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Abstract 

The reasons for large discrepancies between observations and simulations, as well as for uncertainties in projec-
tions of the equatorial Pacific zonal sea surface temperature (SST) gradient, are controversial. We used CMIP6 models 
and large ensemble simulations to show that model bias and internal variabilities affected, i.e., strengthened, the SST 
gradient between 1981 and 2010. The underestimation of strengthened trends in the southeast trade wind belt, 
the insufficient cooling effect of eastern Pacific upwelling, and the excessive westward extension of the climatological 
cold tongue in models jointly caused a weaker SST gradient than the recent observations. The phase transformation 
of the Interdecadal Pacific Oscillation (IPO) could explain ~ 51% of the observed SST gradient strengthening. After 
adjusting the random IPO phase to the observed IPO change, the adjusted SST gradient trends were closer to obser-
vations. We further constrained the projection of SST gradient change by using climate models’ ability to reproduce 
the historical SST gradient intensification or the phase of the IPO. These models suggest a weakened SST gradient 
in the middle of the twenty-first century.

Keywords Equatorial Pacific zonal sea surface temperature gradient, CMIP6, Large ensemble simulations, Model bias, 
Internal variabilities, Projection

Introduction
The equatorial Pacific zonal sea surface temperature gra-
dient (SST gradient) impacts the global mean tempera-
ture and is a pacemaker of global warming (Kosaka and 
Xie 2013). Observational records show a recent strength-
ening of the SST gradient, coupled with an intensification 
of the atmospheric Walker circulation and a strengthen-
ing of the Pacific trade winds (Cane et  al. 2009; Heede 
and Fedorov 2023; McGregor et  al. 2014), significantly 
influencing the El Niño-Southern Oscillation (Collins 
et al. 2010) and global ocean heat uptake (England et al. 
2014; Kosaka and Xie 2013). However, climate models 
tend to simulate a weakening of the SST gradient dur-
ing the twentieth century (Coats and Karnauskas 2017; 
Lee et al. 2022). It is exceedingly rare that the latest gen-
eration of models can produce the observations-based 
SST trends from 1958 to 2018 (Seager et al. 2022). This 

*Correspondence:
Hailong Liu
lhl@lasg.iap.ac.cn
1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences 
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, 
Chinese Academy of Sciences, Beijing 100029, China
2 Beijing Municipal Climate Center, Beijing Meteorological Bureau, 
Beijing 100089, China
3 International Center for Climate and Environment Sciences (ICCES), 
Institute of Atmospheric Physics, Chinese Academy of Sciences, 
Beijing 100029, China
4 College of Earth and Planetary Sciences, University of Chinese Academy 
of Sciences, Beijing 100049, China
5 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, 
Chinese Academy of Sciences, Qingdao 266071, China
6 Center for Ocean Mega-Science, Chinese Academy of Sciences, 
Qingdao 266071, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40562-023-00309-3&domain=pdf
http://orcid.org/0000-0002-8780-0398


Page 2 of 12Bai et al. Geoscience Letters           (2023) 10:56 

common failure may reduce the credibility of projected 
SST gradient changes.

The discrepancy between models and observations 
has been claimed to be related to model biases, such 
as the biases in the equatorial cold tongue (Li et  al. 
2016a; Seager et al. 2019; Zhou and Xie 2015), cloud-
radiation feedback (Ying and Huang 2016), and effects 
of inter-basin warming contrast across the three tropi-
cal oceans. The negative local SST-cloud feedback 
and the surface net heat flux in the equatorial Pacific 
can jointly explain ~ 50% of the difference between 
observed and simulated SST gradient trends (Luo et al. 
2017). It was found that SST gradient trends would be 
overestimated by ∼0.52 ℃ for every 1  °C global SST 
warming due to 13 common model biases (Tang et al. 
2021).

