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Abstract 

Under the proposal of “seamless forecasting”, it has become a key problem for meteorologists to improve the skills 
of subseasonal forecasts. Since the launch of the subseasonal-to-seasonal (S2S) plan by WMO, the precision of model 
predictions has been further developed. However, when we are focusing on the practical applications of models 
in the South China (SC) in recent years, we found that large disagreements appear between forecast members. Some 
of the members predicted well in this area, while others are not satisfactory. To improve the accuracy of subseasonal 
forecast in the SC, new methods making full use of different forecast models must be proposed. In this passage, we 
introduced a weighted ensemble forecasting method based on online learning (OL) to overcome this difficulty. As 
the state-of-the-art forecast models in the world, three models from China Meteorological Administration, European 
Centre for Medium-Range Weather Forecasts and National Centers for Environmental Prediction provided by the S2S 
prediction dataset are used as ensemble members, and an ensemble weight is trained through the aforementioned 
OL model for the predictions of temperature and precipitation in subseasonal timescale in the SC. The results show 
that the forecast results produced under the OL method are better than the original model predictions. Compared 
with the three model ensemble results, the weighted ensemble model has a good ability in depicting the tempera-
ture and precipitation in the SC. Furthermore, we also compared this strategy against the climatology predictions 
and found out that the weighted ensemble model is superior in 10–30 days. Thus, the weighted ensemble method 
trained thorough OL may shed light on improving the skill of subseasonal forecasts.
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Introduction
The extended-range forecast with a lead time of 
10–30 days is the gap between weather (within 10 days) 
and climate (beyond 30 days) predictions (Xie et al. 2023) 
and is a crucial part in constructing the seamless fore-
casting system but also a vulnerable spot (Hoskins 2013). 
To accelerate the progress in subseasonal-to-seasonal 
(S2S) forecast and fill in this gap the World Weather 
Research Programme (WWRP) and the World Climate 
Research Programme (WCRP) jointly launched the S2S 
Prediction Project to improve the prediction ability and 
understand the predictability source (Vitart et al. 2017). 
Relying on this program, model prediction results from 
different countries are released regularly, thus making 

*Correspondence:
Chuhan Lu
luchuhan@nuist.edu.cn
1 Key Laboratory of Cities Mitigation and Adaptation to Climate Change 
in Shanghai (CMACC), China Meteorological Administration, Shanghai 
Climate Center, Shanghai 200030, China
2 , Shanghai Climate Center, Shanghai 200030, China
3 Key Laboratory of Ecosystem Carbon Source and Sink, China 
Meteorological Administration (ECSS-CMA), Wuxi University, Wuxi 214063, 
China
4  School of Atmospheric Science, Nanjing University of Information 
Science and Technology, Nanjing 210044, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40562-024-00319-9&domain=pdf
http://orcid.org/0000-0003-3565-8980


Page 2 of 13Xin et al. Geoscience Letters            (2024) 11:5 

the localized interpretation and application of ensemble 
model prediction possible.

However, according to previous researches, when 
applied to a certain area, these model predictions inevi-
tably exhibit biases in different seasons. For example, 
Climate Forecast System version 2 (CFSv2) predictions 
show a warm bias for the climatological mean SAT over 
the Yangtze River valley (Tang et al. 2020), and it is also 
deficient in depicting the winter SAT in most part of 
mainland China (Zou et al. 2022). Facing such problems, 
one effective way is to make ensemble predictions, which 
is widely adopted by meteorological bureaus around the 
world. It is obvious that some models will perform bet-
ter than others and deserve more weight, so there lies a 
question that what weight is appropriate? Also, the S2S 
dataset is only providing data at a relatively low resolu-
tion of 1.5°*1.5°, which is too coarse for practical applica-
tion. Can we somehow increase its resolution to meet the 
operation requirements?

In the recent years, machine learning methods is 
increasingly used in meteorological applications, among 
which artificial intelligence (AI) and online learning 
(OL) are two cutting-edge technologies. In weather 
forecasting, there are already neural network models 
being proposed for system identification (Lu et al. 2020), 
nowcasting (Zhang et  al. 2023), statistical downscaling 
(Baño-Medina et al. 2020) and so on. As a classic struc-
ture in neural network, UNet structure is first created 
for biomedical image segmentation (Ronneberger et  al 
2015), but later introduced into meteorological field for 
downscaling (Sha et al. 2020a, 2020b), owing its ability to 
reconstruct the high-resolution data to the hierarchical 
decoders and skip connections. Such applications give us 
a hint that neural network model may also help in dealing 
with model predictions for high-resolution forecasts.

