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Abstract 

Accurate and timely inland waterbody extent and location data are foundational information to support a variety 
of hydrological applications and water resources management. Recently, the Cyclone Global Navigation Satellite 
System (CYGNSS) has emerged as a promising tool for delineating inland water due to distinct surface reflectivity 
characteristics over dry versus wet land which are observable by CYGNSS’s eight microsatellites with passive bistatic 
radars that acquire reflected L-band signals from the Global Positioning System (GPS) (i.e., signals of opportunity). 
This study conducts a baseline 1-km comparison of water masks for the contiguous United States between latitudes 
of 24°N-37°N for 2019 using three Earth observation systems: CYGNSS (i.e., our baseline water mask data), the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) (i.e., land water mask data), and the Landsat Global Surface Water 
product (i.e., Pekel data). Spatial performance of the 1-km comparison water mask was assessed using confusion 
matrix statistics and optical high-resolution commercial satellite imagery. When a mosaic of binary thresholds for 8 
sub-basins for CYGNSS data were employed, confusion matrix statistics were improved such as up to a 34% increase 
in F1-score. Further, a performance metric of ratio of inland water to catchment area showed that inland water area 
estimates from CYGNSS, MODIS, and Landsat were within 2.3% of each other regardless of the sub-basin observed. 
Overall, this study provides valuable insight into the spatial similarities and discrepancies of inland water masks 
derived from optical (visible) versus radar (Global Navigation Satellite System Reflectometry, GNSS-R) based satellite 
Earth observations.
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Introduction
Inland waterbodies (defined as lakes, rivers, streams, 
reservoirs, and wetlands for purposes of this study) play 
a critical role in terrestrial water storage and hydrologi-
cal processes (Brönmark and Hansson 2002; Bullock 

and Acreman 2003). The extent and location of inland 
waterbodies are key inputs for hydrological models that 
inform water resources management for a variety of agri-
cultural, industrial, climate applications, and algorithm 
development for soil moisture retrievals (Papa et al. 2010; 
Vörösmarty et al. 2022). Water masks convey this infor-
mation by classifying inland areas as either water or non-
water (land, vegetation, impervious surface, etc.). While 
water masks may be derived from fieldwork, drone obser-
vations, or aerial surveillance, these methods tend to be 
labor-intensive, time consuming, and difficult to replicate 
at frequent timescales for continuous monitoring.
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Space-based Earth observations have emerged as a 
reasonable method for remotely generating inland water 
masks (Asadzadeh Jarihani et al. 2013; Palmer et al. 2015; 
Soman and Indu 2022). This has been demonstrated by 
two widely accepted global inland water mask products: 
(1) the Landsat (Pekel) water mask which aggregated 3 
million optical Landsat images to categorize water occur-
rence from 1984 to 2020 at 30 m spatial resolution (Pekel 
et  al. 2016) and (2) the Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument onboard the 
NASA Terra and Aqua satellites through land cover clas-
sifications from 2001 to 02021 at 250 m spatial resolution 
(Sulla-Menashe et al. 2019). However, these water masks 
are constrained by their dependence on optical sensors 
which are impeded by cloud cover and limited temporal 
revisit intervals, such as one day for MODIS and over 
10  days for Landsat, contingent on latitude. For exam-
ple, King et al. (2013) estimates MODIS-observed cloud 
fraction over land to be ~ 55% (King et al. 2013). This is 
concerning because the maximum inland waterbody 
extent likely occurs during rainy/cloudy conditions. Fur-
thermore, these water masks are only available at annual 
timescales because a year’s worth of data are required to 
obtain sufficient cloud-free observations at a global scale 
(Pekel et al. 2016; Sulla-Menashe et al. 2019).

Recently, the Cyclone Global Navigation Satellite Sys-
tem (CYGNSS) has proven to be a useful Earth obser-
vation system for delineating inland waterbodies. This 
constellation of microsatellites, developed by the Uni-
versity of Michigan and the Southwest Research Insti-
tute, was launched by the National Aeronautics and 
Space Administration (NASA) for the primary research 
objective of monitoring tropical cyclone intensification 
via constellations of eight microsatellites using passive 
bistatic radars to observe signals of opportunity from 
reflected Global Positioning System (GPS) L-band signals 
(Ruf et al. 2018; see Additional file 1: SI 4 for a summary 
table of CYGNSS).

