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Abstract 

Seasonal prediction of the Indian Ocean dipole (IOD) is important, considering its impact on the climate of sur-
rounding regions. Here we compare the prediction of the IOD in two generations of prediction system developed 
by the China Meteorology Administration (CMA), i.e., the second-generation climate model prediction system (CPSv2) 
and CPSv3. The results show that CPSv3 has better ability to predict the variability and spatial pattern of the IOD 
than CPSv2, especially when the lead time is long. CPSv3 maintains a certain level of credibility when predicting IOD 
events with 6-month lead time. The improved data assimilation in CPSv3 has reduced the predictability error of east-
ern Indian Ocean sea surface temperature (SST) and contributed to improvements in IOD prediction. Enhanced simu-
lation of the El Niño-Southern Oscillation (ENSO)–IOD relationship promotes better prediction skill of ENSO-related 
IOD events in CPSv3. Our results suggest that upgrading data assimilation and the simulation of the ENSO–IOD 
relationship are critical for improving the prediction of the IOD in coupled climate models.
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Introduction
The Indian Ocean dipole (IOD) is the dominate sea sur-
face temperature (SST) anomaly pattern in the tropical 
Indian Ocean in June–July–August (JJA) and Septem-
ber–October–November (SON) (Saji et al. 1999; Webster 
et al. 1999). During its positive phase, cool SST anoma-
lies in the southeast tropical Indian Ocean and warm 
SST anomalies in the west force a northwestward shift 

of atmospheric convection, inducing opposite rainfall 
anomalies in regions around the western and eastern 
Indian Ocean (Behera et  al. 2005; Cai et  al. 2009; Yang 
et  al. 2020). A positive IOD can develop more strongly 
than a negative IOD resulting in stronger impacts on the 
climate of Indian Ocean-rim countries (Cai et  al. 2021; 
Ummenhofer et  al. 2009; Yang et  al. 2020). For exam-
ple, the 2019 extreme positive IOD caused floods in East 
Africa which affected more than 2.8 million people and 
devastating bushfires in Australia where more than 3000 
buildings were destroyed and a burnt area of more than 
170,000  km2 (Wang et al. 2020).

Extreme positive IOD events are projected to occur 
more frequently in a warming climate (Cai et  al. 2014, 
2021). Thus, improvement in the seasonal prediction of 
the IOD is required to minimize its impacts and dam-
ages. Considerable effort has been made to predict the 
IOD using coupled climate models (e.g., Liu et al. 2017; 
Luo et al. 2007; Shi et al. 2012; Liu et al. 2021a, b). The 
IOD prediction skills of coupled models are related to the 
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initialization, data assimilation, the performance of mod-
els in simulating the ocean–atmosphere dynamics in the 
tropical Indian Ocean, and the El Niño-Southern Oscilla-
tion (ENSO)–IOD relationship (Liu et al. 2017; Luo et al. 
2007). The IOD and ENSO can influence the evolution of 
each other through ocean–atmosphere interaction in the 
Pacific and Indian Oceans (e.g., the Walker circulation, 
Cai et al. 2019; Luo et al. 2010). In some cases, accurate 
simulation of the ENSO–IOD relationship is the key to 
the prediction of extreme IOD events in coupled models 
(Doi et al. 2020).

The Beijing Climate Center Climate System Model 
(BCC-CSM), which participated in the international Cou-
pled Model Intercomparison Project phase 5 (CMIP5) 
and phase 6 (CMIP6), has been widely used in the sea-
sonal prediction of climate variability in East Asia and 
the tropics (Liu et al. 2015). Based on BCC-CSM1.1(m), 
a medium-resolution version of BCC-CSM (Wu et  al. 
2010), the second-generation climate model prediction 
system, CPSv2 was operationalized in 2016. With reason-
able skill in predicting East Asian climate, CPSv2 has lim-
ited ability in predicting the IOD and its relationship with 
ENSO (Liu et al. 2015). In 2021, the third-generation sys-
tem (CPSv3) was developed based on the high-resolution 
version of BCC-CSM, referred to as BCC-CSM2-HR (Liu 
et al. 2021a, b). With significant upgrades to its dynami-
cal core and model physics, BCC-CSM2-HR has been 
demonstrated to have improved ability in simulating 
the inter-tropical convergence zone (ITCZ), the ENSO 
cycle, and the Madden–Julian Oscillation (MJO), and so 
on (Liang et al. 2022; Liu et al. 2021a, b). Despite a sub-
stantial improvement in model framework, how these 
changes will influence seasonal prediction of the IOD has 
not been fully assessed (Liang et  al. 2022). Here we use 
the ensemble hindcast experiment in CPSv2 and CPSv3 
during the period of 2002–2022 to evaluate their perfor-
mance in seasonal prediction of the IOD.