OL, a novel training strategy, is a sequential decision-
making paradigm that is widely used in webpage predic-
tions and other Internet applications (Orabona 2019). It 
can dynamically and real-timely adjust the model accord-
ing to data feedbacks and thus reflect the changes in 
input data stream and improved the accuracy (Graepel 
et al. 2010, McMahan et al 2013). In other words, unlike 
traditional training methods like neural networks that 
generates static models according to a static database, 
online learning generates dynamical models using 
dynamical data streams. Flaspohlar et  al. (2021) intro-
duced this method into weather prediction with two new 
mechanisms. In their passage, Flaspohlar et  al. success-
fully made subseasonal ensemble forecast with six mod-
els and shed light on the improvement of prediction skills 
for subseasonal forecasts.

In this passage, we will be focusing on the follow-
ing questions. How to determine the weights for the 

ensemble extended-range forecasts upon the basis of the 
S2S database? How to make high-resolution forecasts 
out of low-resolution data? Do the ensemble predictions 
work better than normal predictions? Based on these 
questions, the rest part of the paper is organized as fol-
lows. In part 2 there will be an introduction of the dataset 
and the method. In part 3 the results of the predictions 
will be shown through indices and case studies. A discus-
sion and conclusion part will be in Part 4.

Data and methods
Modified UNet for statistical downscaling
The traditional UNet structure was modified in this study 
for statistical downscaling, where two deconvolution 
block is added at the front and back as shown in Fig. 1. 
This is to fit the change in size for the input and output 
data, as for the original structure, the input data and out-
put data have the same size. All the activate functions 
have been swapped to LeakyReLU. In this study, we are 
focusing on the precipitation and temperature of Yangtze 
River Delta. The input data is the forecast within 109.5–
126°E, 21–37.5°N, with a low resolution of 1.5°*1.5°, 
or 12*12 in grid. The output data has a high resolution 
of 0.0625°*0.0625°, within 109.53125°–126.03125°E, 
21.03125–37.53125°N (shown in Fig.  2), or 265*265 in 
grids.

The training set for UNet downscaling includes hourly 
high-resolution and low-resolution data correspond-
ing to the model input and output mentioned above. It 
derives from ERA5 precipitation and 2  m temperature 
data in 2020–2021, including 17544 samples (Hersbach 
et al. 2020). This set is separated into two parts. For Janu-
ary 1 2020 to September 30 2021, this part of the data is 
used directly for training, and the rest part is for valida-
tion. Moreover, the downscaling results will be compared 
against common bilinear interpolation for January 1 to 
June 30 2022 with altogether 4344 samples.

Models and data for online learning
Three models, Beijing Climate Center Climate Predic-
tion System version 2 for S2S (BCC-CPS-S2Sv2) model 
from China Meteorological Administration (CMA) (Liu 
et  al. 2021), Integrated Forecasting System (IFS) from 
European Centre for Medium-Range Weather Fore-
casts (ECMWF) (Roberts et al. 2018) and CFSv2 model 
from National Centers for Environmental Prediction 
(NCEP) (Saha et al. 2014) are selected for the ensemble 
forecast, with all the historical forecasts provided by 
the ECMWF S2S data set. The BCC model contains 4 
members, while IFS and CFSv2 have 51 and 16 mem-
bers, respectively. The training set contains daily global 
precipitation and 2  m temperature data in 2018–2021 
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for all 71 members with a resolution of 1.5°*1.5°. The 
valid set contains the same data for January 2022 to 
June in 2023.

The historical real data in the same time range come 
from CLDAS data set (Shi et al. 2019) with a resolution 
of 0.0625°*0.0625°. In this study, we are mainly focusing 
on the Yangtze River Delta region, located in the east-
ern part of China.