Several approaches have been proposed for detecting 
inland waterbodies using CYGNSS via Global Navigation 
Satellite System Reflectometry (GNSS-R) using proper-
ties of coherent surface reflectivity which is greater over 
inland water than over land (Al-Khaldi et al. 2021; Ger-
lein-Safdi and Ruf 2019; Ruf et al. 2021). These methods 
include binary thresholding prediction (Al-Khaldi et  al. 
2021; Morris et al. 2019; Wan et al. 2019), forward mod-
eling (Chew and Small 2020), random walker algorithms 
(Gerlein-Safdi and Ruf 2019; Wang et  al. 2022), and 
machine learning (Ghasemigoudarzi et al. 2022).

Three relevant studies which compared a CYGNSS-
derived water mask to either Landsat or MODIS prod-
ucts are described as follows. First, Gerlein-Safdi and 
Ruf (2019) used a random walker algorithm to delineate 

inland water based on the standard deviation of CYG-
NSS surface reflectivity data (Gerlein-Safdi and Ruf 
2019). It performed well when compared with MODIS-
derived water masks and handdrawn water masks for 
select regions (Gerlein-Safdi and Ruf 2019). A need was 
identified to develop and validate a reliable long-term 
CYGNSS-based water mask, such as the annual map 
demonstrated in this study, to serve as a basemap which 
CYGNSS data could then be used to identify anoma-
lous variations in inland waterbody extent at sub-
annual temporal scales (Gerlein-Safdi and Ruf 2019). 
Second, Al-Khaldi et al. (2021) used a method of binary 
signal-to-noise ratio (SNR) thresholding to deline-
ate inland waterbodies within the maximum CYGNSS 
spatial coverage (Al-Khaldi et  al. 2021). A comparison 
was conducted with the Landsat (Pekel) water mask 
and regional uncertainties were identified from rely-
ing on a single SNR threshold at a global scale, such as 
missing waterbodies which were obstructed by vegeta-
tion (Al-Khaldi et  al. 2021). Third, Wang et  al. (2022) 
used a similar method as Gerlein-Safdi and Ruf (2019) 
by using a random walker algorithm to delineate inland 
water based on the power ratio of CYGNSS data (Wang 
et al. 2022). The accuracy of the method was high when 
compared with Landsat-derived water masks for the 
Congo Basin and Amazon Basin.

Currently, there is no standard method (i.e., a proce-
dure which is widely used and accepted) for generating 
a CYGNSS-based inland water mask as shown through 
previous studies by the variety of methods such as 
binary thresholding prediction, forward modeling, 
random walker algorithms, and machine learning. The 
novelty of this study is to provide a foundational com-
parison of CYGNSS-based water masks to Landsat and 
MODIS water masks to improve understanding of the 
spatial agreement and disagreement of these products, 
specifically by employing a mosaic of surface reflectiv-
ity SNR thresholds at the sub-basin level. This is a nec-
essary step toward achieving a standardized CYGNSS 
water mask.

This study aims to improve understanding of the spatial 
extent by which three water masks independently derived 
from Landsat, MODIS, and CYGNSS agree or disagree 
on the extent and location of inland water. Specifically, 
the main research goals of this study are to:

1. Derive a 1-km comparison water mask for Landsat, 
MODIS, and CYGNSS data for 2019 over the contig-
uous United States between latitudes of 24°N–37°N.

2. Compare the regional performance of CYGNSS, 
MODIS, and Landsat water masks at a watershed 
level via quantifiable statistics derived from confu-
sion matrices.
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3. Assess the 1-km comparison water mask perfor-
mance using high-resolution optical commercial sat-
ellite imagery collected in 2019 for diverse locations 
within the study area.

Results from this study will serve as a foundational ref-
erence for future studies by improving understanding of 
the relative utility and robustness of CYGNSS, MODIS, 
and Landsat-based inland water classifications. This 
contributes valuable insight into the spatial and regional 
strengths and limitations of each observation system 
which is important to understand prior to applying these 
data to real-world hydrological applications.