In addition to the possible influence of model biases, 
coupled models’ uncertainty of the simulated recent SST 
gradient trend can be attributed to internal variabili-
ties, such as the Interdecadal Pacific Oscillation (IPO) 
(Coats and Karnauskas 2017; Olonscheck et  al. 2020; 
Watanabe et al. 2020). The SST gradient trends in most 
models and observational datasets are insignificant rela-
tive to internal variability (Coats and Karnauskas 2017). 
In addition to internal variability, the enhanced tropical 
Indian Ocean warming (Luo et  al. 2012) and the Atlan-
tic Ocean warming (Kucharski et al. 2011; Li et al. 2016b; 
McGregor et al. 2014) in recent decades could strengthen 
the Pacific Walker Circulation and the SST gradient by 
inducing inter-basin interactions.

In future projections, the SST gradient will be weak-
ened with a certain degree of uncertainty (Coats and 
Karnauskas 2017; Collins et al. 2010; IPCC 2021; Kim 
et  al. 2014; Liu et  al. 2017). Climate models project a 
strengthening of the SST gradient after removing the 
impacts of 13 common biases (Tang et  al. 2021). The 
uncertainty of the projected SST gradient can be con-
siderably reduced when the initial IPO phase (Bordbar 
et  al. 2019) or the initial oceanic state of the Pacific 
Ocean (Watanabe et al. 2020) is known and well-repre-
sented in the model.

There are several hypotheses of the dynamic mech-
anism for both negative and positive SST gradient 
changes. The strengthening of the SST gradient is sup-
ported by ocean thermostat mechanism (Cane et  al. 
2009; Clement et  al. 1996), "iris effect" of cirrus con-
traction (Lee et al. 2022; Lindzen et al. 2001; Su et al. 
2017), decreasing in ENSO skewness related to the 
increased upper ocean stability (Kohyama 2017), and 
the tropical ocean interaction (Kucharski et  al. 2011; 
Luo et  al. 2012; McGregor et  al. 2014). The physical 
mechanisms for the weakening of the SST gradient 

include the energy balance theory of the water cycle 
(Held and Soden 2006; Vecchi and Soden 2007), the 
nonlinear correlation between evaporation and tem-
perature (Knutson and Manabe 1995; Ying et al. 2016), 
and cloud radiation feedback mechanism (Meehl and 
Washington 1996; Ramanathan and Collins 1991; Song 
and Zhang 2014).

In summary, both model biases and the climate system’s 
internal variability affect the SST gradient’s simulation 
and projection. However, their respective contributions 
are still unclear. Therefore, based on the Coupled Model 
Intercomparison Project phase 6 (CMIP6) models and 
large ensemble simulations from the US CLIVAR Work-
ing Group on Large Ensembles, we investigated the pos-
sible impacts of model biases on the recent SST gradient 
trend simulation and underlying physical mechanisms. 
We also explored to what extent the observed SST gradi-
ent strengthening could be attributed to internal variabil-
ity. Our results showed that both the model biases and 
phase changes of the IPO contributed to past and future 
SST gradient changes.

Data and methods
Observational data sets
SST observations were taken from the Extended 
Reconstructed SST v5 (ERSST) (Smith et  al. 2008), 
Hadley Centre Sea Ice and SST (HadISST) (Rayner 
et al. 2003) v1.1 data set, and Centennial In Situ Obser-
vation Based Estimates SST v2 (COBESST) (Hirahara 
et al. 2014). We used the average of ERSST, HadISST, 
and COBESST SSTs as the optimal observational SST 
estimate (referred to as “SST observation”) to reduce 
uncertainties. Monthly gridded ocean temperature 
data were taken from COBE-SST2, having 24 verti-
cal levels above 1500  m (Ishii and Kimoto 2009). SLP 
observations were taken from NCEP-NCAR Reanalysis 
1 data set (Kalnay et  al. 1996). We also used monthly 
wind data compiled with the ERA-Interim reanalysis 
data set (Berrisford et al. 2011).

CMIP6 models and large ensemble simulations
We used r1i1p1f1 outputs from 32 CMIP6 (Eyring 
et al. 2016) models (Additional file 1: Tables S1) driven 
by historical forcings (1850–2014) and extended by 
the shared socio-economic pathway SSP5-8.5 sce-
narios (2015–2100). To estimate the relative contri-
butions of external forcing and internal variability to 
recent SST gradient trends, we used the outputs from 
6 large ensembles with a total of 404 members  (Addi-
tional file  1: Tables S2), including ACCESS-ESM1-5 
with 40 members (Mackallah et  al. 2022), CanESM5 
with 50 members (Swart et  al. 2019), EC-Earth3 with 
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55 members (Wyser et al. 2021), FGOALS-g3 with 110 
members (Lin et  al. 2022), MIROC6 with 50 mem-
bers (Tatebe et  al. 2019), MPI-ESM with 99 members 
(Maher et al. 2019).