As we mentioned in Part 1, online learning is a 
training strategy that can dynamically and real-timely 
adjust the model according to data feedbacks. In Flas-
pholar’s design, two new mechanisms called delay and 
hint are added. Delay mechanism is a simulation of the 
lead time. Unlike webpage predictions where we can 
get predictions and real data almost at the same time, 
weather predictions have lead times, which means 

whether a prediction is accurate cannot be told until 
the forecast target date comes. The hint mechanism is a 
complement for the delay in getting real data, it allows 
the learner to estimate the possible loss for a predic-
tion whose target date has not come yet. The flow chart 
below describes the whole process of online learning 
(Fig. 3).

Online learning steps
The whole process included in online learning is shown 
as below:

1) Downscale all the low-resolution (1.5°*1.5°) train-
ing data from S2S system to high-resolution of 
0.0625°*0.0625° using modified UNet model.

Fig. 1 (a) Structure of the modified UNet model. (b) & (c) Definition of the deconvolution block and the convolution block in (a)
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2) For each lead time and each of the 71 members, cal-
culate latitude weighted anomaly correlation coef-
ficient (ACC) for 2018–2021. For each lead time, 
select all the members that surpass the average ACC 
into the next step.

3) For each lead time, for all the 12 matches of 3 hint 
algorithms (mean_g, recent_g, prev_g) and 4 opti-
mize algorithms (adahedged (Orabona 2019), dorm, 
dormplus (Bowling et al. 2015; Zinkevich et al. 2007), 
dub), train 12 weight for each lead time for each 
match of hint algorithm and optimize algorithm.

4) For each lead time, use the 12 weights to make hind-
casts for 2018–2021, and for each of the hindcasts, 
calculate latitude weighted root mean squared error 
(RMSE) and select the weight with least RMSE as the 
final result.

Evaluation methods
To evaluate the forecast results of prediction and UNet 
statistical downscaling, RMSE is defined as

where f is the prediction result or the downscaling result 
of the model, and t is the CLDAS data for prediction or 
ERA5 high-resolution data for downscaling of the corre-
sponding time. The smaller the RMSE value is, the better 
the prediction result of the model is. The ACC is defined 
as

where the symbol ’ represents the difference to the clima-
tology, L(j) is the weight factor when latitude is j, and L(j) 
is defined as
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Fig. 2 Topography of the study area (shading, m), mainly covering Yangtze River Delta (109.53125–126.03125°E, 21.03125–37.53125°N)
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ACC can represent the similarity of two fields. The 
closer the absolute value of ACC is to 1, the more similar 
the two fields are.

Performance evaluation
Performance of the UNet statistical downscaling
The performance of the UNet downscaling is examined 
with ERA5 data in the first half of 2022. For the two 
meteorological elements we are focusing on, precipita-
tion and 2 m temperature, 2 models are trained for each 
element. The calculation of latitude weighted RMSE and 
ACC of UNet downscaling and bilinear interpolation is 
shown in Table  1. We can see that except for the ACC 
in precipitation, all the scores UNet get are better than 

traditional bilinear interpolation, proving that the modi-
fied UNet model is suitable for downscaling the low-res-
olution forecasts into high-resolution forecasts.

Fig. 3 a The process of online learning show in flow chart. b The optimize process in each iteration with optimize algorithm and hint algorithm

Table 1 Comparison of results of UNet downscaling and bilinear 
interpolation in the first half of 2022

The * denotes that the difference between UNet downscaling score and the 
bilinear interpolation score passed the 95% significance test

Precipitation 2 m temperature

Bilinear UNet Bilinear UNet

RMSE 9.45797 8.82330* 1.02371 0.89849*

ACC 0.00595 0.00581 0.99099 0.99304*
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Figure 4 shows a comparison case of the two downscal-
ing methods for both the elements. It can be seen that the 
high-resolution precipitation data demonstrates a belt-
shaped area for precipitation above 40 mm/day (Fig. 4a), 
which is well depicted in UNet downscaling results in 
Fig.  4c. However, in the results of bilinear interpolation 
shown in Fig. 4b, such characteristic is not fully shown. 
Also, in the comparison of 2  m temperature, there is a 
cold tongue in the western part of Zhejiang Province 
(Fig.  4d), which is relatively accurately shown in UNet 
downscaling results in Fig. 4f together with a small cold 
zone below 6 ℃. In the bilinear interpolation results in 
Fig. 4e, the shape of the cold tongue is distorted and the 
cold zone is missed. These two comparisons show the 
ability of UNet Downscaling to depict the details of the 
elements, which is superior to the traditional bilinear 
interpolation, proving that it is suitable for the downscal-
ing processes of the S2S forecasts.

