,

(11)�wout
i = a(m)h

(

i∗, i;m
)[

xout − wout
i

]

.

(12)win
i ⇐= win

i + a(m)h
(

i∗, i;m
)

[

xin − win
i

]

,

(13)wout
i ⇐= wout

i + a(m)h
(

i∗, i;m
)[

xout − wout
i

]

,

where 0 < a(m) < 1 is the learning rate in epoch m. 

h(i∗, i;m) = exp

(

−
�ri−ri∗�

2

2b2(m)

)

 is a Gaussian neighbor-

hood function where ri and ri∗ are locations of neurons i 
and i∗ in the lateral lattice space. Note that ri and ri∗ cor-
respond to positions of wi and wi∗ , respectively. The vari-
ables a(m) and b(m) are the exponential decay functions, 
which are used to guarantee that the weight vectors con-
verge to steady states. These functions are given by

where a0 and b0 are initial values, while aM and bM are 
final ones after training M epochs. After training, we 
obtain the set of weight vectors 

{

win
i ,w

out
i

}

 belonging to 
each neuron i. Then, a trained VQTAM network can be 

(14)

a(m) = a0

(

aM

a0

)
m
M

and b(m) = b0

(

bM

b0

)
m
M

,

used for the testing stage, such that each vector of the 
test set, xintest , is used for the winner assignment: i∗ = 
argmin

i∈A

{
∥

∥xintest − win
i

∥

∥

}

 . Afterward, a weight vector wout
i∗  , 

which corresponds to the weight of the winner neuron 
win
i∗  can be used as an estimation of the outputs. This 

arrangement means that the approximate values of 
apparent resistivity and phase of xintest are obtained by 
using the following equation:

The algorithm of the VQTAM technique is summarized 
as Algorithm 1.

(15)xouttest = wout
i∗ .

Algorithm 1 Algorithm of VQTAM scheme

X

Improvement of classical VQTAM
Note that the estimates of xouttest produced by Eq. (15) 
have low reliability because of a high error value. The 
number of neurons must be sufficiently large to obtain 
a high-accuracy prediction. This arrangement leads to a 
time-consuming problem during the training process. 
An efficient strategy to defeat this restriction is to train 
VQTAM with a few neurons to get the data topology. 
Then, an autoregressive (AR) model and locally linear 
embedding (LLE) technique Roweis and Saul (2000) 
can be used to improve the accuracy of estimates 
derived from VQTAM. However, in practice, the AR 
model relying on the pseudo-inverse derived from the 
normal equations becomes problematic due to a 
pseudo-inverse matrix being close to singular, leading 
to a badly scaled optimization problem. In addition, the 
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AR model is based on linear mapping and used to fit 
the linearly distributed data. For the LLE algorithm, 
this method is one of the most widely used nonlinear 
dimensionality reduction techniques. LLE reduces the 
dimensionality of high-dimensional data while preserv-
ing local geometries in a low-dimensional representa-
tion of the original data. In contrast to the AR model, 
LLE preserves the local relationships of the data mani-
fold. LLE is also categorized as nonlinear mapping, 
which is appropriate to represent the nonlinear data. 
Further, as suggested in Wongsriworaphon et al. (2015); 
Limtrakul and Arnonkijpanich (2019), VQTAM based 
on LLE gives an accurate and robust prediction better 
than the result of VQTAM combined with the AR 
model. Thus, in this work, only the LLE technique is 
chosen to improve classical VQTAM. The outline of the 
LLE application to our work is composed of three steps. 
In the first step, the k winner neurons of xintest are 
defined as win

i∗1
,win

i∗2
, . . . ,win

i∗k
 , where

Then, each vector xintest in the test set can be written as a 
linear combination of its k nearest neural weights:

(16)

i∗1 = argmin
i∈A

{∥

∥

∥
xintest − win

i

∥

∥

∥

}

,

i∗2 = argmin
i∈A,i/∈{i∗1}

{∥

∥

∥
xintest − win

i

∥

∥

∥

}

,

...

i∗k = argmin

i∈A,i/∈
{

i∗1 ...i
∗
k−1

}

{∥

∥

∥
xintest − win

i

∥

∥

∥

}

.