Data and methods
Three satellite-based Earth observation systems were 
used to derive a single comparison water mask: (1) CYG-
NSS, (2) MODIS, and (3) Landsat. Each product was pre-
processed, as described in the corresponding   “Cyclone 
global navigation satellite system (CYGNSS) data”—
“Landsat (Pekel) data” Sections, to derive a bivariate water 
mask where each pixel was either classified as inland 
water or non-inland water. The bivariate water mask was 
re-gridded to a common spatial resolution and projection 
of the 1-km National Snow and Ice Data Center (NSIDC) 
Equal-Area Scalable Earth (EASE) Grid 2.0 using near-
est neighbor interpolation which was selected because 
it maintains the original data values (0 and 1) and per-
forms well for categorical data (Brodzik et al. 2012). Due 
to uncertainty in inland water classification of coastal 
areas, data collected within 25-km of coastlines from all 
three observation systems were excluded for the analy-
ses. A comparison of the three bivariate water masks was 
then performed to generate a single comparison water 
mask where each pixel is (1) classified as inland water or 
non-water, and (2) indicates which of the three observa-
tion systems classified it as such (i.e., Landsat, MODIS, or 
CYGNSS; see “Confusion matrices and related statistics” 
Section for further details). Examples of high-resolution 
satellite imagery were overlayed on the comparison water 
mask to investigate performance. A flowchart of this 
methodology is provided in Supporting Information 1 
(Additional file 1: SI 1).

The study area was defined as the contiguous United 
States between approximate latitudes of 24°N to 37°N 

and was determined by the spatial coverage of CYGNSS 
(Fig.  1A). A singular annual timestep of 2019 CYGNSS 
data was used to match the annual temporal resolution of 
the MODIS and Landsat water mask products. This data 
was made available in the pre-released CYGNSS v3.2 
ocean/land merged L1 data which are publicly available 
upon request to the CYGNSS Science Team.

Cyclone Global Navigation Satellite System (CYGNSS) data
CYGNSS, an eight-microsatellite constellation, uses a 
passive bistatic radar to observe reflected GPS signals 
within L-band frequencies to obtain a reduced revisit 
time of 2.8 (median) and 7.2 (mean) hours per day 
between observations with a spatial coverage of ± 38° 
(Ruf et al. 2018). For this study, the area of interest was 
covered by 348 days (95% of the year) of usable CYGNSS 
data in 2019 which were obtained from 8 microsatellites, 
each equipped with 4 delay Doppler maps.

A sensitivity analysis was conducted to determine that 
the 50th percentile of CYGNSS observations was optimal 
by maximizing the F1-score relative to a reference data-
set (see Additional file 1 for further details). Additionally, 
sub-basins of the study area were individually consid-
ered to determine the optimal surface reflectivity signal-
to-noise ratio (SNR) threshold within a given sub-basin 
which maximized F1-score, a balance between precision 
and recall, relative to the reference dataset. This is use-
ful when there is an imbalance of classes within the data-
set, such as many land pixels and few water pixels across 
the total study area, because it takes both false positive 
and false negative errors into account. Small changes in 
the threshold window change both precision and recall, 
resulting in either an increased or decreased F1-score. A 
higher F1-score indicates a better balance between preci-
sion and recall, meaning the predicted water mask makes 
fewer false positive and false negative classifications. 
However, a high F1-score may also indicate low confi-
dence in the reference dataset as there is high disagree-
ment between the products. For further details on the 
sensitivity analysis and a table summarizing SNR thresh-
olds used for each sub-basin, please see Additional file 1.

To derive the CYGNSS 1-km water mask, the 50th 
percentile CYGNSS SNR data were resampled to a 1-km 
NSIDC EASE Grid 2.0 and then classified as either inland 
water or non-inland water using the SNR thresholds 

Fig. 1 CYGNSS observations and bivariate water mask products for the contiguous United States between latitudes of approximately 24–37°N 
for 2019. A Spatial plot of CYGNSS 1-km 50th percentile surface reflectivity signal-to-noise-ratio (SNR) data. B CYGNSS bivariate water mask at 1-km 
spatial resolution derived from basin-specific binary thresholding of SNR values. C MODIS bivariate water mask at 1-km spatial resolution derived 
from the Land Water Mask (MCD12Q1) for 2019. D Landsat bivariate water mask at 1-km spatial resolution derived from the Landsat Global Surface 
Water product (commonly referred to as the Pekel water mask) for 2019

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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(Additional file  1: SI 7). SNR values within the thresh-
old were classified as inland water whereas SNR values 
greater than or less than the threshold values were classi-
fied as non-inland water.