The observational and historical simulations were 
selected from 1981 to 2010. The overall period (1981–
2010) of the MPI-EMS large ensemble included histori-
cal runs for 1981–2005 and the RCP8.5 simulations for 
2006–2010. All data were first compiled on a regular 
1° × 1° grid through bilinear interpolation, and then the 
interdecadal signal was extracted using a 9-year run-
ning means.

Separate the internal variability and the external forcing
The same radiative forcing drives large ensemble simu-
lations from a single model, the ensemble mean can be 
considered the response to the external forcing, and the 
ensemble spread of all simulations can be regarded as the 
effect of internal variability. Therefore, for the variable X of 
the member i in the large ensemble simulations, it can be 
expressed as:

where Xforced is the ensemble mean of all simulations, 
representing the response to external forcing. Xinternal(i) 
is the difference between the original X(i) and Xforced , 
which represents the residual part of X(i) related to inter-
nal variability after subtracting the influence of external 
forcing.

Metrics
The equatorial Pacific zonal sea surface temperature gra-
dient (SST gradient) is defined as the difference in SST 
anomalies between the equatorial eastern Pacific Ocean 
(5°S-5°N, 180°-80°W) and the equatorial western Pacific 
Ocean (5°S-5°N, 110°E -180°) (Watanabe et al. 2020). The 
mean seasonal cycle of SST gradient calculated for 1981–
2010 is removed to calculate monthly SST gradient anom-
alies. We use the Tripole Index (TPI) for the Interdecadal 
Pacific Oscillation proposed by Henley et  al. (2015). The 
TPI index is defined as the difference between the SST 
anomaly over the central tropical Pacific (10°S–10°N, 
170°E–90°W) and the average of the SST anomalies over 
the Northwest (25°N–45°N, 140°E–145°W) and Southwest 
Pacific (50°S–15°S, 150°E–160°W) (Henley et  al. 2015). 
The time series of the IPO index for each ensemble mem-
ber is calculated by SST internal(i) (see Eq. (1)). The Atlan-
tic Multi-decadal Oscillation (AMO) index is defined as 
the area-average SST anomalies over the North Atlantic 
Ocean (0°-65°N, 80°W-0°) after subtracting the global mean 

(1)X(i) = Xforced + Xinternal(i), i=1,2, . . . ,n-1, n,

(80°S-80°N, 180°E-180°W) SST anomalies (Huang et  al. 
2020).

The contribution of IPO to SST gradient trend
On the decadal time scale, the contribution of IPO to the 
SST gradient for member i over the τ period (τ = 1981–
2010) can be expressed as (Salzmann and Cherian 2015):

where r�SST ,IPO(i) is the regression coefficient of the SST 
gradient index regressed onto the IPO index for mem-
ber i over the τ period. ∂IPO(i)

∂t  and ∂�SSTIPO(i)
∂t  are the IPO 

trend and the IPO-related SST gradient trend for mem-
ber i over the τ period, respectively.

The IPO trends simulated by large ensembles are 
weaker than those in observations (Additional file  1: 
Fig. S1), linking to a weaker SST gradient trend. To 
quantitatively estimate the impact of the IPO phase 
transition on the SST gradient changes, the IPO phase 
transition for member i was adjusted to the observa-
tion. After the phase adjustment, each member can be 
regarded as affected by the same observational IPO 
phase transition. The adjusted SST gradient trend for 
the number i ( ∂�SSTadj(i)

∂t  ) is the sum of the externally 
forced SST gradient trend ( ∂�SST forced

∂t  ) plus the inter-
nally adjusted SST gradient trend ( ∂�SST internal_adj(i)

∂t )

The internal adjusted SST gradient trend includes 
the internal component of the SST gradient trend 
( ∂�SST internal(i)

∂t  ) and the adjustment term ( αinternal(i) ), 
which considers the observational IPO phase transition:

(2)

∂�SSTIPO(i)

∂t
= r�SST ,IPO(i) ·

∂IPO(i)

∂t
, i = 1, 2, . . . n− 1, n,

(3)r�SST ,IPO(i) =
∂�SST (i)

∂IPO(i)
,

(4)

∂�SSTadj(i)

∂t
=

∂�SST forced

∂t

+
∂�SST internal_adj(i)

∂t
,

i = 1, 2, . . . n− 1, n.