In the second step, for each vector xintest , the coefficients 
C =

{

cl | l = 1, . . . , k
}

 of the linear combination are 
calculated to obtain the best representation of the local 
geometries of the input space. In this step, the LLE 
attempts to reconstruct the k coefficients. This action 
corresponds to minimizing the reconstruction error that 
appears in the cost function

This representation function is intended to minimize the 
cost function under two constraints. In the first con-
straint, each vector xintest is reconstructed only from its k 
nearest winner neurons, thus cl = 0 , if w in

i∗l
 is not a neigh-

bor of xintest . The second condition is that the coefficients 
sum to one, i.e., 

∑k
l=1 cl = 1 . The optimal matrix C can 

be computed by solving a constrained least-squares prob-
lem. In the third step, the estimates of xouttest are improved 
by using the coefficients from the previous step:

The algorithm of VQTAM-LLE technique is summarized 
as Algorithm 2. We can see from Algorithms 1 and 2 that 
the VQTAM and VQTAM-LLE have the same training 
stage. Therefore, the number of iterations used to reach 
the stopping criteria is the same. However, both methods 
use a different number of iterations and consume differ-
ent CPU time in the testing stage.

(17)xintest = c1w
in
i∗1
+ c2w

in
i∗2
+ · · · + ckw

in
i∗k
.

(18)φ(C) =

∥

∥

∥

∥

∥

xintest −

k
∑

l=1

clw
in
i∗l

∥

∥

∥

∥

∥

.

(19)xouttest = c1w
out
i∗1

+ c2w
out
i∗2

+ . . .+ ckw
out
i∗k

.
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Algorithm 2 Algorithm of VQTAM-LLE scheme

Applications of VQTAM and VQTAM‑LLE techniques 
for simulating MT responses
As described above, both VQTAM and VQTAM-LLE 
have been applied to a wide range of tasks such as func-
tion approximation Barreto and Araujo (2004), com-
puter vision Wongsriworaphon et  al. (2015), robot 
modeling Limtrakul and Arnonkijpanich (2019). These 
algorithms have shown promising results in various 
applications and are considered to be effective methods 
for dynamic modeling and pattern recognition. In the 
MT problems, ANN have been employed for both for-
ward and inverse MT problems, as evidenced by previ-
ous studies (Singh et al. 2005; Khalil et al. 2006; Puzyrev 
2019; Shan et  al. 2021; Puzyrev and Swidinsky 2021; 
Deng et al. 2023). However, the application of VQTAM 
and VQTAM-LLE to MT modeling still needs to be 
explored. Exploring the potential of these VQTAM 
techniques in the context of MT problems presents an 
intriguing and challenging avenue of research. Despite 

representation 

their successful track record in other domains, their 
adaptation and performance in the specific domain of 
MT modeling have yet to be thoroughly investigated.

The process of utilizing VQTAM approaches to estimate 
2-D magnetotelluric (MT) responses begins with the 
preparation of responses for the training dataset. Let us 
consider the sampling of electromagnetic (EM) periods 
Ti ∈ [A,B] for i = 1, 2, . . . ,NT , where NT represents the 
total number of sampling periods during the training 
stage. Typically, the EM period interval for MT falls 
within [A,B] = [10−1, 104] seconds. Additionally, 
sampling stations on the Earth’s surface are denoted as 
Sj =

(

yj , zj
)

∈ [Yl ,Yr]× [Za,Zb] ⊂ R2 within the training 
domain, where j = 1, 2, ..,NS and NS signifies the total 
number of sampling stations. It is important to note that the 
scale for 