Additional information and data from CYGNSS can 
be accessed here in 2024: https:// podaac. jpl. nasa. gov/ 
CYGNSS.

Moderate resolution imaging spectroradiometer (MODIS) 
data
MODIS is a sensor onboard NASA’s Terra and Aqua sat-
ellites in sun-synchronous polar orbit which captures 
36 spectral bands ranging from the visible (0.4  μm) to 
thermal infrared (14.4  μm) regions of the electromag-
netic spectrum, enabling them to image the Earth’s sur-
face every 1 to 2 days (Sulla-Menashe et al. 2019). In this 
study, the 250 m Land Water Mask (MCD12Q1) for 2019 
was used. This product defines inland water as follows 
using the International Geosphere-Biosphere Program 
(IGBP) classification scheme: 1) permanent wetlands 
(30–60% water cover and greater than 10% vegetation 
cover); 2) permanent snow and ice (at least 60% of the 
area covered by snow and ice for at least 10 months of the 
year); and 3) waterbodies (at least 60% of the area cov-
ered by permanent water (Friedl et  al. 2010). To derive 
the MODIS 1-km water mask, the Land Water Mask was 
resampled to a 1-km EASE Grid 2.0. All pixels classified 
as inland water using the IGBP classification scheme 
were classified as inland water in the MODIS 1-km water 
mask. Otherwise, the pixels were classified as non-inland 
water.

Additional information and data from MODIS can be 
accessed here in 2024: https:// lpdaac. usgs. gov/ produ cts/ 
mcd12 q1v006/.

Landsat (Pekel) data
The Landsat Global Surface Water product (commonly 
referred to as the Pekel water mask) shows surface water 
occurrence since 1984 at a spatial resolution of 30  m 
using three million archival image scenes from the Land-
sat 5 Thematic Mapper (TM), Landsat 7 Enhanced The-
matic Mapper-plus (ETM +), and Landsat 8 Operational 
Land Imager (OLI) which have an over 10-day tempo-
ral resolution (Pekel et al. 2016). In this study, the Pekel 
Seasonality Map was used which classifies both perma-
nent water (areas inundated for 12 months) and seasonal 
water (areas inundated for less than 12 months), so long 
as the inland water is open to the sky, larger than 30 m, 
and unobstructed by vegetation (Sulla-Menashe et  al. 
2019). To derive the Landsat 1-km water mask, the Pekel 
Seasonality Map was resampled to a 1-km EASE Grid 2.0 
and pixels which were classified as inland water by the 
Pekel Seasonality Map were also classified as inland water 

in the Landsat 1-km water mask. Otherwise, the pixels 
were classified as non-inland water.

Additional information and data from the Landsat 
Global Surface Water product can be accessed here in 
2024: https:// global- surfa ce- water. appsp ot. com/# data.

Confusion matrices and related statistics
To quantifiably compare the three bivariate water masks, 
confusion matrices and related statistics were used by 
defining the CYGNSS water mask as the predicted water 
mask and the other products (either Landsat, MODIS, 
or a combination of Landsat and MODIS) as the refer-
ence water mask. Additionally, Landsat and MODIS were 
directly compared by assuming each as the reference and 
predicted water masks. For each comparison, confusion 
matrix values were calculated for the number of true pos-
itives (TP), true negatives (TN), false positives (FP), and 
false negatives (FN). The following statistics were then 
calculated for each sub-basin and results were visualized 
as heatmaps: precision (P, Eq. 1), recall (R, Eq. 2), speci-
ficity (SP, Eq. 3), miss rate (M, Eq. 4), false detection rate 
(FDR, Eq. 5), F1-score (F1, Eq. 6), and accuracy (A, Eq. 7):

High‑resolution optical commercial satellite data
Commercial imagery obtained from Planet Labs, Inc. 
and DigitalGlobe (a subsidiary of Maxar Technologies) 
were used for visual assessment of the comparison water 
mask for select locations. Multispectral observations col-
lected by Planet Labs were obtained from the Dove R 
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and Dove Classic satellite constellations (spatial resolu-
tion of approximately 3 m and temporal revisit period of 
1-day). Multispectral observations collected by Digital-
Globe were obtained from GeoEye-1 (spatial resolution 
of approximately 1.65  m and temporal revisit period of 
1–3  days) and WorldView-3 (spatial resolution of 0.31–
30 m and temporal revisit period of 1–4.5 days). 