Data and method
Model description
In BCC-CSM-1.1(m), the atmospheric component of the 
model utilizes the BCC Atmospheric General Circula-
tion Model (AGCM), featuring a horizontal resolution 
of T106 (approximately 100  km) and 26 hybrid sigma/
pressure layers in the vertical direction (Wu et al. 2010). 
The land component is based on version 1.0 of the BCC 
Atmosphere and Vegetation Interaction Model. The 
ocean and sea ice components are version 4 of the Geo-
physical Fluid Dynamics Laboratory Modular Ocean 
Model (MOM4; Griffies et al. 2005) and the Sea Ice Sim-
ulator (SIS4; Winton 2000), respectively. These different 
components are coupled without any flux adjustment.

BCC-CSM2-HR was developed for Subseasonal-to-
Seasonal (S2S) and short-term forecasts. The atmos-
pheric component of BCC-CSM2-HR is BCC-AGCM 
version 3 (Wu et al. 2021), with a horizontal resolution of 
T266 triangular truncation (approximately 45 km) and 56 
vertical hybrid sigma/pressure layers, with the top level 
at 0.1 hPa. Some developments were made for both the 
dynamical core and model physics in the atmospheric 
components, such as a deep cumulus convection scheme, 
spatially varying damping for the divergence field, and 
modified boundary layer turbulence (Wu et  al. 2021). 
The ocean component of BCC-CSM2-HR is updated 
to MOM5 (Griffies 2012), with a horizontal resolution 
of 0.25° and 50 vertical levels. The land component is 
BCC-AVIM (the Atmosphere and Vegetation Interac-
tion Model) version 2, and the sea ice component is also 
updated from SIS4 to SIS5 (Delworth et al. 2006).

Experiment design
CPSv2 and CPSv3 are developed based on BCC-CSM-
1.1(m) and BCC-CSM2-HR, respectively. In addition to 
the upgrade of the model framework, the data assimila-
tion system is also different between these two systems. 
The initialization scheme in CPSv2 is a nudging method 
(Liu et al. 2015), where the four-times daily air tempera-
ture, winds, and surface pressure fields from the National 
Centers for Environmental Prediction (NCEP; Kanamitsu 
et al. 2002) and sea temperature from Global Ocean Data 
Assimilation System (GODAS) version 2 (Behringer and 
Xue 2004) are used.

For CPSv3, a coupled data assimilation is applied, 
including a based Ensemble Kalman Filter (Evensen 
2003) in the ocean component, an Optimal Interpola-
tion (IO) algorithm in the sea ice component and a multi-
level nudging method in the atmosphere component. 
This coupled data assimilation is a more consistent data 
assimilation scheme and can produce a more reliable 
analysis than other reanalysis products (Liu et al. 2021a, 
b).

Historical hindcast experiments have been conducted 
based on the two prediction system. Each hindcast 
experiment in CPSv2 includes 24 members, produced 
by a lagged average forecasting (LAF) with a combina-
tion of different atmospheric and oceanic initial condi-
tions at the end of the month preceding the beginning 
of the hindcast. This ensemble forecast initiates monthly 
from January 1991 to present. In CPSv3, 21 members 
starting once a month from January 2001 to present 
have been conducted. Ensemble member 0 is initial-
ized with undisturbed initial conditions (ICs), while 
the remaining members undergo perturbations. These 
perturbations are introduced to account for the uncer-
tainty arising from both the initial conditions and the 
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unresolved sub-grid-scale processes. These processes are 
addressed through parameterization techniques within 
the atmospheric model, including LAF and stochastically 
perturbed parameterization tendency (SPPT) schemes. 
Despite CPSv2 initiating its forecasting as early as Janu-
ary 1991, for the purpose of a more robust comparison 
with CPSv3, we ultimately used results from January 
2002 to December 2022.

