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Abstract 

Reliable flood damage models are informed by detailed damage assessments. Damage models are critical in flood 
risk assessments, representing an elements vulnerability to damage. This study evaluated residential building damage 
for the July 2021 flood in Westport, New Zealand. We report on flood hazard, exposure and damage features observed 
for 247 residential buildings. Damage samples were applied to evaluate univariable and multivariable model 
performance using different variable sample sizes and regression-based supervised learning algorithms. Feature 
analysis for damage prediction showed high importance of water depth variables and low importance for commonly 
observed building variables such as structural frame and storeys. Overfitting occurred for most models evaluated 
when more than 150 samples were used. This resulted from limited damage heterogeneity observed, and variables 
of low importance affecting model learning. The Random Forest algorithm, which considered multiple important 
variables (water depth above floor level, area and floor height) improved predictive precision by 17% relative to other 
models when over 150 damage samples were considered. Our findings suggest the evaluated model performance 
could be improved by incorporating heterogeneous damage samples from similar flood contexts, in turn increasing 
capacity for reliable spatial transfer.
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Introduction
Global economic losses from flood-related hazards 
demonstrate a year-on-year increase over the past few 
decades (Munich Re 2023). Fluvial flooding is the most 
frequent hazard and is expected to cause greater socio-
economic exposure under future climate scenarios 

(Hallegatte et  al. 2016). Physical damage and monetary 
loss estimation for high-value assets such as residential 
buildings are critical for evidence-based risk management 
solutions that limit social and economic harm to flood 
exposed communities (Aerts 2018).

Vulnerability is an important component in flood 
risk assessments. In this context, vulnerability often 
represents physical damage and/or tangible loss from 
element exposure to flood hazard characteristics and 
their intensities. Building damage models often represent 
a relative (i.e., ratio) or absolute (i.e., monetary value) 
damage response from increasing water depth (Merz 
et  al. 2010). These ‘depth-damage’ functions or curves 
are a standard approach applied globally (Gerl et  al. 
2016), and are typically developed using empirical or 
judgement-based methods. Several recent studies have 
applied supervised learning models such as Bayesian 

*Correspondence:
Ryan Paulik
ryan.paulik@auckland.ac.nz
1 Department of Civil and Environmental Engineering, Faculty 
of Engineering, University of Auckland, 20 Symonds Street, 
Auckland 1010, New Zealand
2 National Institute of Water and Atmospheric Research (NIWA), Greta 
Point, 301 Evans Bay, Wellington 6021, New Zealand
3 Aon, Aon Centre Level 21/29 Customs Street West, Auckland CBD, 
Auckland 1010, New Zealand
4 National Institute of Water and Atmospheric Research, 10 Kyle Street, 
Riccarton, Christchurch 8011, New Zealand

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40562-024-00323-z&domain=pdf
http://orcid.org/0000-0003-1147-6816


Page 2 of 12Paulik et al. Geoscience Letters           (2024) 11:15 

networks, artificial neural networks and Random Forests 
that consider multiple hazard and exposure variables 
explaining local damage processes (Wagenaar et al. 2018; 
Schröter et al. 2018; Cerri et al. 2021; Amadio et al. 2019; 
Carisi et  al. 2018). Multivariable models evaluated in 
these studies demonstrate higher prediction precision 
for relative damage compared to univariable models 
based on water depth. This signals a need to consider a 
broad hazard and exposure explanatory variable range in 
damage model development for flood risk assessments.

Reliable building damage models closely replicate local 
flood damage processes. Flood damage observations are, 
however, limited to few areas or restricted to privately 
held databases. This hinders learning model approaches 
requiring large multivariable damage data sets, while 
univariable models can generalise flood damage 
processes leading to prediction underperformance 
(Cammerer et  al. 2013; Wagenaar et  al. 2017; Scorzini 
and Frank 2017). Flood damage models must balance 
empirical data collection or simulation requirements 
with prediction precision and reliability (Apel et  al. 
2009). Developing this knowledge requires consistent 
collection of hazard and exposure variables that explain 
local flood damage processes (Laudan et al. 2017; Paulik 

et  al. 2022). Understanding the simple and complex 
damage model prediction performance also informs 
empirical data requirements for application in local flood 
risk assessments.