Additional information of the commercial satellite 
imagery can be accessed here in 2024: https:// www. 
planet. com/ and https:// www. maxar. com/.

Results and discussion
CYGNSS observations and bivariate water masks
In Fig. 1A, the 50th percentile CYGNSS surface reflectiv-
ity SNR values for 2019 were spatially plotted and varied 
between 138 and 223 dB with a mean of 150 dB, a median 
of 149 dB, and a standard deviation of 6.65 dB. A CYG-
NSS bivariate water mask (Fig.  1B) was derived using 
the sub-basin SNR thresholds defined in Sect.  “Cyclone 
global navigation satellite system (CYGNSS) data”. The 
bivariate water masks for MODIS and Landsat are, 
respectively, shown in Fig.  1C and D. Overall, MODIS 

Fig. 2 Comparison Water Mask derived from CYGNSS, Landsat, and MODIS for the contiguous United States between latitudes of approximately 
24–37°N for 2019. A 1-km Comparison Water Mask across the study area for 2019 derived from the CYGNSS, Landsat, and MODIS bivariate water 
masks. B The 1-km Comparison Water Mask subdivided into USGS Hydrological Unit Code-02 Watersheds. The watersheds are referred to as the 
South Atlantic Gulf basin (B03), the Tennessee basin (B06), the Lower Mississippi basin (B08), the Arkansas-White River basin (B11), the Texas-Gulf 
basin (B12), the Rio Grande basin (B13), the Lower Colorado (B15), and the California basin (B18)

https://www.planet.com/
https://www.planet.com/
https://www.maxar.com/
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classified the smallest percentage of the study area as 
inland water at just 1.1%. CYGNSS classified 1.3% of the 
study area as inland water. Lastly, Landsat classified the 
greatest percentage of the study area as inland water at 
1.4%. To improve understanding of these differences in 
inland water area estimates, an evaluation indicator of 
the ratio of inland water to catchment area is provided 
for sub-basins within the study area. This reveals the 
spatial variabilities of the CYGNSS, MODIS, and Land-
sat water masks which had the highest disagreement in 
regions of wetlands and branching inland waterways 
(see Sect. “Confusion matrix statistics of bivariate water 
masks” for further details). Additionally, the number 
of daily 1-km pixel observations by CYGNSS, MODIS, 
and Landsat were calculated for 2019 within the study 
area (Additional file 1: SI 8). Fewer MODIS and Landsat 
observations occurred from May to October, likely due 
to seasonal precipitation and cloud cover. CYGNSS daily 
observation counts were relatively consistent throughout 
the year due to its usage of GNSS-R.

Comparison water mask 
The three bivariate water masks from CYGNSS, MODIS, 
and Landsat were compared at a pixel-by-pixel level to 
generate a 1-km comparison water mask. A given pixel 
was classified as non-inland water in the comparison 
water mask only if all three bivariate water masks con-
curred that the pixel was land. If one or more of the 
bivariate water masks classified a given pixel as water, the 
comparison water mask designated the pixel as inland 
water and the observation system(s) that classified it as 
such were indicated: Landsat only, MODIS only, CYG-
NSS only, MODIS and Landsat, CYGNSS and MODIS, 
CYGNSS and Landsat, or all three systems (CYGNSS, 
MODIS, and Landsat). Because the purpose of the com-
parison water mask is to spatially investigate the extent 
by which the three water mask products agree or disa-
gree on the classification of inland water, it is important 
to note that the comparison water mask is not intended 
to serve as a stand-alone water mask itself.