(

yj , zj
)

 is in meters. In this context, the z-direction 
is considered as  positive downward, meaning  that zj = 0 
represents sea level. zj on the Air–Earth interface can be 
positive or negative depending on the presence of terrain. 
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These data, along with the resistivity structure model, serve 
as inputs for the finite element (FE) approach utilizing 
quadrilateral elements Sarakorn (2017). The outputs 
consist of matrices representing apparent resistivity

and phase

The input vector xin = [xinpq]Nd×3 , where Nd = NT · NS , is 
constructed as

and the vector xout = [xoutpq ]Nd×2

(20)ρa
xy = [ρ

axy
ij ]NS×NT , ρa

yx = [ρ
ayx
ij ]NS×NT ,

(21)φxy = [φ
xy
ij ]NS×NT , φyx = [φ

yx
ij ]NS×NT .

(22)xin =
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for E-polarization and

(23)xout =
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Fig. 2 The resistivity structures of COMMEMI2D-2 model. The red triangles are the locations of NS = 21 stations
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for H-polarization, respectively.
For the testing phase, a different set of periods 

Ttest
i ∈ [A,B] for i = 1, 2, . . . ,Ntest

T  , where Ntest
T  represents 

the total number of testing periods, and 
Stestj =

(

ytestj , ztestj

)

∈ [Yl ,Yr]× [Za,Zb] for j = 1, 2, ...,Ntest
S

 , 
where Ntest

S  is the total number of testing stations, are uti-
lized as input. The construction of the input vector xintest mir-
rors the training stage, although the size of matrices may 
vary. Ultimately, the estimated MT responses obtained 
through the VQTAM or VQTAM-LLE approaches are 
stored in xouttest with dimensions 

(

Ntest
T · Ntest

S

)

× 2 for each 
polarization. Note that for all experiments in this study, we 
keep Stestj = Sj and Ntest

S = NS . This consistency is crucial 
for making valid comparisons among the MT sites within 
the specified domain.

Numerical experiments
In this section, we present a comprehensive evaluation 
of the VQTAM and VQTAM-LLE approaches, focusing 
on their performance, accuracy, and reliability. For these 
experiments, we employ three distinct models. The initial 
benchmark model is derived from the COMMEMI pro-
ject (Zhdanov et al. 1997). The second model represents 
a modification of another original COMMEMI project, 
while the final model incorporates topographic zone. 
To assess the accuracy of the developed VQTAM and 
VQTAM-LLE methods, the mean absolute percentage 
error (MAPE) that measures the prediction accuracy of a 
predicting method defined by

(24)xout =
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where dij is the referenced response obtained from the 
FEM scheme (Sarakorn 2017) and d̂ij is the predicted 
data obtained by the VQTAM or VQTAM-LLE methods 
is utilized. This evaluation involves the apparent resis-
tivity and phase data for both E− and H−polarizations. 
Furthermore, we gauge the efficiency of our approaches 
by analyzing overall CPU times and the number of itera-
tions during the training stage. All experiments are made 
on MacBook Pro(M2) with memory 16GB and CPU 10 
cores.

COMMEMI2D‑2 model
The resistivity structures of the COMMEMI2D-2 model 
(Zhdanov et al. 1997) are illustrated in Fig. 2. The Earth’s 
surface is flat in this representation, with z = 0 denoting 
the air–earth interface and sea level. We have positioned 
NS = 21 stations at intervals of 4 km, covering a range of 
[−50, 50] km on the Earth’s surface. Each station is rep-
resented as Si = (yj , zj) = (−50+ 4(j − 1) km, 0 km) , 
where j ranges from 1 to NS . These station locations are 
marked by red triangles in Fig.  2. For our testing pur-
poses, we have selected 61 periods of electromagnetic 
(EM) waves within the range of [1, 1000] seconds, spaced 
at intervals of 0.05 on a logarithmic scale.