This study evaluates residential building flood damage 
in Westport, New Zealand. Westport’s urban area 
sustained severe flooding from the Orowaiti and Buller 
Rivers between July 15 and 18 2021 (Fig.  1). Flooding 
covered ~ 3.8   km2 and required over 2000 people to 
be evacuated (Buller Recovery 2023). More than 800 
properties were inundated with 455 residential buildings 
damaged. Residential building and contents insurance 
claims exceeded 1300, with insured losses up to NZD 
$87.9 million (2022) (Insurance Council of New Zealand 
2023). The Westport flood was highly significant for New 
Zealand’s residential sector insurance losses in 2021, 
representing 50% of the NZD $174 million loss claims for 
all natural disasters that year.

Our flood damage evaluation has two objectives: (1) to 
describe the hazard, exposure and damage characteristics 
observed and recorded from on-site damage assessments 
and (2) to use the empirical damage data sample to 
develop and evaluate univariable and multivariable 
model damage prediction performance using variable 

Fig. 1 Residential building damage assessment locations in Westport for the 15–18 July 2021 flood event
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sample sizes and regression-based supervised learning 
algorithms with different complexity. This paper is 
structured by first describing empirical damage data 
collection methods in accordance with Paulik et al. (2022) 
followed by univariable and multivariable damage model 
development and evaluation methods. Hazard, exposure 
and damage observations are enumerated and reported 
to provide insight on explanatory variable influence 
on damage model performance. Three univariable and 
multivariable model approaches are each learned and 
evaluated for damage prediction using variable sample 
sizes. Conclusions are drawn from our evaluation on 
empirical data collection implications for local flood 
damage prediction.

Methods
Flood damage assessment
On-site residential building damage assessments were 
conducted in the Westport urban area from August 
10th to 12th, 24  days after the 2021 flood event. Initial 
hazard and damage reports identified several residential 
building damage areas (Fig.  1). Data collected included: 
flood hazard characteristics, physical and non-physical 
building attributes, and physical building component 
damage using methods described by (Paulik et  al. 
2022). Building attributes observed on-site include 
dwelling type, structural frame, floor height, foundation, 
construction period, storeys and wall cladding (Table 1). 
These attributes form nominal and interval-scaled data 
structures, with a ratio-scale applied for floor height. 
Apart from floor height, building attributes were spatially 
mapped and validated on site. Measured water depths 

represent maximum inundation depth above ground 
level and above floor level (Table  1). Where access 
permitted (~ 80% of buildings) water depth above floor 
level was measured as indicated by highwater marks and 
debris lines visible on internal walls. Where access was 
not permitted depths were measured from an external 
doorstep. Other flood hazard variables including flow 
velocity, debris deposition (e.g., sediment) and presence 
of contamination could not be reliably quantified on-site 
24 days after the event though building damage likely to 
be caused by these characteristics was recorded when 
observed.

Relative damage ratios  (DRb) were calculated from 
component and sub-component material damage 
summarised in Table  1.  DRb is a non-dimensional 
parameter between 0 and 1 representing the relative 
damage as the ‘cost to repair/cost to replace’. On-site  DRb 
was estimated using: (1) an observed damage ratio  (ODR) 
for sub-components based on an ordinal scale between 0 
and 1 increasing in 0.25 (i.e., 0%–25%) intervals and (2) a 
construction cost ratio  (CCR) for sub-components based 
on their ‘replacement value/total building replacement 
value’.  CCR is estimated here based on area, dwelling 
type, foundations, storeys, structural frame and wall 
cladding. Sub-component damage ratios  (CDR) were then 
calculated based on maximum estimated  ODR and  CCR as