As shown in the comparison water mask (Fig.  2A), 
the observation systems collectively classified 2.3% of 
the study area as inland water. Of the pixels classified as 
inland water, 14.2% were classified by all three observa-
tion systems. 30.6% were classified by at least two obser-
vation systems: 18.2% by Landsat and MODIS, 6.5% 
by Landsat and CYGNSS, and 5.9% by CYGNSS and 
MODIS. The remaining 55% of inland water pixels were 
classified by only one system: 29% by CYGNSS, 19.4% by 
Landsat, and 6.8% by MODIS. While this indicates a rela-
tively high level of false positives and thus disagreement 
between the three inland water masks, it is important 
to note that the disagreements vary spatially across the 

study area. This is further discussed in “Confusion matrix 
statistics of bivariate water masks” Section.

In the comparison water mask, red pixels indicate loca-
tions where CYGNSS did not classify inland water which 
both Landsat and MODIS agreed were water (18.2%). 
High concentrations of red pixels are observed along 
outlets of waterways to the Gulf of Mexico and Atlan-
tic Ocean and may be explained by the lower dielectric 
constant of brackish water than freshwater due to its salt 
content (Lang et al. 2016). Additionally, red pixels are in 
the middle of expansive lakes, such as Lake Okeechobee 
in Florida, even though CYGNSS tends to correctly clas-
sify the boundary between the lake and land (i.e., the 
perimeter of the lake). Green pixels indicate locations 
where CYGNSS and Landsat classified inland water while 
MODIS did not (6.5%). These instances are primarily 
concentrated within the Mississippi River basin. Orange 
pixels indicate locations where CYGNSS and MODIS 
classified inland water while Landsat did not (5.9%). The 
highest concentration of orange pixels can be found in 
wetland regions of southern Louisiana and Florida.

Pixels classified as inland water by only CYGNSS are 
represented as dark purple (29.0%) and are scattered 
across the study region but are particularly prevalent in 
the Mississippi River basin and the Western USA. The 
abundance of false positive classifications in dry and 
densely vegetated areas may be due to the high SNR of 
CYGNSS in these regions. Dry soil or sand could have 
erroneously high SNR because the individual grains 
reflect a significant amount of GPS signals due to their 
rough, irregular surfaces. Additionally, the spaces 
between the grains allow for L-band signals to penetrate 
and reflect off the underlying surface, which further 
contributes to the coherent scatterings. In densely veg-
etated areas, water on the canopy can reflect signals and 
increase the SNR, which may not be suitable for detect-
ing waterbodies using the CYGNSS SNR threshold set 
in the present study. As a result, it may be necessary to 
consider alternative approaches to detect waterbodies in 
these areas in future studies. To address this issue, other 
proxies such as soil moisture or vegetation indices from 
other microwave satellite systems may be used to more 
accurately classify these pixels as waterbodies assuming 
that independence from Landsat and MODIS land cover 
products is not required. By incorporating thresholds for 
these values with CYGNSS SNR, dry and densely veg-
etated areas can be effectively masked out in the future.

Instances of inland water classification solely by 
MODIS are represented in yellow (6.8%) and are primar-
ily concentrated in the wetlands of Louisiana and south-
ern Florida. Lastly, occurrence of Landsat only inland 
water classifications is depicted in pink (19.4%) and tend 
to be located within networks of branching waterways. In 
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Fig. 3 CYGNSS, Landsat, and MODIS bivariate water mask confusion matrix statistics visualized as heat maps for A Recall (R), B Precision (P), C 
Specificity (SP), D Miss Rate (M), E False Detection Rate (FDR), F Accuracy, and G F1-score (F1). For each, the total study area (AOI) or sub-basin 
of interest (USGS HUC-02) is indicated. The assumed reference water mask is indicated as either Landsat or MODIS. The predicted water mask 
is indicated as either CYGNSS, MODIS, Landsat, a combination of MODIS and CYGNSS, or a combination of Landsat and CYGNSS
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these instances, CYGNSS frequently captured portions of 
the waterways but was discontinuous, which lead to clas-
sifications made only by Landsat.

Confusion matrix statistics of bivariate water masks
To further investigate region-specific variability in the 
comparison water mask performance, the study area 
was subdivided into 8 smaller regions via the United 
States Geological Survey (USGS) Hydrologic Unit Code-
02 (HUC-02) watershed boundaries (Fig.  2B). For each 
region, the results of the confusion matrix statistics 
(Eqs. 1, 2, 3, 4, 5, 6, 7) were visualized as heatmaps which 
are shown in Fig.  3. F1-score was determined to the be 
most applicable to this study (Fig. 3G). A high F1-score 
indicates a high level of agreement between the predicted 
and reference water mask. A low F1-score may indicate 
low confidence in the reference dataset as there is a high 
disagreement between the products. The remaining con-
fusion matrix statistics (R, P, SP, M, FDR, and A) are dis-
cussed in detail in Additional file 1.