(5)

∂�SST internal_adj(i)

∂t
=

∂�SST internal(i)

∂t

+ αinternal(i),

i = 1, 2, . . . n− 1, n,
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where ∂IPOOBS
∂t  is the observed IPO trend for member 

i over the τ period. Combining Eq.  (4), (5), and (6), the 
adjusted SST gradient trend is expressed as:

The ensemble mean of ∂�SSTadj(i)

∂t  includes the effects 
of external forcing and observational IPO phase transi-
tion (Eq.  7). The relative contribution of the observed 
IPO phase transition is defined as the percentage of the 

(6)

αinternal(i) = −r�SST ,IPO(i)

×

(

∂IPO(i)

∂t
−

∂IPOOBS

∂t

)

,

i = 1, 2, . . . n− 1, n,

(7)

∂�SSTadj(i)

∂t
=

∂�SST forced

∂t

+
∂�SST internal(i)

∂t
− r�SST ,IPO(i)

×

(

∂IPO(i)

∂t
−

∂IPOOBS

∂t

)

,

i = 1, 2, . . . n− 1, n.

IPO-related SST gradient trend to the observed SST 
gradient trend.

Results
SST gradient trends in observations and models
Observations consistently showed a strengthening of 
SST gradient trends (-1.59 ± 0.03  ℃/100  yr) between 
1981 and 2010 (Fig.  1a). However, models commonly 
underestimated the observed SST gradient trends. The 
SST gradient trend in the CMIP6 ensemble mean was 
only −  0.02 ± 0.59  ℃/100  yr, and half of the CMIP6 
models showed weakened SST gradient trends since 
1981. We selected the six CMIP6 models with the larg-
est SST gradient trend strengthening (S models) and 
weakening (W models). The mean SST gradient trends 
simulated by the S and W models were −  0.97 ± 0.19 
and 0.79 ± 0.19  ℃/100  yr, respectively. The S models 
still underestimated the observed trend, even though 
CMIP6 models had a large inter-model spread. We also 
used six large ensembles with 404 members to check 
whether the internal variability influences SST gradi-
ent trends (Fig.  1b–h). The slight differences in the 

Fig. 1 Time series of the 9-year running mean of the equatorial Pacific zonal SST gradient (SST gradient, units: ℃) during 1981–2010 in CMIP6 
(a), six large ensembles (b) composed by ACCESS-ESM1-5 (c), CanESM5 (d), EC-Earth3 (e), FGOALS-g3 (f), MIROC6 (g), and MPI-ESM (h). Black 
lines denote the COBESST, ERSST, and HadISST datasets. The equatorial Pacific zonal sea surface temperature gradient is defined as the difference 
in SST anomalies between the equatorial eastern Pacific Ocean (5°S-5°N, 180°-80°W) and the equatorial Western Pacific Ocean (5°S-5°N, 110°E 
-180°). Red lines represent models simulating strengthening trends consistent with the observations (S models), and blue lines represent models 
showing weakening trends opposite to the observations (W models). Grey shading represents the 5–95% range of internal variability. Numbers 
in parentheses indicate the sample size
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ensemble means of each large ensemble should imply 
that external forcing may not be the dominant driver 
of SST gradient trends in models, whereas the large 
spreads of ensemble simulations indicate that internal 
variabilities dominate the trends in models.