DRb was then computed as the sum of i = 1…n 
component damage ratios  (CDRi) enumerated from 
corresponding j = 1…m sub-component damage ratios 
 (CDRij) as follows:

(1)CDR = ODR · CCR

Table 1 Hazard, exposure and damage variables assessed in Westport (adapted from Paulik et al. 2022)

Variable Types or Description Data Type Unit or Value

Hazard Water depth above ground level Maximum water depth above ground level Decimal m

Water depth above floor level Maximum water depth above first finished floor level Decimal m

Flow Velocity Presence of flow velocity damage on building Boolean 0 = false; 1 = true

Debris Presence of debris damage on building Boolean 0 = false; 1 = true

Contamination Presence of contamination damage on building Boolean 0 = false; 1 = true

Exposure Area Building roof outline area Integer m2

Dwelling Type Detached; Joined; Attached; Apartment Text 4 classes

Structural Frame Brick masonry; Concrete masonry; Timber; Steel Text 4 classes

Floor Height First finished floor level height above ground level Decimal m

Foundation Concrete slab; Pile; Solid wall; Mixed Text 4 classes

Construction Period  < 1900; 1900–1920; 1920–1940; 1940–1960; 1960–1980; 1980–2000; 
2000–2020

Text 7 classes

Storeys Number of complete building floor levels Integer 1 to ∞

Wall Cladding Brick masonry; concrete block; fibre–cement; Fibrolite; Mixed material; 
Roughcast; Sheet metal; Weatherboard

Text 8 classes

Damage Damage Ratio Relative damage of the residential building or its components Decimal 0 to 1
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where n and m are the components (structure, external 
finishes, internal finishes and service) and sub-
components, as described in Table  2, respectively. 
Building  (DRb), component  (CDRi) and sub-component 
 (CDRij) damage ratios provided ratio-scale values for 
evaluating relationships between hazard and building 
variables that influence residential building damage.

Vulnerability modelling
Univariable and multivariable regression models were 
learned for  DRb prediction performance in Westport 
using hazard and exposure variables presented in Table 1. 
A study objective was to evaluate model performance for 
variable damage sample sizes and different regression-
based learning algorithms. This would provide insight 
on empirical data requirements for precise and reliable 
model  DRb prediction. Model performance was evaluated 
using ~ 50 sample increments (i.e., 50, 100, 150, 200, 
247), with samples selected using a random shuffling 
procedure. Models were then learned for  DRb prediction 
and evaluated using samples selected for each shuffle. 
This procedure was performed using 100 iterations, 
ensuring complete data sample consideration for model 
learning in each increment. Model performance was 
evaluated for each shuffle using leave-one-out cross-
validation to calculate regression metrics (Kohavi 
1995). Cross-validation learns and evaluates model 
performance for each data sample. This creates a robust 
model performance analysis for smaller data samples as 
each sample represents the entire validation data set.

(2)DRb =

∑n

i=1
CDRi =

∑n

i=1

∑mi

j=1
CDRij

Univariable models
Univariable regression models correlated  DRb with 
maximum water depth above ground level. We selected 
several linear and non-linear functions based on their 
applications for  DRb prediction in international studies 
(Kreibich et  al. 2008; Elmer et  al. 2010; Scorzini and 
Frank 2017; Carisi et al. 2018; Arrighi et al. 2020). These 
included linear, second-order polynomial and square root 
functions, learned to determine water depth and  DRb 
relationships. Hazard variables with categorical values 
such as flow velocity were not considered for regression 
analysis, and could be the subject of future investigations 
on univariable model  DRb prediction performance.

Multivariable models
Supervised learning algorithms for regression were 
used for  DRb prediction. Selected learning algorithms 
included Decision Trees (Quinlan 1986), Random 
Forests (Breiman 2001) and Multi-Layer Perceptron 
(Bishop 1995). Learning algorithms were implemented 
using scikit-learn libraries in the Python programming 
language (Pedregosa et al. 2011).