A higher F1-score was generally obtained when the 
SNR threshold was tailored for each basin as opposed to 
using a singular threshold for the entire study area. This 
indicates high variability in inland water surface reflec-
tivity due to geographical differences such as vegetation 
and topography, meaning that a single threshold to define 
inland water over a large study area introduces bias. The 
lowest F1-scores were observed in the Rio Grande Basin 
(B13), the Lower Colorado basin (B15), and the Califor-
nia basin (B18), indicating a high level of disagreement 
between all three datasets. CYGNSS obtained the highest 
F1-scores in B03, B06, and B08 which had up to a 34% 
increase in F1-score compared to the total study area 
(Fig. 3G). In most scenarios, the F1-score was improved 
when CYGNSS was combined with either Landsat or 
MODIS.

Lastly, a ratio of the inland water area to catchment 
area was calculated for each sub-basin (Additional file 1: 
SI 10). These results demonstrated that the ratio of inland 
water to sub-basin area varies across the study area with 
the highest ratio in the Mississippi River Basin (B08) and 
the lowest ratio in the Rio Grande Basin (B13). MODIS 
tended to estimate the lowest ratio, however, all three 
datasets had comparable ratios within 2.3% of each other 
regardless of the sub-basin observed.

Comparison water mask with high‑resolution commercial 
satellite imagery
To assess our confidence in the water mask product, the 
comparison water mask was overlayed with high-reso-
lution commercial satellite imagery for select locations 
including manmade reservoirs, natural lakes, wetlands, 
and rivers. A qualitative assessment of the Compari-
son Water Mask compared to the commercial satellite 
imagery is shown in Fig. 4. A quantitative assessment of 
the percentage of commercial image scene classified by 
each observation system is provided in Additional file 1: 
SI 12.

The highest disagreement between classification sys-
tems was often observed along the shorelines, particu-
larly since CYGNSS tended to estimate a wider lake 
extent which encompassed surrounding vegetated areas. 
Additionally, CYGNSS did not continuously classify large 
lakes, which may be explained by salinity [such as for the 
Salton Sea (Fig. 4A) and Lakes Maurepas and Pontchar-
train (Fig. 4B)] and/or the expansive nature (such as for 
the freshwater Lake Kissimmee (Fig. 4E), which concurs 
with the results of Al-Khaldi et al. 2021).

In Fig.  4A and B, MODIS and CYGNSS concurred 
on classifications of wetlands, exposed salt deposits, 
and sediment along lakebeds, whereas Landsat did not. 
This is likely due to violation of the conditions required 
to classify inland water by the Landsat product, such as 
the area must be open to the sky, larger than 30 m, and 
unobstructed by vegetation. Lake Hartwell (Fig. 4C) and 
the Tennessee River (Fig.  4D) demonstrate two exam-
ples where there were no instances of only MODIS and 
Landsat classification of a pixel as water (indicated by red 
pixels). For these locations, a noticeable enhancement in 
the waterbody continuity was observed when CYGNSS is 
combined with both Landsat and MODIS.

Future research and limitations
As the utility of CYGNSS data for land-based applica-
tions is increasingly realized, it is important to under-
stand its relative strengths and limitations compared 
to existing Earth observation systems. The comparison 
water mask reveals various levels of agreement/disa-
greement across the study area between the observation 
products of CYGNSS, Landsat, and MODIS. Caution 
should be exercised when applying these data across 