Results of the online learning ensemble forecast
The overall performance of the online learning ensem-
ble forecast, the ERA5 climatology forecast (calculated 
using 1990–2019 data) and three model ensemble fore-
casts is compared by calculating RMSE and ACC for the 

hindcasts of the valid set, as shown in Fig. 5. It can be seen 
that among the three model ensemble forecasts, ECMWF 
IFS model has the best performance, followed by NCEP 
CFS model and CMA model. Our online ensemble is 
slightly superior to IFS model during the forecast lead 
time of 10–30 days for both precipitation and 2 m tem-
perature. The RMSE for precipitation is by 0.003 lower 
than ECMWF forecast in average and lower by 0.053 for 
2  m temperature. Compared with the equal-weighted 
ensemble of all 71 ensembles and equal-weighted ensem-
ble of selected members (the selection here refers to the 
second step in the online learning process, see part 2.3), 
our method still has an advantage in most lead times. 
The RMSE for precipitation is lower than equal-weight 
ensemble of selected members for 0.013, while for 2  m 
temperature, the advantage is 0.032. Compared with all 
71 members ensemble, we also have an advantage in 2 m 
temperature with 0.028 smaller in RMSE for 2  m tem-
perature prediction. Also, compared with the ECMWF 
ensemble forecast, the advantage for the average ACC 
score for the lead time of 18–26 days for both the precipi-
tation and 2 m temperature and the average RMSE score 
for 2  m temperature during the same lead time period 
passed the 90% significance test, considering that it is a 

Fig. 4 a–c Comparison of the ERA5 high-resolution precipitation data and the results of bilinear interpolation and UNet downscaling (shading, 
mm/day). d–f Comparison of the ERA5 high-resolution 2 m temperature data and the results of bilinear interpolation and UNet downscaling 
(shading, ℃). Both of the comparisons are done using data in 18:00:00 January 4 2022
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quite lightweight model, which does not take too much 
computational resources and time to train compared to 
neural networks and numerical predictions, this result is 
satisfactory. Also, when compared against the climatol-
ogy forecast, we can see that as the lead time increases, 
the performance for both the ECMWF IFS forecast and 
the online forecast are getting closer to the climatology 
prediction, but the precipitation prediction performance 

is always better than climatology prediction, which is the 
same for 2 m temperature prediction except for the lead 
time of 25–30 days in ACC.

Apart from the comparison based on the hindcasts of 
the whole valid set for all the lead times, we also selected 
two typical cases for heavy precipitation and cold wave in 
2023 to check the models’ ability to predict such extreme 
events.

Fig. 5 (a) RMSE (lines; mm) and (b) ACC (lines) for three model ensemble forecasts (blue line for CMA model, green line for NCEP model, yellow line 
for ECMWF model), equal-weight ensemble of 71 members (red line), equal-weight ensemble of selected members (purple line), online forecasts 
(brown line) and climatological forecast (black line) for precipitation in the valid set. (c) RMSE (lines; ℃) and (d) ACC (lines) for three model ensemble 
forecasts, equal-weight ensemble of 71 members, online forecasts and climatological forecast for 2 m temperature in the valid set
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Figure  6 shows a case study of forecasting precipita-
tion in the study area for June 24. According the CLDAS 
record shown in Fig.  6a, there has been heavy rain in 
most part of Southern China. Xujiahui observatory 
(31.20°N, 121.43°E) in Shanghai recorded a daily precipi-
tation of 137.9 mm at that day, which was the strongest 
precipitation in June. Such heavy rainfall in the plum rain 
season is by far still hard to predict in the extended range 
forecast and closely connected to economic development 
and social security. For the precipitation forecast for 
this specific day, the RMSE for ECMWF forecast, NCEP 
forecast and online forecast is 26.286, 26.958 and 26.198, 

respectively (the advantage over ECMWF forecast is 
significant on 95% level), with online learning having 
the best performance. In the comparison shown below, 
we can see that in real situation in Fig. 6a, the rain belt 
extended from eastern Guangxi to East China Sea with 
a southwest–northeast orientation. This characteristic 
is well demonstrated in the online ensemble forecast in 
Fig.  6d, while for the other two forecasts, this rain belt 
is not clearly shown. However, the common problem for 
ensemble precipitation predictions also appears in this 
case that although the precipitation area can be clearly 
shown, the amount is always small. In this case, the 