Validation data and methods
For model evaluation, we use SST data from NOAA 
Optimum Interpolation SST version 2 (OISST; Reyn-
olds et  al. 2002), and multi-level sea temperature data 
from GODAS (Behringer and Xue 2004). All the rea-
nalysis/observations and hindcast data cover a 21-year 
period from 2002 to 2022 and are all interpolated onto 
the OISST grid before comparison. The anomalies of 
each variable are calculated relative to the 2002–2022 
climatology.

The statistical methods employed in this study encom-
pass regression, correlation analysis, and physical exami-
nation. The standard two-tailed Student’s t-test is utilized 
to assess significance levels. Prediction skill and forecast 

error are gaged through the anomaly correlation coef-
ficient (ACC) and root-mean-square error (RMSE), 
respectively. To estimate predictability error, the RMSE 
is calculated between each perturbed member and the 
ensemble mean, followed by the averaging of results from 
sub-samples. This measurement helps quantify the error 
attributable to initial condition uncertainties under a per-
fect-model assumption (Kim et al. 2014).

To assess the performance of the models at different 
forecast lead times, the concept of “lead month” is intro-
duced. The LM## (e.g., LM00) is employed to quantify 
the forecast lead time, with “##” signifying the month 
following the initial time. For example, if the start time 
is 1 January, 2001, the predicted target month of January 
is denoted as LM00, while the subsequent month of Feb-
ruary is designated as LM01. Unless otherwise specified, 
we apply the ensemble mean of the 24 (21) members in 
CPSv2 (CPSv3) to evaluate their prediction skill of IOD.

Results
In observations, the tropical eastern Indian Ocean has 
a warmer climatological SST with a deeper thermocline 
than the tropical western Indian Ocean (Fig. 1a). While 

Fig. 1 Indian Ocean climatology and IOD pattern in observation and CMA prediction systems. a Climatology of SST (shaded) and 20 °C isotherm 
depth (contours) in observation. b, c Difference of the climatology of SST (shaded) and 20 °C isotherm depth (contours) between observations 
and predictions using b CPSv2 and c CPSv3 at 6-month lead time. d–f SST anomalies regressed onto monthly DMI over the Indian Ocean in d 
observations and e CPSv2 and f CPSv3 at 6-month lead time. The black dotted areas in d, e, f indicate significance above the 95% confidence level. 
The pattern correlation coefficients between simulated and observed IOD patterns are shown in the top right of e, f 
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the climatological thermocline in the eastern Indian 
Ocean gets deeper poleward, there is a thermocline dome 
in the tropical western Indian Ocean. Examining the pre-
dicted SST field at a lead time of 6 months, we find that 
the mean state of SST in CPSv2 tends to exhibit a cold 
bias over the central-eastern tropical Indian Ocean with 
the most cooling in the eastern region (Fig. 1b). Addition-
ally, this cold bias is accompanied by a weak warm bias in 
the western part of the Indian Ocean and there is also a 
positive thermocline depth bias in the southwest Indian 
Ocean, especially in the thermocline dome. In contrast, 
CPSv3 shows the opposite bias of SST climatology over 
the tropical Indian Ocean with a more accurate simula-
tion of the thermocline depth (Fig.  1c). CPSv2 exhib-
its significant biases in simulating thermocline depth 
in the eastern and western tropical Indian Ocean, with 
deviation centers of + 30 m and − 20 m, respectively. In 
contrast, CPSv3 shows substantial improvement in simu-
lating the thermocline depth, reducing the bias centers in 
the eastern and western tropical Indian Ocean to around 
± 10 m. We also find similar improvement of thermocline 
simulation in the historical run of BCC-CSM2-HR. The 
improvement in the climatological thermocline depth of 
the tropical Indian Ocean enables the model to better 
simulate the variability of the Indian Ocean.

Due to the mean SST and equatorial easterly wind 
biases in CPSv2, the negative SST anomalies in the 
eastern Indian Ocean during a positive IOD are much 
stronger and extend further to the west than in obser-
vations, forcing a relatively weak warming in western 
Indian Ocean (Fig. 1d, e). On the other hand, CPSv3 sim-
ulates a more realistic IOD spatial pattern even though 
the cooling in the southeast Indian Ocean is confined to a 
small area off Sumatra–Java (Fig. 1f ). The pattern correla-
tion of SST anomalies associated with the IOD between 
observation and CMA prediction systems has improved 
from 0.57 in CPSv2 to 0.78 in CPSv3.