In observations, the positive SST trend in the west-
ern tropical Pacific was significantly greater than in the 
eastern tropical Pacific. This enhanced SST gradient 
is called a "La Niña-like" pattern (Fig.  2a). In contrast 
to observations, the CMIP6 ensemble mean showed 
a spatially uniform warming pattern (Fig.  2b), which 
disagreed with the observed warming pattern of the 
zonal SST in the tropical Pacific. S models tended to 
show a "La Niña-like" pattern, consistent with obser-
vations and opposite to the W models, in which the 
tropical Pacific zonal SST was an "El Niño-like" pattern 
(Fig. 2c, d). It is noted that even S models still miss the 
subtropical North Pacific cooling which provides for a 
wedge like pattern in the observations. The composite 
SST trend differences between S and W models were 
similar to the IPO pattern (Fig.  2e), suggesting that 
the IPO may be a prominent internal variability regu-
lating SST gradient variabilities. A similar result was 

obtained from MPI-ESM (Additional file  1: Fig. S2e) 
and FGOALS-g3 (Additional file 1: Fig. S3e) supporting 
the premise that SST gradient change is modulated by 
internal variability.

Possible causes of SST gradient trend biases
The strength of the SST gradient is closely related to the 
Pacific Walker circulation through the Bjerknes feedback 
(Bjerknes 1969). Therefore, we analyzed the sea level 
pressure (SLP) and low-level wind pattern from 1981 to 
2010 to assess the dominant biases responsible for the 
SST gradient change. The "La Niña-like" SST pattern in 
observations was accompanied by an enhanced Walker 
circulation and easterly winds at 850 hPa near the equa-
torial Pacific (Fig.  2f ). The enhanced warming over the 
Indian Ocean and the Western Pacific Ocean induced 
a Gill-type response (Gill 1980; Matsuno 1966), which 
drove the strengthening and westward shift of wind 
stress over the Pacific, indicating a stronger and west-
ward shifted Walker circulation (Heede et al. 2021).

Compared with the spatial distribution of the observed 
SLP and low-level wind trends, the CMIP6 ensemble mean 
showed a weaker change in the Walker circulation and 

Fig. 2 Spatial distributions of linear trends in annual mean sea surface temperatures (a–e, units: ℃/100 yr), sea level pressure (f–j, shading, units: 
Pa/100 yr), and wind at 850 hPa (f–j, vectors, units: m/(s·100 yr)) over the Indo-Pacific Ocean during 1981–2010 in observations (a, f), CMIP6 
multi-model ensemble means (b, g), CMIP6 S model mean (c, h), CMIP6 W model mean (d, i), and S-W composite differences (e, j). Dotting denotes 
the trend is statistically significant at the 95% level
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easterly winds off the equatorial Pacific (Fig.  2g). There 
was a strengthening trend in trade winds in the central 
equatorial and the southeast Pacific in the S models, with 
increased latent heat loss, coinciding with the cooling in the 
above region (Heede et al. 2021). The changes in the S mod-
els were more significant than those in the CMIP6 ensem-
ble mean but still weaker than observed changes, indicating 
a bias in the simulated wind-evaporation-SST feedback 
(Fig. 2h and Additional file 1: Fig. S4b). The wind-evapora-
tion-SST feedback bias was indistinctive in the W models, 
in which the strengthened trade wind trend was weaker 
and located around the dateline (Fig.  2i and Additional 
file 1: Fig. S4c), contributing positively to the El Niño-like 

SST warming (Luo et al. 2017). The difference between the 
S and W models may be partly due to internal variability, 
similar to the results of the MPI-ESM (Additional file 1: Fig. 
S2) and FGOALS-g3 large ensemble members (Additional 
file 1: Fig. S3).

Bias in the simulated Bjerknes feedback would also 
affect the SST gradient trend. Observations showed a 
subsurface cooling trend from the dateline to the east-
ern Pacific, indicating the upwelling of the thermocline 
to cool the SST in the central and east Pacific oceans 
(Fig. 3a). The enhanced equatorial trade wind reinforced 
the eastern Pacific Ocean SST cooling that drove the 
positive Bjerknes feedback. The tropical and subtropical 