Decision Trees (DT) and Random Forests (RF) were 
tree-based algorithms selected for their capacity to apply 
ensemble methods. Decision Trees have a hierarchical 
structure that includes root, branch, and leaf nodes 
to amalgamate parameters. The ‘top root node’ of 
this structure signifies the most crucial feature for 
categorising data labels. The DT partitioning process at 
the root node and progress through the branches until 
they arrive at the leaf nodes positioned at the bottom 
of the tree, yielding the regression outcome. The DT 

Table 2 Residential building components and sub-components assessed in Westport (adapted from Paulik et al. 2022)

Component Sub-component Description Unit or Value

Structure Substructure All foundation and floor-supporting structures below the underside of the lowest floor finish 0 to 1

Structural Frame All column and beam framework above lowest floor finish, major roof framing members 0 to 1

Upper Floor Suspended floors, mezzanine floors, balcony floors and roof slabs 0 to 1

External Finishes Roof Complete weatherproof covering for all types of roofs 0 to 1

Walls All work to exterior walls, including applied or in situ finishes 0 to 1

Windows and doors All windows and doors in exterior walls, including vertical or near vertical glazing 0 to 1

Internal Finishes Stairs Flights and intermediate landings including integral finishes 0 to 1

Walls All non-structural internal walls 0 to 1

Doors All interior doors including frames, architraves, finishes and hardware 0 to 1

Floor finishes Includes all preparatory work, screeds, surface finishes and raised floors 0 to 1

Wall finishes Includes all preparatory work and finishes to interior walls 0 to 1

Ceiling finishes Includes all preparatory work and finishes to ceilings 0 to 1

Fixtures and fittings Joinery fittings, built-in or fixed in position, includes glass, hardware and finishes  0 to 1

Services Plumbing Hot and cold-water supply, including hot water cylinder, sanitary fittings, soil, waste and vent 
pipes

 0 to 1

Electrical and heating All electrical services providing lighting, power, heating and air-conditioning  0 to 1
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algorithm is prone to overfitting for small data sample 
sizes or deeply grown trees. We attempt to reduce 
overfitting by setting a maximum tree depth of 4 leaf 
nodes and random selection of variable subsets for 
prediction at root nodes to the square root of variables in 
the learning data sample (Merz et al. 2013).

Random Forests are an ensemble-based method using 
a bagging algorithm to generate numerous damage 
predictions. This is accomplished by constructing 
multiple trees through random sampling of variable 
combinations. We formed RF ensembles from a learning 
data bootstrap sample. Predictor variable subsets 
were selected at each tree split (i.e., node), growing 
each tree to either a minimum number of nodes or 
maximum depth without pruning. The RF ensemble 
method tolerates outliers and noise in learning data 
samples (Hapfelmeier et  al. 2014) while analysing non-
linear interactions between variables (Brieman 2001). 
Despite these advantages the RF algorithm is sensitive 
to hyperparameters. Here we configured the algorithm 
to minimise out-of-bag (OOB) errors, calculated as the 
sum of squared residuals. RF tree and predictor variable 
combinations were tested with 100 reproductions to 
determine the lowest OOB error. We applied 1000 trees 
and 6 variables randomly sampled at each node for RF 
algorithm learning.

The Multi-layer Perceptron (MLP) is a neural network 
model employed for regression analysis to unveil non-
linear relationships concealed within data samples 
(Gardner and Dorling 1998). The MLP comprises 
interconnected nodes, with connecting nodes governed 
by a function representing the sum of node input 
variables, further modified by a non-linear activation 
function (Bishop 1995). The architecture of MLP involves 
multiple layers of nodes, incorporating hidden layers 
positioned between the input and output layers, which 
help unravel complex variable interactions leading to 
a more accurate prediction (Amadio et  al. 2019). In 
recognising MLP sensitivity to hyperparameters and 
feature scaling that creates risk of overfitting, efforts 
were made to mitigate this issue. A random search was 