Several critical parameters influence the performance 
of our neural networks including the number of train-
ing datasets, the number of neurons, and the stopping 
criteria used to determine the stability of the objective 

(25)MAPE =
1

Ntest
T Ntest

S

Ntest
T

∑

j=1

Ntest
S

∑

i=1

∣

∣

∣

∣

∣

dij −Odij

dij

∣

∣

∣

∣

∣

×, 100,

Fig. 3 The graph between num. of iterations during the training 
stage of both VQTAM and VQTAM-LLE methods and various num. 
of neurons
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functions. The number of training datasets plays a piv-
otal role in the accuracy and efficiency of the neural net-
works. While a more extensive training dataset typically 
results in higher algorithm accuracy, an extensive dataset 
can reduce overall performance. Note that the parameter 
k in Algorithm 2 is fixed as k = 4 in all experiments.

In this model, we utilize NT = 31 periods selected from a 
total of 61 periods within the specified interval, defined as 
Ti = 100.1(i−1) s, where i ranges from 1 to NT . These peri-
ods are employed for simulating the magnetotelluric (MT) 

data and as input training data for our algorithms. It is 
important to note that these period selections remain con-
sistent across all cases for this model. The impact of varying 
training data will be explored in the subsequent model.

The second parameter we consider is the number 
of neurons allocated for each input dataset. Utilizing 
the SOM architecture, the neural network structure 
forms a 2D lattice, denoted as Nn × Nn neurons. In our 
experimentation, we configure the design with Nn set to 
10, 15, 20, 25, 30, 35,  and 40.

Fig. 4 The resistivity distributions of COMMEMI2D-1-like model. The red triangles are the locations of 21 stations

Fig. 5 The graph displays MAPE values with respect to the ratios between training and testing data for VQTAM (left) and VQTAM-LLE (right) 
approaches
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Lastly, the third factor involves setting the stopping 
criteria to determine the stability of objective func-
tions a(m) and b(m) in equation (14), which dictate the 
termination of the training step for the VQTAM and 
VQTAM-LLE approaches before the commencement of 
the testing phase. Specifically, the stability of the objec-
tive function is achieved when the values of these func-
tions do not fluctuate beyond 3% to 0.05% . By adjusting 
these key parameters, we assess the accuracy of both 
methods in terms of MAPE. The resulting MAPE values 
for the VQTAM and VQTAM-LLE approaches, employ-
ing a stopping criterion for objective functions set at 1% , 
are summarized in Table 1.

In our numerical experiments, it is evident that increas-
ing the number of neurons leads to a decrease in MAPE 
across all MT responses, while a reduction in the number 
of neurons significantly raises MAPE levels. Specifically, 
employing 40× 40 square grid configuration ensures that 
the MAPE for all MT responses remains below 5% . The 
VQTAM-LLE method displays a smaller MAPE than the 
conventional VQTAM approach in this scenario. This 
trend persists when the stopping criterion is reduced to 
0.5% , as illustrated in Table 2.

Similar trends are observed in cases where the stopping 
criteria are set at 0.1% and 0.05% (refer to Tables  3 and 
4, respectively). In these instances, MAPE levels below 
5% are consistently achieved with neuron configurations 
ranging from 30× 30 to 40× 40 . Notably, the choice of 
stopping criteria does not significantly impact the MAPE 
levels within this range.

To consider efficiency, the relationship between the 
total number of iterations during the training stage 
and varying numbers of neurons is depicted in Fig.  3. 
Decreasing the stopping criteria increases the number 

of iterations, while an increase in the number of neu-
rons results in higher iteration counts. To regard CPU 
time, Table 5 demonstrates that a higher number of neu-
rons leads to increased CPU usage for both VQTAM and 
VQTAM-LLE approaches across all stopping criteria. The 
CPU time increases when the stopping criteria decrease 
across all neural network scenarios. Additionally, when 
employing the same number of neurons, VQTAM 
scheme exhibits shorter CPU times than VQTAM-LLE 
scheme.