According to the ensemble mean of the hindcast 
experiments, CPSv3 shows better skill in the prediction 
of monthly DMI, which is a commonly used IOD index 
(Saji et al. 1999) calculated as the SST anomaly difference 
between the western Indian Ocean (10° S to 10° N and 
50° E to 70° E) and the southeast Indian Ocean (10° S to 0° 
and 90° E to 110° E), than CPSv2 (Fig. 2). In the two gen-
erations of the CMA prediction systems, the correlation 
of observed and predicted DMI time series has increased 
from 0.58 to 0.69 at lead time of 2 months, from 0.42 to 
0.6 at lead time of 4 months, and from 0.36 to 0.57 at lead 
time of 6  months. The improvement of DMI prediction 
from CPSv2 to CPSv3 is more significant when the lead 
time is longer. At a lead time of 6  months, CPSv3 has 
accurately predicted 2019 as the strongest positive IOD 
year in the past 21  years, while CPSv2 predicts 2019 as 

a moderate positive IOD (Fig.  2a, b). However, CPSv3 
appears to underestimate the 2019 strong pIOD at a lead 
time of 2 months. This may be caused by the anomalously 
cool SST in the western Indian Ocean in July (2019) pre-
dicted by CPSv3 starting from July. In turn, the westward 
extension of the equatorial easterly wind is substantially 
blocked and this is unfavorable for the formation of 
the positive Bjerknes feedback and the development of 
strong pIOD (Additional file 1: Figure S1). The initial neg-
ative SST anomalies in the western Indian Ocean in July 
could potentially be associated with the data assimilation 
process and initial conditions. Apart from the improved 
prediction of the DMI, CPSv3 also shows enhanced sim-
ulation of the spatial pattern of SST anomalies associated 
with the IOD. The pattern correlation of the IOD SST 
patterns in observations and predictions has increased by 
0.13, 0.28, and 0.21 (from 0.75 to 0.88, 0.60 to 0.88, 0.57 
to 0.78) from CPSv2 to CPSv3 with a lead time of 2, 4, 
and 6 months, respectively (Additional file 1: Figure S2). 
In CPSv2, an IOD in its developing and mature phase can 
be well predicted (defined as when the ACC is larger than 
0.5) with up to 3–4-month lead (Fig. 2c). While in CPSv3, 
skillful prediction of the IOD is found with a lead time up 
to 6 months (Fig. 2d).

The ensemble mean of the hindcast experiments has 
better DMI prediction skill than individual experiments. 
This is primarily attributed to the appropriate ensem-
ble strategies employed in those forecast systems, which 
contributes to reducing their predictive uncertainties and 
is consistent with the findings of other ensemble forecast 
studies (e.g., Liu et  al 2017; Hu et  al 2014; Kumar et  al 
2003; Jin et  al 2008). Additionally, most of the hindcast 
experiments in CPSv3 show higher DMI prediction skill 
than the hindcast experiments based on CPSv2, espe-
cially when the lead time is long (Fig.  3a, b). This dem-
onstrates the robustness of the improvement in IOD 
prediction from CPSv2 to CPSv3.

We also compare the prediction skill of SST variabil-
ity in the western and eastern IOD poles. This suggests 
that the high ACC of DMI in CPSv3 is mainly due to 
the improved prediction of IOD eastern pole variability 
(Fig. 3a, d). CPSv3 generally shows similar ACC values of 
IOD western pole prediction with CPSv2 (Fig. 3c). How-
ever, this does not mean that CPSv3 has no improvement 
over the western Indian Ocean as SST variability of the 
western Indian Ocean is considerably underestimated in 
CPSv2 (Additional file 1: Figure S3). This may be a result 
of the thermocline mean state bias and the depressed 
warming in the western Indian Ocean during positive 
IOD events in CPSv2 (Fig. 1). The magnitude of the pre-
dicted western Indian Ocean SST anomalies is largely 
underestimated in CPSv2 (Additional file  1: Figure S3). 
In contrast, CPSv3 provides more realistic predictions of 
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Fig. 2 Prediction of DMI in CPSv2 and CPSv3. a, b Time series of monthly DMI in observations (bars) and model ensemble mean predictions 
using a CPSv2 and b CPSv3 at 2- (purple line), 4- (black line) and 6-month (light-blue line) lead time from 2002 to 2022. c, d Anomaly Correlation 
Coefficients (ACC) of the DMI predictions using c CPSv2 and d CPSv3 as a function of lead month and different initial times. All the data have been 
smoothed with a 3-month running mean
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the western Indian Ocean SST anomaly time series and 
spatial patterns of SST variability (standard deviation) 
in the tropical Indian Ocean. Evaluation based on RMSE 
shows similar results (Additional file 1: Figure S4).