conducted to identify optimal values for the number 
of hidden layers and nodes per layer. Feature scaling 
was implemented as a preprocessing step to normalise 
input variables and enhance the model’s robustness 
against overfitting (Popescu et  al. 2009). The Min–Max 
scaling method was employed, transforming explanatory 
variables to values between 0 and 1 by subtracting the 
minimum variable value and dividing by the variable 
value range. The normalisation approach ensured 
explanatory variables contributed proportionally to the 
model’s learning process. The MLP algorithm showcased 
its highest performance when configured with 3 hidden 
layers, each consisting of 100 nodes, and utilizing the 
rectified linear (ReLU) activation function.

The selected tree-based learning algorithms determine 
feature importance for  DRb prediction within the data 
sample. Here, feature importance was measured by 
mean decrease accuracy (Breiman 2001) for DT, RF and 
MLP algorithms learned on the entire data sample. This 
required model accuracy calculations for all features, 
then each feature by removing other model features. 
Accuracy reduction was measured for each feature 
relative to model accuracy overall. Larger reductions 
result in higher mean decrease accuracy scores indicating 
features of greater importance for  DRb. Model accuracy 
was calculated for all features then calculated for each 
feature by removing other model features. Relative 
accuracy reduction for each individual feature was then 
measured with higher mean decrease accuracy indicating 
greater feature importance for model prediction.

Model performance evaluation
Model performance was evaluated using precision and 
reliability metrics in Table  3. Precision was evaluated 
using mean squared error (MSE), mean absolute error 
(MAE) and mean bias error (MBE). MSE measures the 
average squared deviation between observed (obs) and 
predicted (pred)  DRb, with smaller values indicating 
better model performance. MAE is an absolute metric 
for the mean error between obs and pred. The mean 
difference between obs and pred is measured by 

Table 3 Regression model performance metrics for predicted (pred) compared to observed (obs) relative damage

Performance Metric Formula

Mean Squared Error (MSE) MSE =
1
n

∑n
i=1(pred − obs)2

Mean Absolute Error (MAE) MAE =
1
n

∑n
i=1 pred − obs

Mean Bias Error (MBE) MBE =
1
n

∑n
i=1(pred − obs)

Quantile Range (QR) QR =
1
n

∑n
i=1 (predq95i − predq5i )/predq50i

Hit Rate (HR)
HR =

1
n

∑n
i=1 hi; h =

{
1 where predq5i ≤ obsi ≤ predq95i
0 otherwise
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MBE, with positive and negative values respectively 
indicating relative over or under prediction. Reliability 
was determined from model  DRb distributions using 
the quantile range (QR) for variation and hit rate (HR) 
for reliability (Wagenaar et  al. 2018). QR represents 
 DRb prediction range between 5% (q5) and 95% (q95) 
quantiles (i.e., 90% quantile range), with larger QR 
demonstrating higher prediction uncertainty. HR is the 
 DRb prediction proportion within the observed QR, with 
values of 0.9 indicating high prediction reliability (Cerri 
et al. 2021; Gneiting and Raftery 2007).

Results and discussion
Damage observations
Damage samples were collected for 247 flood damaged 
residential buildings in Westport (Fig.  1). Water depths 
above ground level measured between 0.1 m and 1.4 m, 
and depths above floor level from − 0.1 m–0.8 m (Fig. 2a). 
Nearly 90% of buildings were exposed to water depths 
above floor level < 0.5  m. Higher water depths above 
floor levels were observed for concrete slab (μ 0.27  m, 
σ 0.13  m) foundations compared to piles (μ 0.25  m; σ 
0.16 m) and solid walls (μ 0.22 m; σ 0.15 m). Compared to 
other foundation construction types, lower floor heights 
for concrete slab foundations (Fig.  2b) caused higher 
water depths above floor level. Damage presence from 
other flood hazards was not (i.e., flow velocity (n = 0)) 
or rarely (i.e., debris (n = 2), contamination (n = 2)) 
observed.