COMMEMI2D‑1‑like model
For this model, we configured it according to the COM-
MEMI2D-1 model (Zhdanov et  al. 1997), as illustrated 
in Fig. 4. Originally, the subsurface anomaly size was 0.5 
km × 2  km. However, it was enlarged to 10  km × 2  km 
for a larger scale. Twenty-one stations were strategically 
placed for measuring responses, spanning a range of 
[− 10, 10] km on the Earth’s surface with 1 km spacing. 
A red triangle denotes each station. The EM wave is com-
prised of  81 periods ranging from [0.01,  100] s, spaced 
logarithmically at 0.05 intervals.

During the training process, the stopping criteria 
for changing the levels of a(m) and b(m) in equations 
(14) were set at 0.1% . The total number of neurons was 
specified as 1600 neurons. The purpose of employ-
ing this model was to assess the efficiency of VQTAM 
and VQTAM-LLE concerning the variation in the ratio 
between training data sampling periods ( NT ) and testing 
data sampling periods ( Ntest

T  ), in which the total num-
ber of stations for two phases, NS and Ntest

S  , were set to 
be equal. The ratios considered in this experiment were 
14 : 67, 21 : 60, 41 : 40, and 58 : 23, respectively.

Fig. 6 The graph on the left illustrates the number of iterations, while the graph on the right depicts CPU time, both with respect to the ratios 
between training and testing data used by VQTAM and VQTAM-LLE approaches
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The MAPE obtained by VQTAM and VQTAM-LLE for 
each response type concerning these ratios is depicted in 
Fig. 5. An increase in training data led to a reduction in 
MAPE for both approaches. The highest MAPE occurred 

at the smallest ratio of 14  :  67, whereas the minimum 
MAPE was at the most significant ratio of 58  :  23. 
VQTAM consistently exhibited lower MAPE compared 
to VQTAM-LLE for all response types. Notably, the 

Fig. 7 The profiles that pass through some part of Northeast (P1: left bottom) and Kanchanaburi province (P2: right bottom) of Thailand
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Fig. 8 The resistivity models for the P1 (left) and the P2 (right) profiles. The red triangles are assumed as the MT sites for modeling

Fig. 9 The generated MT responses using FE method of the P1 (left) and the P2 (right) profiles for training and testing data

Fig. 10 The MAPE obtained by the VQTAM and VQTAM-LEE schemes for P1 (left) and P2 (right) profiles
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MAPE values for apparent resistivity were consistently 
higher than those for phase across all ratios. However, 
this trade-off was observed regarding the number of 
iterations and CPU time, with increased training data 
leading to longer computation times, as illustrated in 
Fig. 6.

Topographic models
For the topographic models, we selected two profiles 
denoted  as P1 and P2, passing through distinct terrains 
and locations in Thailand. Sample points along these 
profiles were collected and utilized as input for the 

Table 1 The mean absolute percentage error (MAPE) of MT was obtained through the VQTAM and VQTAM-LLE approaches, with a 
stopping criterion set at 1% for changing the objective function

Num. of neurons  Mean absolute percentage error (MAPE)

VQTAM VQTAM‑LLE

ρa
xy ρa

yx φxy φyx ρa
xy ρa

yx φxy φyx

10× 10 92.55 148.30 26.69 43.12 231.71 738.93 110.63 52.74

15× 15 80.73 113.26 25.48 41.87 101.59 314.23 51.80 41.05

20× 20 64.59 160.79 20.91 33.97 128.26 369.00 21.09 29.86

25× 25 56.86 89.80 23.29 37.18 66.54 262.35 23.48 35.49

30× 30 38.51 30.71 7.24 6.72 38.51 39.93 6.16 5.61

35× 35 26.65 32.48 4.62 3.68 32.82 47.60 4.25 3.65

40× 40 3.40 2.90 0.54 0.55 2.53 2.51 0.38 0.43

Table 2 The mean absolute percentage error (MAPE) of MT was obtained through the VQTAM and VQTAM-LLE approaches, with a 
stopping criterion set at 0.5% for changing the objective function