Fig. 3 Linear trends of annual mean ocean potential temperature (units: ℃/100 yr) along the equator (5°S–5°N) during 1981–2010, in observations 
(a) and CMIP6 multi-model ensemble means (b), CMIP6 S model means (c), CMIP6 W model means (d), and S–W composite differences (e). Dots 
indicate the trend is statistically significant at the 95% level using Student’s t-test; the climatological 20 isotherms are shown for three periods: 
1981–1990 (green line),1991–2000 (yellow line), and 2001–2010 (purple lines). f–i, same as b–e, but for the MPI-ESM. j–m, same as b–e, but for the 
FGOALS-g3
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cells could control the temperature of subsurface water 
upwelled in the eastern equatorial Pacific, which was 
strengthened and accompanied by accelerated equatorial 
undercurrents in reanalysis datasets such as the Ocean 
Reanalysis System 4 (Jayasankar et al. 2020). The subsur-
face cooling in the CMIP6 ensemble mean was weaker 
and located deeper (Fig. 3b). This discrepancy suggested 
that the upwelling did not effectively cool the eastern 
Pacific despite the rising of the thermocline. CMIP6 
models underestimated the low-frequency variability 
of the subtropical cells’ interior transport convergence 
and the subtropical wind stress (Graffino et  al. 2021). 
The location of the subsurface cooling in the S models 
was consistent with observations, but the intensity was 
weaker (Fig.  3c). In the W models, the location of sub-
surface cooling was much deeper (Fig. 3d). The contrast 
in the location and intensity of subsurface cooling was 
evident in MPI-ESM (Fig. 3f–i) and FGOALS-g3 (Fig. 3j–
m), which suggested that the difference between the S 
and W models was primarily due to internal variability.

Differences in the climatological cold tongue played a 
vital role in the SST gradient trend (Additional file 1: Fig. 
S5). The climatological cold tongue extended excessively 
westward, especially in the W models. This excessive cold 
tongue bias could induce a positive SST warming bias in 
the central Pacific by an overly negative shortwave–SST 
feedback (Ying et  al. 2019). The excessive cold tongue 
bias suppressed deep atmospheric convection, increased 
the downward solar radiation flux, and reduced surface 
evaporation and ocean heat loss, which increased the 
downward net radiation flux and further led to a warm 
SST in the central Pacific. In addition, the excessive cold 
tongue bias might influence the SST gradient trend via 
other physical processes, such as an excessively weak net 
surface heat flux (Zheng et al. 2012), an excessively shal-
low thermocline depth (Li and Xie 2012), and an insuf-
ficient precipitation bias in the equatorial western Pacific 
(Du et  al. 2015). Bjerknes’ feedback could maintain or 
amplify the above processes (Li and Xie 2014).

Role of IPO in the SST gradient change
Internal variabilities, such as the IPO (Watanabe et  al. 
2020), modulate the recent strengthening of the SST 
gradient. We calculated the correlation between the 
IPO index and the SST gradient index to verify the role 
of the IPO. Significant linear correlations were identi-
fied in all 32 CMIP6 models and the 404 members of the 
six large ensembles. The mean correlation coefficients of 
the CMIP6 models and the six large ensembles were 0.39 
(P < 0.01) and 0.4 (P < 0.01), respectively, indicating that 
SST gradient change was related to IPO phase transitions 
(Additional file  1: Fig. S6). The negative IPO phase was 
linked to a strengthened SST gradient and vice versa.

The AMO-related Atlantic SST anomalies and atmos-
pheric teleconnection can also affect SST gradients on 
the multi-decadal time scale (Gan et al. 2023; Wang et al. 
2013). However, the simulated equator Pacific zonal SST 
gradient trends were not significantly correlated with the 
AMO trends, indicating no robust, coherent relationships 
between the SST gradient trend and the AMO trend 
in a 30-year window (Additional file  1: Fig. S7). Hence, 
although the IPO and AMO could both affect SST gradi-
ent change, the IPO is likely the main factor regulating 
the recent 30-year period of SST gradient strengthening.