Buildings in the sample were constructed over a 120-
year period with most comprising a timber structural 
frame (96%) and with one storey (93%). Over 60% were 
constructed on pile, solid wall or mixed foundations, with 
the remaining on concrete slab. Buildings constructed 
prior to 1960 were constructed with native hardwood 
timber floor finishes and often incorporated modern 
building materials and services. Suspended flooring 

systems for buildings constructed after 1960 were often 
constructed with floor finishes comprising composite 
timber materials, e.g., low or medium density fibreboard 
(BRANZ 2023). Buildings with concrete slab foundations 
were more frequently constructed after 1980 and the 
most common (75%) foundation after 2000. Building 
areas after 1980 were larger on average than earlier 
construction periods. Building area increased by 101 
 m2 on average between the 1900–1920 and 2000–2020 
construction periods. Multi-storey and non-timber 
structural frame buildings only accounted for 8% of 
observations.

Relative building  (DRb) and component  (CDRi) damage 
is presented in Fig.  3a and sub-components  (CDRij) in 
Fig. 3b–d.  DRb ranged from 0.01 to 0.5 (μ 0.29, σ 0.1), with 
internal finishes contributing the highest  CDRi (μ 0.22, σ 
0.07). Internal finishes sub-components observe a  CDRi 
range between 0 and 0.35 (Fig. 3b). A high proportion of 
damage occurs for 0  m–0.5  m water depth above floor 
level whereby several internal finishes sub-components 
(i.e., internal doors, floor finishes, wall finishes, and 
fittings and fixtures) were damaged on water contact. 
Physical damage of composite timber materials used for 
floor finishes occurred, often resulting in indirect damage 
to other internal finishes (e.g., internal walls, ceiling 
finishes) and services (e.g., plumbing) during clean-up 
and repair activities. Native hardwood timber floor 
finishes, although more resistant to damage from direct 
water contact, usually required replacement upon drying 
due to warping. Internal finishes in buildings constructed 
with suspended floors sustained a slighly higher  CDRi 
(μ 0.23, σ 0.07) compared to those with concrete slab 
foundations (μ 0.2, σ 0.07).

External finishes observed relatively low  CDRi (μ 0.03; 
σ 0.02) in comparison to internal finishes (Fig. 3a). Sub-
components damage susceptibility varies, with windows 
and doors more frequently damaged (90%) compared to 

Fig. 2 Distributions of a water depth variables, and b foundation types and floor heights observed at Westport
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external walls (28%). Materials such as timber doors and 
glass panes were highly susceptible to physical damage 
on water contact. Despite external windows and doors 
being frequently damaged their relative contribution to 
 DRb is low on average (μ 0.03, σ 0.01) compared to sub-
components comprising internal finishes (Fig. 3c).

Service finishes (i.e., electrical and heating) were 
frequently damaged below floor level due to water 
contact of near-to ground condenser units for heating 
and air-conditioning systems. Electrical and heating 
services damaged below floor level have a minor 
contribution to  CDRi (μ < 0.01) for services (Fig.  3d). 
Electrical fittings were replaced on water contact, while 
electrical wiring in buildings constructed after 1960 was 
reusable. Services  CDRi (μ 0.05, σ 0.01) between 0 m and 
0.5 m water depth above floor level often resulted from 
indirect damage to electrical and heating and plumbing 
services caused during internal finishes clean-up and 
repair.

Vulnerability models
Hazard and exposure variable importance for  DRb was 
evaluated for DT and RF models. Water depth above 
ground and floor level show high importance (Fig.  4), 
which  agrees with numerous international studies on 

its primary influence for  DRb (Gerl et  al. 2016; Mohor 
et  al. 2020). Water depth above floor level had highest 
importance. This variable has limited application in 
international damage models (Gerl et  al. 2016), as floor 
height is rarely collected during damage assessments. 
Other hazard variables had low  DRb importance which 
was expected as no component damage from high 
flow velocities was observed. Area showed the highest 
building attribute importance, which may occur from 
its  larger homogeneity relative to other exposure 
variables. Dwelling type and structural frame were more 
homogenous within the study area and showed low  DRb 
importance. These variables are often used to classify 
residential buildings for univariable flood damage models 
(Merz et  al. 2010). In Westport the low importance of 
these variables affirmed water depth as the key driver for 
flood damage.