Num. of neurons  Mean absolute percentage error (MAPE)

VQTAM VQTAM‑LLE

ρa
xy ρa

yx φxy φyx ρa
xy ρa

yx φxy φyx

10× 10 92.55 148.30 26.69 43.12 231.71 738.93 110.63 52.74

15× 15 33.02 25.36 7.23 6.14 47.44 33.84 7.15 5.77

20× 20 11.63 10.61 3.29 2.67 18.75 16.14 4.44 3.47

25× 25 6.57 6.49 1.45 1.37 6.97 6.71 1.63 1.66

30× 30 5.11 5.32 1.03 1.00 4.99 7.20 0.93 0.97

35× 35 3.48 3.39 0.70 0.72 3.44 7.17 0.53 0.62

40× 40 2.66 2.47 0.51 0.52 2.10 1.91 0.36 0.39

Table 3 The mean absolute percentage error (MAPE) of MT was obtained through the VQTAM and VQTAM-LLE approaches, with a 
stopping criterion set at 0.1% for changing the objective function

Num. of neurons  Mean absolute percentage error (MAPE)

VQTAM VQTAM‑LLE

ρa
xy ρa

yx φxy φyx ρa
xy ρa

yx φxy φyx

10× 10 92.55 148.30 26.69 43.12 231.71 738.93 110.63 52.74

15× 15 36.63 26.19 5.44 4.58 52.27 35.39 6.30 5.19

20× 20 10.64 10.01 2.89 2.35 15.55 12.99 3.79 3.06

25× 25 7.07 6.66 1.33 1.30 7.42 6.65 1.48 1.59

30× 30 4.24 4.08 0.80 0.80 4.28 3.98 0.73 0.83

35× 35 3.88 4.40 0.71 0.73 3.60 3.43 0.52 0.60

40× 40 2.88 2.95 0.55 0.58 2.21 2.09 0.36 0.41
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FE method to generate training and testing data. The 
locations of these profiles are depicted in Fig. 7 (top).

The left-bottom part of Fig.  7 illustrates the P1 pro-
file and its corresponding elevation, covering a length of 
335 km and situated on the Khorat Plateau in northeast-
ern Thailand. This region, as depicted in the figure, forms 
a lengthy basin. Geological evidence below the Khorat 
plateau indicates surface rock types such as sandstone, 
shale, and rock salt Bunkanpai et  al. (2023). For this 
study, we create the simplified resistivity model with the 
top layer set at 100 � m, reaching depths of approximately 
4 km. The bottom layer is defined at 5000 � m, as shown 
in Fig. 8 (left). There were NS = 21 sites in total, and the 
data were generated over 41 periods ranging from 1 to 
1000  s using the FE method for the P1 profile, as illus-
trated in Fig. 9 (left), showcasing significant distortions in 
the ρa

yx responses.
The right-bottom section of Fig.  7 displays the P2 

profile, located in the Kanchanaburi province of Thailand. 
This 123 km long profile is positioned very close to the P4 
profile studied by Boonchaisuk et al., 2013 Boonchaisuk 
et  al. (2013), for investigating Miocene dual subduction 
zones beneath the Shan-Thai terrane in western Thailand. 

The resistivity model for this profile was simplified based 
on the inversion results from the study mentioned above, 
as depicted in Fig. 8 (right). For the P2 profile, NS = 41 
sites were considered, and data were generated over 
31 periods ranging [0.1,  100] s using the FE method, as 
shown in Fig. 9 (right).

In both cases, we set the acceptable average MAPE level 
at 5% for each response type, with 1600 neurons and a 
stopping criterion of 0.1% for the change in the objective 
function in both VQTAM and VQTAM-LLE approaches. 
The ratio between training and testing data was 21:20 
for the first P1 model and 16:15 for the second P2 pro-
file. Figure  10 depicts the calculated MAPE values. For 
the P1 profile, both approaches managed to reduce the 
average MAPE to the desired level within 151 iterations, 
demonstrating similar accuracy. Similarly, for the P2 pro-
file, these methods required 141 iterations to achieve the 
desired MAPE level. The accuracy of both VQTAM and 
VQTAM-LLE appeared comparable, although the phase 
MAPE values were significantly lower than those of the 
apparent resistivity.