Fig. 6 (a) CLDAS data for the daily precipitation (shading; mm) in 24 June 2023. b, c Predictions 14 days ahead by (b) ECMWF IFS, (c) NCEP CFS 
and (d) online ensemble (shading; mm)
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precipitation amount reached 100 mm in some area, but 
in the predictions, it is hard to surpass 30 mm. Overall, 
from the perspective of the precipitation area, the online 
forecast was successful and surpassed the ECMWF and 
NCEP forecasts.

As the key factors influencing precipitation, the geo-
potential height and wind on 850 hPa is analyzed for this 
case. As is shown in Fig.  7, the cyclone over southern 
Anhui caused the uplift movement of air, together with 
moisture convergence brought by the convergence of 
southwesterly to the south of the cyclone, directly caused 
the rain belt shown in Fig. 6a. To show the physical relia-
bility of our model, we picked 3 model members from the 
71 members, which includes KWBC 11 model, ECMF 44 

model and BABJ 1 model. The KWBC 11 model takes a 
relatively big weight of 0.034 while ECMF 44 model takes 
the smallest of 0.006. The BABJ 1 model is left out in step 
(2) as a bad model. For the predictions of these models, 
the KWBC 11 model successfully predicted the cyclone 
with a small bias in location. The convergence south of 
the cyclone is also clearly shown in this prediction. The 
ECMF 44 only predicted a trough over Yangtze River and 
BABJ 1 model prediction had much bigger bias, with a 
large cyclone over northern East China Sea. The RMSE 
for the three predictions of geopotential height at 850 hPa 
are 31.201, 46.009 and 48.788, respectively, which can 
prove the physical reliability behind our model. In the 
establishment of our model, model members with large 

Fig. 7 Geopotential height (shading; gpm) and wind (vector; m  s−1) at 850 hPa at June 24, 2023 for (a) ERA5 real data, (b) KWBC 11 model 
prediction, (c) ECMF 44 model prediction and (d) BABJ 1 model prediction. The model predictions all have the lead time of 14 days
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bias are left out in the second step (models like BABJ 1). 
For the rest of the models, more weight will be given to 
members with accurate predictions (models like KWBC 
11) for the ensemble prediction. The training steps men-
tioned in Sect. “Data and Methods” ensure that members 
with accurate predictions can play larger roles in the final 
ensemble while bad members can be left out and pre-
vented from deteriorating the result.

Another case shown in Fig.  8 is a drastic cold surge 
happened in 15 January. This cold surge caused the tem-
perature in Southern China to drop by 10.44 ℃ in 13–15 
January during the spring festival travel rush, causing 

huge problems to transportation and is thus worth pay-
ing attention to. From CLDAS data of 2 m temperature 
(Fig.  8a), we can see that the area below 5 ℃ extended 
to 25°N in 15 January, approaching the coastal area. The 
RMSE for this day’s forecast is 3.687, 5.593 and 3.357 
for ECMWF forecast, NCEP forecast and online fore-
cast, respectively (the advantage over ECMWF forecast 
is significant on 95% level), which means online learn-
ing has the most accurate prediction. Both the ECMWF 
ensemble forecast and the online forecast predicted the 
cold area in Eastern China but failed to predict the cold 
area in the inland area with 30 days in advance, while the 

Fig. 8 (a) CLDAS data for the daily average 2 m temperature (shading; ℃) in 15 January 2023. b, c Predictions 30 days ahead by (b) ECMWF IFS, (c) 
NCEP CFS and (d) online ensemble (shading; ℃)
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NCEP ensemble forecast had a larger deviation (Fig. 8c). 
Compared with the ECMWF forecast (Fig. 8b), the online 
forecast shown in Fig. 8d had a lower area-average tem-
perature and the cold area are further extended south-
ward, which means it is more in line with the actual 
situation.