The correlation coefficients between the SST gradient 
and the IPO index varied among the six large ensem-
bles, ranging from −  0.1 to 0.64. Since the simulated 
IPO phase transitions in the large ensemble members 
were random, ranging from −  3.7 to 2.8 ℃/100  yr, we 
adjusted the IPO trends in each member according to 
the observed IPO trend during 1981–2010 to quantita-
tively estimate the contribution of the IPO phase evo-
lutions to the recent SST gradient strengthening. We 
first eliminated the random IPO-related SST gradient 
trends through linear regression and then superimposed 
the observed IPO phase transition. After adjustment, 
the ensemble mean included the response to both the 
observed IPO phase transition and external forcing (Wu 
et al. 2021). The SST gradient trends attributed to exter-
nal forcing ranged from -0.31 to 0.67 ℃/100 yr in the six 
large ensembles, with an average of 0.26 ℃/100 yr. After 
adjustment, the SST gradient showed a slightly increas-
ing trend of − 0.56 ℃/100 yr (− 1.04–− 0.02 ℃/100 yr), 
closer to the observed mean of −  1.60  ℃/100  yr. The 
IPO-related SST gradient trend was −  0.81  ℃/100  yr 
(−  1.0–−  0.67  ℃/100  yr), accounting for 51% (range: 
42–62%) of the observed trend (Fig.  4). The IPO phase 
transition was essential to reproduce the observed SST 
gradient trend successfully.

Future SST gradient projection
The SST gradient trends showed significant uncer-
tainties among the CMIP6 models and the six large 
ensembles under the RCP8.5 scenario. Model biases 
and the IPO phase transition could partly explain 
these uncertainties. We used two criteria to select the 
optimal models for future projection constraints. The 
first was to choose the S and W models according to 
the largest magnitude of SST gradient strengthening 
and weakening trends, respectively. The second was 
to select the S and the W models based on the high-
est and lowest correlations between the member-sim-
ulated and the observed IPO time series, respectively. 
We chose six members from CMIP6 and twenty mem-
bers (the top 5%) from the six large ensembles. The S 
models showed a positive-to-negative phase transition 
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of IPO during 1981–2010, and the W models a nega-
tive-to-positive transition. To assess the reliability of 
this method, we select S models from 1956 to 1985 
to explore whether these models could capture the 
observed SST gradient change during 1981–2010. The 
S models (Additional file  1: Fig. S8b, c) reproduced 
the IPO phase shift from 1951 to 2010 and performed 
better than the ensemble mean (Additional file 1: Fig. 
S8a). Furthermore, the SST gradient strengthening was 
well reproduced in the S models, which agreed with 
the SST gradient observed in 1956–1985 (Additional 
file 1: Fig. S8b).

In the S models, the SST gradient trends calculated 
based on the 30-year sliding window changed their 
signs from negative to positive by the mid-twenty-first 
century. In contrast, the sign change was opposite in 
the W models in the same period (Fig.  5a). A similar 
result was obtained from the large ensembles, indi-
cating that the near-term SST gradient trend was sig-
nificantly modulated by internal variability (Fig.  5b). 
A shift toward a positive phase of the IPO in the S 
models influenced the near-term SST gradient trend 
(Additional file 1: Fig. S9b, c). The negative-to-positive 

phase shift of the IPO, superimposed on the externally 
forced ’El Niño-like’ pattern response to projected  CO2 
emissions, likely weakened the SST gradient in the 
mid-twenty-first century in the S models but strength-
ened it in the W models (Watanabe et al. 2020).

We quantified the contribution of IPO-related 
internal variability to the SST gradient projection by 
adjusting the random IPO trends in all 404 members 
(Additional file 1: Fig. S9a) based on the averaged IPO 
change projected by the S models (see Eq.  (7)). The 
ensemble mean showed a change from a strengthened 
to weakened an SST gradient after using the IPO con-
straint method. The original and the adjusted SST gra-
dient trends based on the phase adjustment method 
were still different in the late twenty-first century, 
mainly due to various simulations of the IPO. Differ-
ences between the S and W models in the late twenty-
first century were also significant. The impact of the 
IPO on the SST gradient could last until the end of the 
twenty-first century on a 30-year timescale.