We then explored the possible reasons for the improve-
ment of IOD prediction in CPSv3. Predictability errors 
are used to describe the error caused by the uncertainty 
in the process of assimilation and initialization when 
treating the model as perfect. In the tropical Indian 
Ocean, the prediction of eastern Indian Ocean SST in 
CPSv2 exhibits large predictability errors increasing with 
the lead time (Fig. 4a). While in CPSv3, the predictabil-
ity errors in the eastern Indian Ocean have been reduced. 
In particular, the predictability errors barely change as 
the lead time increases (Fig.  4b). This suggests that the 

upgraded data assimilation system in CPSv3 has contrib-
uted to an improved prediction skill of IOD eastern pole 
SST variability.

Additionally, we also compare the ENSO–IOD rela-
tionship in observations and the two CMA prediction 
systems. In observations, the correlation between ENSO 
(represented by the Niño3.4 index) and IOD increases 
from May and peaks in September (Fig.  4c). In SON, 
Niño3.4 is negatively correlated with eastern tropical 
Indian Ocean SST and positively correlated with the SST 
in the tropical west and northwest Indian Ocean (Fig. 4d). 
However, CPSv2 has underestimated the ENSO–IOD 
relationship, with an ENSO–IOD correlation coeffi-
cient close to 0 from May to November (Fig.  4c). SON 
SST in the Indian Ocean is either weakly correlated or 

Fig. 3 Prediction of SST variability in west and east IOD poles. ACC of DMI, western pole (W), and eastern pole (E) using CPSv2 and CPSv3 
predictions at different lead months. a represents the ensemble mean results, b–d represent the ensemble mean and the corresponding 
sub-samples results for b DMI, c western pole, and d eastern pole of DMI. The solid lines show the ensemble mean and the dotted lines show 
the results of each experiment. All the data have been smoothed with a 3-month running mean
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Fig. 4 Predictability errors and ENSO–IOD relationship in CPSv2 and CPSv3. Predictability errors of SST averaged over 10° S–10° N in a CPSv2 
and b CPSv3 at different lead months. c The relationship of concurrent Niño3.4 index and DMI from May to November in observations (black line) 
and predictions using CPSv2 (blue line) and CPSv3 (purple line). d–f The correlation between SON Niño3.4 index and concurrent SST in the Indian 
Ocean in d observations and predictions using e CPSv2 and f CPSv3. c–f are based on predictions starting from May
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not related with Niño3.4 in CPSv2 (Fig. 4e). In contrast, 
CPSv3 captures the Niño3.4–DMI relationship well from 
May to November, although the correlation in CPSv3 is 
stronger than that in observations (Fig. 4c, f ). The more 
realistic ENSO–IOD relationship in CPSv3 contrib-
utes to a higher prediction skill of ENSO-related IOD 
in CPSv3 than in CPSv2. The improvement is more sig-
nificant when the lead time is longer (Additional file  1: 
Figure S5). In addition, the better simulation of the rela-
tionship between ENSO and western Indian Ocean SST 
may contribute to more realistic western Indian Ocean 
SST variability in CPSv3 (Additional file 1: Figure S3). We 
also compare the ENSO–IOD relationship in the histori-
cal simulation of BCC-CSM.1.1(m) (used in CPSv2) and 
BCC-CSM2-HR (used in CPSv3), in which no data assim-
ilation is used (Additional file 1: Figure S6). Although the 
correlation patterns are slightly different to that in hind-
cast experiments (Fig.  4), the conclusion remains con-
sistent. BCC-CSM2-HR reproduces the ENSO–Indian 
Ocean SST relationship in observations well, especially 
for the significant positive correlation between ENSO 
and the tropical western Indian Ocean (Additional file 1: 
Figure S6). This suggests that the improved ENSO–IOD 
relationship and ENSO-related IOD prediction skill in 
CPSv3 are not attributed to data assimilation, but rather 
result from improvements in model dynamics.