Understanding damage data sample size effect on  
model prediction performance was a key study objective. 
Model precision and reliability changes in response 
to sample size variability is presented in Fig.  5. With 
increasing sample size, univariable and multivariable 
models showed improved reliability overall for  DRb 
predictions within observed 90% quantile ranges (QR), 
and hit rates (HR) between 0.8 and 0.9. Precision metrics 

Fig. 3 Relative damage distributions observed for a buildings and components, and b external finishes, c internal finishes, d services 
sub-components. Structure components and stairs sub-component of internal finishes are omitted due to no observed damages
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(i.e., MSE, MAE) demonstrated model overfitting when 
sample size increased. Overfitting occurred for most 
models when more than 150 samples were used, and more 
than 50 samples for univariable models and MLP. Several 
reasons may cause overfitting. Learned univariable 
models could be affected by ‘noise’ caused by limited 
water depth and  DRb variability in the data sample, 
while multivariable models may learn on variables with 

lower feature importance. These observations have 
broader implications for empirical models derived 
from event-specific data samples. Univariable models 
representing homogenous residential building classes 
and multivariable models should be limited to exposure 
variables of higher importance for observed damage. This 
supports the findings of Cerri et  al. (2021) in Germany, 
observing that geometric building variables with low 

Fig. 4 Feature importance for relative damage  (DRb) to residential buildings in Westport estimated from Decision Tree and Random Forest models

Fig. 5 Predictive performance of univariable and multivariable models based on variable damage sample size
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 DRb importance caused RF model precision loss. Limited 
 DRb sample heterogeneity at Westport may further affect 
model capacity to predict conditions where relatively 
lower and higher  DRb was observed.  DRb values between 
0.2 and 0.4 formed over 70% of the damage data sample, 
raising the potential for model learning on a  DRb value 
range. Additional  DRb data samples outside this range 
may have caused precision loss suggesting future flood 

damage assessments should focus on increasing  DRb 
heterogeneity in the local damage data sample.

Multivariable models analyse non-linear interactions 
between hazard and exposure variables to evaluate  DRb 
from multiple interdependent relationships (Merz et  al 
2013). In Westport, evaluated model capacity to predict 
observed  DRb is illustrated in Figs.  6, 7. The RF model 
showed up to 17% higher precision (MAE) compared 
to other models when more than 150 samples were 

Fig. 6 Relative damage  (DRb) to residential buildings in Westport estimated from univariable models. Damage sample size used for model learning 
is indicated in parentheses



Page 10 of 12Paulik et al. Geoscience Letters           (2024) 11:15 

evaluated. The ensemble method has lower susceptibility 
to overfitting as shown by increasing  DRb prediction 
density along the identity line in Fig.  7 as sample size 
increases. Hit rates (HR) close to 0.9 and lower QR 
with larger sample sizes (Fig.  7) further indicates high 
reliability for RF model predictions. The RF algorithm 
has greater tolerance to ‘noise’ within data samples 
(Brieman 2001) and the learned algorithm in Westport 
demonstrated greater capacity to predict  DRb despite 

relatively few samples represent  DRb < 0.2 and > 0.4. 
This supports findings from several international 
studies whereby RF showed superior damage prediction 
performance over other univariable or multivariable 
models when learned on 10  s or 100  s of data samples 
(Carisi et  al. 2018; Amadio et  al. 2019; Malgwi et  al. 
2021).