Fig. 4 SST gradient trends (units: ℃/100 yr) from 1981 to 2010 before and after the observational IPO phase transition adjustments. White, brick 
red, purple, and blue bars represent observed SST gradient trends, externally forced SST gradient trends, IPO-related SST gradient trends, and total 
SST gradient trends after adjustments obtained from ACCESS-ESM1-5 (a), CanESM5 (b), EC-Earth3 (c), FGOALS-g3 (d), MIROC6 (e), and MPI-ESM (f) 
separately. Error bars represent one standard deviation of model intervals. Numbers in parentheses indicate the percentage of the IPO-related SST 
gradient trend relative to the observed SST gradient trend
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Discussion
Observations indicate a strengthening of the tropical 
Pacific SST gradient since 1981. However, most state-
of-the-art coupled models cannot reproduce this recent 
strengthening trend. Understanding this discrepancy 
between models and observations is vital to under-
standing the present and projected climate in the tropi-
cal Pacific and the globe through teleconnections. We 
explored several model biases in the tropics that might 
influence the simulation of SST gradient change. We 
quantified the contributions of internal variability to the 
observed SST gradient strengthening to understand the 
causes of past changes and future projections using 32 
CMIP6 models and six large ensemble simulations.

The externally forced SST gradient change, repre-
sented by the ensemble mean of a single large ensemble, 
showed a slight change from 1981 to 2010. In contrast, 
the uncertainty induced by internal variability was sig-
nificant. For example, under the same external forcing, 
the ensemble mean of the MPI-ESM showed an aver-
age increasing trend of −  0.31 ℃/100  yr, ranging from 
− 2.00 to 1.61 ℃/100 yr. On the other hand, the ensemble 
mean of the FGOALS-g3 showed a decreasing trend of 
0.38 ℃/100 yr, ranging from − 0.50 to 1.17 ℃/100 yr. The 

inter-model spread in the MPI-ESM was about twice as 
large as in the FGOALS-g3. In addition, the magnitude 
of the ensemble mean trend varied among the six large 
ensembles, ranging from − 0.31 to 0.67 ℃/100 yr, indicat-
ing model uncertainty in response to external forcings, 
such as sulfate aerosols (Takahashi and Watanabe 2016) 
or Atlantic warming (McGregor et al. 2014).

Models less biased in easterly trends in the central-east-
ern Pacific, the subsurface cooling trends along the equator, 
and the excessive cold tongue exhibit more realistic changes 
in SST gradients (Additional file 1: Fig. S10). Underestima-
tion of the strengthened trade wind trend in the central 
equatorial and southeast Pacific, insufficient subsurface 
cooling in the eastern Pacific, and the excessive westward 
extension of the climatological cold tongue might have 
favored a weaker SST gradient trend in the models com-
pared to the observations. Large ensembles could identify 
the difference in trade wind trends and subsurface cooling 
effects between S and W models. However, they could not 
distinguish between S and W models’ extreme cold tongue 
biases. The difference between the S and W models might 
have been partly due to internal variability, but systematic 
errors could not be excluded.

Fig. 5 30-year sliding linear trends of SST gradients (units: ℃/100 yr) simulated by CMIP6 (a, c) and six large ensembles (b, d) from 1981 to 2100. The 
dots and dashed curves indicate SST gradient trends obtained from historical and SSP5-8.5 simulations by all models (black), S models (red), and W 
models (blue). Vertical error bars indicate the 66% error range, and the horizontal axis indicates the end year for the 30-year segment. The criterion 
of S/W models in the first column (a, b) is based on the strengthening/weakening SST gradient trends. The criterion of S/W models in the second 
column (c, d) is based on the highest/lowest correlation between the model IPO trend and the observed IPO trend
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With the positive-to-negative phase shift of the IPO, the 
SST gradient strengthened during 1981–2010, implying 
that the IPO might be the main factor for the observed SST 
gradient changes. IPO accounted for ~ 51% (42–62%) of the 
observed SST gradient strengthening. Based on the S mod-
els, our results showed a weakened SST gradient by the 
mid-twenty-first century. The magnitude of the SST gradi-
ent trend varied among the six large ensembles, but they all 
showed a weakened SST gradient in the coming decades 
(Additional file 1: Fig. S11). The weakened SST gradient in 
the projection indicated the slowdown of the Walker circu-
lation, which was consistent with previous studies, in which 
the Walker circulation was projected to be weakened after 
adjustments (Huang and Ying 2015; Wu et  al. 2021). Our 
findings suggest that internal variability can influence the 
SST gradient on decadal timescales. However, the relative 
importance of internal variability will decline as atmos-
pheric greenhouse gas concentrations continue to increase 
into the future (Bordbar et al. 2019).
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