Conclusions and discussion
In this study, we have comprehensively evaluated sea-
sonal prediction of the IOD in two generations of CMA 
climate prediction systems based on ensemble hindcast 
experiments. The results show that the newest CPSv3 
has a substantially improved prediction skill of the IOD 
in terms of its spatial pattern and interannual variability 
than its previous version, CPSv2. The total predictability 
of IOD events can be extended up to 6 months in advance. 
Specifically, CPSv2 shows an east cold-west warm mean 
state bias over the tropical Indian Ocean, which leads to a 
westward extending cooling in the eastern Indian Ocean 
and weak warming in the western Indian Ocean during 
positive IOD events. This mean state bias also contrib-
utes to underestimated SST variability in the western 
tropical Indian Ocean. CPSv3 better captures the spatial 
pattern of the IOD with a more realistic SST variability 
pattern simulation in the western tropical Indian Ocean. 
However, the mean state bias in CPSv3 also results in the 
cool anomalies associated with positive IODs confined to 
a smaller area off Sumatra–Java.

The ensemble mean of hindcast experiments shows 
better prediction skill than most individual hindcast 
experiments, and the prediction of DMI and IOD spatial 
patterns is better in CPSv3 than in CPSv2. The improve-
ment is more significant when the lead time is longer. 

The improved prediction of DMI in CPSv3 is mainly 
related to the upgraded data assimilation which substan-
tially reduces predictability errors in the eastern tropical 
Indian Ocean.

Furthermore, CPSv3 shows a better ability to capture 
the observed ENSO–IOD relationship than CPSv2. The 
more realistic ENSO–IOD relationship in CPSv3 has 
contributed to a higher prediction skill of ENSO-related 
IOD events compared to CPSv2. This improvement 
is also more significant when the lead time is longer. A 
better relationship between ENSO and western Indian 
Ocean SST also leads to a more realistic simulation of 
SST variability in the western Indian Ocean in CPSv3. 
This finding aligns with the conclusions of previous 
researchers using statistical methods (e.g., Zhao et  al. 
2019, who argued that the poor simulation of the rela-
tionship between ENSO and IOD by models is a major 
reason for the low skill in IOD prediction. They used a 
simple statistical model to correct the ENSO–IOD rela-
tionship in dynamical models, resulting in a better skill in 
IOD prediction. Through extensive model enhancements 
and improved initialization schemes, the latest prediction 
system, CPSv3, can accurately capture this underlying 
relationship and ultimately enhance IOD prediction skill.
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Additional file 1: Figure S1. The Indian Ocean SST and 850-hPa wind 
anomalies from July to September 2019 in (a) Observations, (b) CPSv2 
predicted from July 2019, and (c) CPSv3 predicted from July 2019. Figure 
S2. Indian Ocean SST anomalies regressed onto the DMI in (a, b, c) CPSv2 
and (d, e, f ) CPSv3 at (a, d) 2-month, (b, e) 4-month and (c, f ) 6-month lead 
time. The black dotted areas are above the 95% significance level. The 
pattern correlation coefficients between predictions and observations are 
shown in the top right. Figure S3. Standard deviation map of SON SST 
over the Indian Ocean in (a) observations, predictions using (b) CPSv2 and 
(c) CPSv3. Panel (d, e) represent the time series of the DMI western pole 
at each month based on the OISSTv2 observations (bars; d, e) and model 
ensemble mean predictions using (d) CPSv2 and (e) CPSv3 at 2- (purple 
line), 4- (black line) and 6-month (light-blue line) lead time from 2002 to 
2022. Figure S4. RMSE of the DMI, western pole, and eastern pole of DMI 
predictions using CPSv2 and CPSv3 at different lead months. (a) repre-
sents the ensemble mean results, (b, c, d) represent the ensemble mean 
and the corresponding sub-sample results for the DMI (b), western pole 
(c), and eastern pole (d) of DMI. The solid lines show the ensemble mean 
and the dotted lines show the results of each experiment. Figure S5. 
Correlation coefficient of DMI between observations and real-time (solid 
line) predictions, as well as under ENSO conditions (dotted line, calculated 
using linear regression, only signals related to Nino3.4 are retained in the 
time series of each lead month, and then the prediction skill of the IOD 
is calculated for different lead months.) using CPSv2 (red line) and CPSv3 
(blue line). Figure S6. Regression of concurrent SON SST over the Indian 
Ocean against the Nino3.4 index in (a) observations and simulations (b) 
using BCC-CSM1.1(m) and (c) BCC-CSM2-HR. The black dotted areas are 
above the 95% significance level.
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