Univariable models predicted  DRb with higher overall 
precision than multivariable models DT and MLP. Square 

Fig. 7 Relative damage  (DRb) to residential buildings in Westport estimated from multivariable models. Damage sample size used for model 
learning is indicated in parentheses
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root and second-order polynomial models demonstrated 
similar precision and reliability (Fig.  5), with MSE and 
MAE up to 25% and 10% higher respectively than DT and 
MLP when data sample size exceeded 150. Non-ensemble 
model performance improvement fluctuated as sample 
sized increased indicating potential overfitting. Square 
root and DT models were able to predict  DRb values < 0.2 
(Figs. 6 and 7), while DT also predicted  DRb > 0.4. While 
DT predicted a broader  DRb range compared to other 
evaluated models, higher uncertainty (QR) was observed 
(Fig.  5). This observation reinforces a need for further 
model learning based on broader  DRb heterogeneity 
from future flood events at Westport or other locations 
with comparatively similar flood hazard and residential 
building exposure characteristics.

Residential building damage for the July 2021 flood 
in Westport shows the importance of representing 
local damage processes in empirical damage models. 
Building variables showed homogenous attributes 
with 92% comprising one storey and timber structural 
frame. Storey and structural frame variables had low 
 DRb importance at Westport (Fig.  4), leading to DT 
and MLP model overfitting when learned on larger 
damage samples (Fig.  5). Water depth variables showed 
highest importance and may have influenced higher 
prediction precision for RF models, even when learned 
on fewer than 150 damage samples. These findings 
suggest improvements to univariable and multivariable 
model performance  could be gained by limiting model 
learning to highly importance predictor variables 
(Cerri et  al. 2021) and extending damage sample 
heterogeneity (Wagenaar et  al. 2018) for water depth 
variables corresponding to  DRb values < 0.2 and > 0.4. 
Achieving the latter requires model relearning on either 
damage samples collected from future Westport flood 
events or incorporating samples from other locations 
demonstrating homogeneous damage processes 
(Di Bacco et  al. 2023). Empirical models learned on 
heterogeneous damage samples could improve both 
prediction precision and reliability and capacity for 
spatial transfer to other flood hazard contexts.

Conclusions
This study contributes to the growing global 
understanding of univariable and multivariable model 
applications for flood damage assessment. Residential 
building damage data collected for 247 residential 
buildings after the July 2021 Westport flood event in New 
Zealand has demonstrated utility for univariable (linear, 
second-order polynomial, square root) and multivariable 
(Decision Trees, Random Forest, Multi-layer Perceptron) 
flood model development. We used variable sample sizes 

from the empirical data set to evaluate relative damage 
prediction performance change for selected models.

Flood damaged buildings at Westport exhibited 
homogenous attributes and component damage caused 
primarily from water depth. Most buildings comprised 
a single storey and timber structural frame, and were 
exposed to < 0.5  m water depth above floor level. 
Internal finishes were frequently damaged, while no 
structure damage indicated water alone was likely the 
primary hazard characteristic causing damage. This 
was confirmed by feature importance analysis that 
demonstrated high importance of water depth variables 
and low importance for building variables such as 
structural frame and storeys.

Limited damage sample heterogeneity affected model 
learning outcomes for residential building damage 
prediction. Models improved reliability as damage 
sample size increased for model learning. Univariable 
and non-ensemble multivariable models (Decision Trees, 
Multi-layer Perceptron), however, were susceptible to 
overfitting as demonstrated by precision loss in response 
to increasing sample size. Overfitting resulted from 
limited heterogeneity of relative damage observed, and 
variables of low importance affecting model learning. The 
ensemble-based Random Forest algorithm considered 
multiple important variables (water depth above floor 
level, area and floor height) and return predictive 
precision by 17% relative to other models when over 
150 damage samples were considered. Our findings 
suggest empirical model prediction performance for 
the empirical models evaluated could be improved by 
incorporating heterogeneous damage samples from 
similar flood contexts, in turn increasing capacity for 
reliable spatial transfer.
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