Table 4 The mean absolute percentage error (MAPE) of MT was obtained through the VQTAM and VQTAM-LLE approaches, with a 
stopping criterion set at 0.05% for changing the objective function

Num. of neurons  Mean absolute percentage error (MAPE)

VQTAM VQTAM‑LLE

ρa
xy ρa

yx φxy φyx ρa
xy ρa

yx φxy φyx

10× 10 92.55 148.30 26.69 43.12 231.71 738.93 110.63 52.74

15× 15 43.06 30.02 6.13 5.06 61.65 40.44 7.01 5.50

20× 20 11.41 10.31 2.66 2.22 15.93 12.52 3.97 3.22

25× 25 6.34 6.64 1.44 1.30 6.60 6.38 1.54 1.47

30× 30 4.45 4.44 0.87 0.87 4.87 4.46 0.72 0.80

35× 35 3.63 3.56 0.66 0.69 3.32 3.14 0.50 0.58

40× 40 2.50 2.85 0.56 0.57 1.83 1.85 0.35 0.39

Table 5 The CPU time (seconds) against different numbers of neurons utilized by the VQTAM and VQTAM-LLE approaches

Num. of 
neurons

Stopping criteria of objective functions

1.0% 0.5% 0.1% 0.05%

VQTAM VQTAM‑LLE VQTAM VQTAM‑LLE VQTAM VQTAM‑LLE VQTAM VQTAM‑LLE

10× 10 5 6 5 6 5 5 5 5

15× 15 8 8 83 84 124 124 146 147

20× 20 23 23 134 134 153 154 170 171

25× 25 21 22 222 223 238 239 251 252

30× 30 118 119 338 339 387 388 401 402

35× 35 165 166 509 510 613 615 651 653

40× 40 743 745 801 803 955 957 1096 1098
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Discussion and conclusions
This study aims to develop and implement the 
VQTAM and VQTAM-LLE approaches for simulating 
2-D magnetotelluric  responses. Training and testing 
data, essential for evaluating the effectiveness of these 
methods, are generated through FE techniques. Both 
neural networks require input data, precisely the coor-
dinates of magnetotelluric (MT) sites and their corre-
sponding responses, including apparent resistivity and 
phase at selected electromagnetic (EM) periods. Vari-
ous parameters, such as the number of neurons, stop-
ping criteria for objective functions, the ratio between 
training and testing data, and the type of errors con-
sidered, are investigated to determine their impact on 
the accuracy and efficiency of the neural networks.

Benchmark models and real-world scenarios are 
employed to assess the potential of both VQTAM and 
VQTAM-LLE approaches. The results indicate that suf-
ficient neurons are crucial for achieving high accuracy. 
Setting the stopping criteria for the objective function 
at an appropriate level is essential. Moreover, the quan-
tity of training data should be substantial compared to 
testing data, and these data points need to be distrib-
uted within the specified range. When these param-
eters are appropriately configured, the VQTAM and 
VQTAM-LLE schemes demonstrate excellent perfor-
mance for benchmark and confirmed cases, achieving 
the desired error levels.

Due to their impressive performance, these 
techniques may be helpful as alternative forward 
operators when incorporated alongside some 
traditional methods or as hybrid neural networks-
traditional methods. Furthermore, the neural networks’ 
role in the pre-inversion process may generate 
additional MT data for better input data sets or for 
the restricted stations or periods where the MT survey 
cannot be done with some limitations. However, 
enhancing the speed of these approaches for practical 
applications is crucial. Achieving this goal may require 
potential enhancements, redesigns, or re-architecture 
of these methods.
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