(See figure on next page.)
Fig. 4 Comparison water mask overlayed onto high-resolution commercial satellite imagery from Planet Labs, Inc. and DigitalGlobe for select 
locations: A Salton Sea, CA, B Lake Maurepas and Pontchartrain, LA, C Lake Hartwell, GA/SC, D Tennessee River, TN, E Lake Kissimmee, FL, F Sam 
Rayburn Reservoir, TX. G Reference locations for the commercial images are provided on the comparison water mask. Hand drawn water masks 
are displayed in light blue for visual purposes. For additional information on the high-resolution imagery, including date of acquisition and image 
identification number(s), see Additional file 1: SI 11
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Fig. 4 (See legend on previous page.)
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varying geographic regions for inland waterbody identi-
fication. Additionally, the optical high-resolution com-
mercial satellite imagery revealed numerous instances 
of FP occurrence over waterbodies. Thus, FP indicated 
disagreements between the systems should not be dis-
missed as land but rather as indications of disagreement. 
Further, the CYGNSS water mask resulted in discon-
tinuous waterways when portions of the waterbody had 
SNR values outside of the basin’s defined threshold. 
Gap-filling, random walkers, or other algorithms may be 
appropriate methods to improve continuity. For example, 
data collected within 25-km of coastlines were excluded 
from this study due to the uncertainty of classifying this 
interface using the MODIS, Landsat, and CYGNSS prod-
ucts. In combination with other data products, fuzzy 
logic could be used to decrease the uncertainty of CYG-
NSS-based inland water classification of coastal regions 
(Demir et al. 2016). Lastly, the study was limited by the 
temporal confinement of a single annual timestep (2019). 
Future research should explore the capability of CYGNSS 
to reliably observe sub-annual inland waterbody dynam-
ics, which is challenging to observe using MODIS and 
Landsat due to their reliance on cloud-free observations.

In addition to inland waterbody delineation (Al-Khaldi 
et al. 2021; Gerlein-Safdi and Ruf 2019; Ghasemigoudarzi 
et  al. 2022; Loria et  al. 2020; Ruf et  al. 2021), CYGNSS 
has proven to be a useful observation system for other 
land-based applications including but not limited to soil 
moisture retrievals (Kim and Lakshmi 2018), enhance-
ment of soil moisture estimates from land surface mod-
els through data assimilation (Kim et al. 2021), flooding 
(Chew et  al. 2018; Ghasemigoudarzi et  al. 2020; Rajabi 
et  al. 2020; Wan et  al. 2019), lake height estimates (Li 
et  al. 2018), and wetland dynamics (Downs et  al. 2021; 
Morris et  al. 2019). Temporally and spatially accurate 
inland waterbody mapping using CYGNSS will support 
future research in these CYGNSS land-based application 
areas as well.

Conclusions
A 1-km CYGNSS-based bivariate water mask was com-
pared with two widely accepted Earth observation water 
masks derived from MODIS and Landsat for 2019 over 
the contiguous United States between latitudes of 
approximately 24–38°N. A mosaic of binary thresholds 
using sub-basins defined by the USGS HUC-02 codes 
was used to classify inland water with CYGNSS SNR 
values. This approach accounted for the varying thresh-
olds required in different regions, such as the dry areas 
of the Midwest USA versus the wet Southeast USA, and 
performed better than a singular binary threshold for 
the entire study area. This approach of using a mosaic 

of binary thresholds increased F1-score up to 34% for 
sub-basins within the study area. Confusion matrices 
and related statistics revealed that the performance of 
the comparison water mask varied regionally, with par-
ticularly high disagreements along the Lower Missis-
sippi basin (B08), brackish or saltwater regions, extensive 
lakes, and wetlands. Additionally, the performance met-
ric of ratio of inland water to catchment area revealed 
that CYGNSS, MODIS, and Landsat were within 2.3% of 
each other regardless of the sub-basin observed.

To assess performance of the comparison water mask, 
high-resolution optical satellite imagery from commer-
cial companies (Planet and DigitalGlobe) were used. This 
improved understanding of each water mask product’s 
performance over natural lakes, manmade reservoirs, 
wetlands, and rivers. In multiple instances, CYGNSS suc-
cessfully identified inland water which both MODIS and 
Landsat failed to classify.

Overall, this study contributes a valuable foundational 
comparison of CYGNSS versus optical-sensor-based 
inland water masks. It provides a straightforward method 
for spatially comparing water masks derived from Earth 
observations, particularly in conjunction with optical 
high-resolution commercial satellite imagery. This work 
can guide future exploration of algorithms and data pro-
cessing techniques to continually improve the perfor-
mance of inland waterbody delineation using CYGNSS 
to support water resources management and a variety of 
hydrological applications.
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with the image identification number(s) via the respective commercial 
data provider.
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