For this case, we also analyzed the circulation back-
ground to ensure the physical reliability. As is shown in 
Fig. 9, South China was under the effect of the short wave 
troughs which brought cold air southward and lead to 
cold surges. The depression in Northeast China and the 
troughs south to it are the critical factors influencing this 
cold surge. From the model member predictions, we can 
see that ECMF 31 model, which owns the largest weight 
of 0.0696, has a good prediction of the circulation back-
ground and the depression in the Northeast China is well 
reflected. For the ECMF 2 model prediction, which has 
the smallest weight of only 0.0061, has larger bias com-
pared with ECMF 31 model prediction, with the position 
of the depression being too westward. Finally, the BABJ 3 
model, which is already left out in step (2), has the worst 
prediction, with no troughs but a ridge over South China. 

The RMSE for the geopotential height prediction for the 
three models are 46.788, 110.032, and 113.737, respec-
tively. This case also proves that good models can play a 
greater role in the final ensemble, which ensure the phys-
ical reliability of our model.

Conclusions and discussion
In this passage, we prompted a weighted ensemble fore-
casting method based on online learning in subseasonal 
forecast in the SC for precipitation and 2  m tempera-
ture. This method is further combined with a modified 
UNet model for downscaling to produce high resolution 
predictions. The forecasting results is compared against 
three model ensemble forecasts and the climatology 
forecasts through RMSE and ACC as indices and two 
extreme weather cases. RMSE and ACC shows that this 
method slightly surpassed ECMWF IFS forecast, which 
performs the best among the three model ensemble fore-
casts, and is more accurate than the climatology predic-
tion. In the two extreme weather cases, online learning 
shows its ability to depict the distribution of atmospheric 
elements, and its prediction results are more in parallel 

Fig. 9 Geopotential height (shading; gpm) and wind (vector; m  s−1) at 500 hPa at January 15, 2023 for (a) ERA5 real data, (b) ECMF 31 model 
prediction, (c) ECMF 2 model prediction and (d) BABJ 3 model prediction. The model predictions all have the lead time of 30 days
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with the CLDAS data. Based on the two cases, we also 
analyzed the predictions from some of the members and 
concluded that in our model, the members with less accu-
racy are filtered out based on their ACC scores. Mem-
bers with high accurate predictions will be given larger 
weights so that they can play a greater role in the ensem-
ble prediction and members with relatively low accuracy 
will be given smaller weights. These are the sources of the 
improvements our model has gained over other ensemble 
forecasts.

Compared with neural network predictions, which is 
quite popular recently, this forecasting method has sev-
eral advantages. The first is that it does not require GPU 
resources to train the model, which means all the opera-
tions can be done by CPU. The second is that it does not 
need to take much data to study. In Flaspohlar’s passage, 
the author used the outcomes from a forecast compe-
tition with only 200 + samples and still got successful 
results. For traditional models, we often need to prepare 
GBs or even TBs of data to train the model, but online 
learning uses data streams instead of static data sets, 
gaining this method an advantage. Finally, we have men-
tioned that for online learning, it can dynamically and 
real-timely adjust the model according to data feedbacks 
and thus reflect the changes in input data stream. Unlike 
neural networks which is based on a static train set and 
takes much time to update the data set and the model, 
online learning enables the models to be updated in a 
higher frequency.

However, this method also has some shortcomings. 
First, this method makes predictions based on three 
other model predictions, which means if there is an 
extreme weather condition that none of the three mod-
els manage to forecast, it cannot be predicted by online 
forecast either. The second problem is already shown in 
the precipitation prediction part, which is a common 
problem for all the ensemble forecasts that the amount 
of precipitation is usually underestimated for heavy rain 
because there will be ensemble members that predicted 
the rain and there will also be members that failed to 
predict. During the ensemble process, the precipitation 
amount got ‘averaged’ by the members who failed to pre-
dict. Finally, although the RMSE and ACC score we get 
is slightly better than the ECMWF IFS forecast, they do 
not pass the 95% level significant test, meaning that this 
advantage is not significant statistically. These problems 
remain unsolved in our model and we would possibly be 
working them out in our future work. Also, the ability of 
online learning to dynamically and real-timely adjust the 
model according to data feedbacks is not well demon-
strated in this method, improvements around this is also 
included in our future work.
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