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LETTER TO THE EDITOR

China: legacy collieries versus renewable 
energy
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Abstract 

The findings of the major strategic consulting project of Chinese Academy of Engineering ‘Research on the strategy 
of coal mine safety and abandoned mine resources development and utilization in China’ suggest that almost 13,000 
discarded collieries in China will provide abundant surface lands and massive underground heritages to not only 
develop but also store renewable energy within the Earth’s Critical Zone, thus helping attain its net-zero energy goal.

A major strategic consulting project of Chinese Academy 
of Engineering ‘Research on the strategy of coal mine 
safety and abandoned mine resources development and 
utilization in China’ has been successfully implemented 
in China during 2017–2019. Its achievements press con-
ference held in May 2021 suggests that almost 13,000 
discarded collieries in China will provide abundant sur-
face lands and massive underground heritages to not only 
develop, but also store renewable energy, particularly of 
renewable geo-energy within the Earth’s Critical Zone. 
This may bolster support for decarbonization of China’s 
energy sector, finally helping attain its net-zero energy 
ambition (O’Meara and Ye 2022) and double carbon’ goal 
(Shi et al. 2021).

Firstly, obsolete collieries’ land resources in China—
approximately 23,000  km2 of subsidence area and aban-
doned land according to the data—can be repurposed 
to construct wind and solar power stations and thereby 
develop electricity (O’Meara and Ye 2022). Such projects 

have been initiated in the abandoned metallic mines in 
Mexico and Germany (Lin et  al. 2023). A consensus is 
emerging that it is also achievable in China’s now-defunct 
collieries—both open pit and subsurface coal mines.

Secondly, abandoned underground coal mines are the 
best candidates for low-enthalpy geothermal exploita-
tion due to their lower capital cost without extra drill-
ing  expenditures and enhanced strata permeability 
characteristic deduced by previous mining activities 
(Loredo et  al. 2016). Until now, dozens of documented 
demonstration projects of mine-oriented geothermal 
systems have been successfully operated worldwide, 
mainly distributing in Canada, USA, UK, Germany, Ned-
erland and China (Chu et  al. 2021). Apart from shallow 
geothermal resources, underground mine is more acces-
sible to deep geothermal reservoir. This advantage makes 
the innovative transformation—from mining minerals to 
mining heat: excavation based enhanced geothermal sys-
tem (EGS-E)—possible. Such a new concept is also initia-
tively proposed by Chinese mining industry (Zhao et al. 
2020).

Thirdly, China’s discarded collieries since 1949 create 
as much as 1.56 × 1010 m3 of valuable underground space 
(Xie et al. 2020). After renovation, these legacies are opti-
mal for earth-contact heat and energy storage, including 
but not limited to mine water pseudokarstic aquifer inter-
seasonal heat storage, pumped hydroelectric energy stor-
age (PHES) and compressed air energy storage (CAES) 
(Menéndeza et al. 2019). Therefore, abandoned collieries 
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can be defined as available energy storage facilities for 
addressing an urgent issue hindering renewable energy 
penetration in China, i.e., the spatio-temporal intermit-
tency and imbalance of renewable energy generation 
(Yang and Xia 2022).

Most importantly, legacy mines’ renewable energy 
development and storage involve various substance 
migration (solid—soil/rock, liquid—water, and gas—
wind and compressed air) and energy conversion (wind–
solar–electricity–heat–geopotential, etc.) within the 
Earth’s Critical Zone (Fig.  1). This is caused by mines’ 
inherent attributes and special topology. Accordingly, 
the key scientific issue on the law of Earth’s fluid mat-
ter migration that accompanying energy conversion is a 
critical challenge that must be faced head-on (Chu and 
Wang 2023). This topic is also a general challenge for 
multitudinous earth-contact energy and environment 
issues. Therefore, open-related researches are urgent and 
necessary.

Given its significance, we suggest and expect reus-
ing legacy mines’ geoassets, both surface resources and 
underground heritages, to develop, store renewable 
energy, and finally fight energy crisis and climate change. 

It can help to pivot China to carbon neutrality by 2060. 
To achieve it, various geological investigations and ren-
ovation technologies, e.g., well logging, pumping test, 
strata grouting and artificial rock lined caverns should 
be carefully conducted to ensure long-term sealing, sta-
bility and safety, prior to agreeing above developments. 
Besides, economic and environmental assessments 
are also essential to the feasibility of these projects. For 
instance, various mine-oriented renewable energy pro-
duction and storage must not irritate threats to biodiver-
sity. Typically, mine water-based hydrothermal systems 
have thermal impacts on water temperature, which can 
affect aquatic ecology in the receiving water body (Preene 
and Younger 2014). Moreover, renewable energy devel-
opment and storage need special infrastructure; this will 
drive an increase in the exploitation of rare metals, cre-
ating new mining threats for biodiversity (Sonter et  al. 
2020). Targeted strategic planning should be considered. 
If not, renewable energy production and storage deduced 
extra mining threats for biodiversity may surpass those 
averted by energy crisis and climate change mitigation.

In a word, technically reliable, environmentally 
friendly and economically feasible to extract and store 
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Fig. 1  Legacy colliery vs renewable energy within the Earth’s Critical Zone (The design of the Earth’s Critical Zone in the left part is revised 
from the reference ‘Chorover J, Kretzschmar R, Garcia-Pichel F, et al. Soil Biogeochemical Processes within the Critical Zone. Elements, 2007(5): 
321–326’)



Page 3 of 3Chu et al. Geoscience Letters            (2024) 11:7 	

renewable energy at abandoned coal mines or any type 
of abandoned mines is challenging. Further joint efforts 
conducted by scientists and consultants from many dif-
ferent backgrounds, e.g., miners, geologists, biologists, 
chemists, civil engineers, environmentalists, lawyers, 
regulators, etc., are required. Only in this way, can we 
complement various gaps in legacy mines’ renewable 
energy development and storage and shift the mining 
industry from traditional people’s impression (carbon 
intensive) into a new insight (clean alternative). Notably 
for China, in could aid decarbonization (Bao et al. 2023) 
in its energy sector.
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