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Abstract 

Isometric feature mapping (ISOMAP) is a nonlinear dimensionality reduction method and closely reflects the actual 
nonlinear distance by the view of tracing along the local linearity in the original nonlinear structure. Thus, the first 
leading 20 principal components (PCs) of low‑dimensional space can reveal the characteristics of real structures 
and be utilized for clustering. In this study, a k‑means algorithm was used to diagnose SST clustering based on ISO‑
MAP. Warm and cold El Niño–Southern Oscillation events were subdivided into Central Pacific and Eastern Pacific 
types, and a two‑dimensional cluster map was used to depict the relationship. The leading low‑dimensional PCs 
of ISOMAP were considered as the orthogonal basis, and their trajectories demonstrated meaningful patterns 
that could be learned by machine learning algorithms. Predictions of SST in the Pacific Ocean were performed using 
support vector regression (SVR) and feedforward neural network (NN) models based on the low‑dimensional PCs 
of ISOMAP. The forecast skills, the root‑mean‑square error (RMSE) and anomaly correlation coefficient (ACC), were 
comparable to those of current numerical models.

Keywords Anomaly correlation coefficient, ISOMAP, k‑means, Neural network, Principal component analysis, Principal 
component, Root mean square error, Sea surface temperature, Support vector regression

Introduction
El Niño–Southern Oscillation (ENSO) events are typi-
cally divided into two classes: El Niño (warm) and La 
Niña (cold) events. Regardless of the event class, each 
event has at least two types of sea surface temperature 
(SST) anomalies: Central Pacific (CP) anomalies and 
Eastern Pacific (EP) anomalies (Ashok et  al. 2007; Kao 
and Yu 2009; Kug et al. 2009). This subdivision depends 
on the geographical locations and evolution of strong 
anomalies. Typical differences or even slight differences 
in SST patterns result in various atmospheric circula-
tions and cause chain reactions (James 1994; Trenberth 
and Hurrell 1994; Trenberth et al. 1998; Alexander et al. 

2002), such as subtropical highs with different locations 
and strengths and tropical cyclones with different loca-
tions and trajectories (Tu′uholoaki et al. 2023). Cluster-
ing of ENSO SST events enables differentiating certain 
time events and determining any differences between 
such events. Therefore, SST clustering should be per-
formed in accordance with not only geographical posi-
tions but also quantifiable and objective methods.

EP and CP types of ENSO dynamics or their frequen-
cies could be attributed to global warming (Capotondi et al. 
2015). Vecchi and Wittenberg (2010) present numerical cli-
mate model findings indicating that global warming leads to 
weakened Walker’s circulations and a decrease in the zonal 
slope of the thermocline around the equator, potentially 
resulting in a higher occurrence of CP events (McPhaden 
2012). However, Yeh et al. (2012) argue that the thermocline 
inclination or the number of EP or CP events may be driven 
by natural variability. The challenge lies in differentiating the 
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transition processes between CP and EP events, as mixed 
characteristics are often observed (Hernández et al. 2020), 
where certain EP events exhibit similarities to CP events for 
a period before diverging, and vice versa. In essence, no two 
ENSO events, whether CP or EP, are alike (McPhaden et al. 
2006). One potential solution to this issue is the application 
of clustering techniques, which can help assess similarity 
and identify transitional processes.

The success of clustering depends on the distribution 
of data points. For example, data points that are farther 
apart are less likely to look similar. Isometric feature map-
ping (ISOMAP) is a separated data point and nonlinear 
dimensionality reduction method that accurately reflects 
the actual distance through tracing along the local linearity 
in the original nonlinear structure (Tenebaum et al. 2000; 
Balasubramanian et al. 2002). During the last step of ISO-
MAP, temporal principal components (PCs) and spatial 
empirical orthogonal functions (EOFs) are generated as 
the principal component analysis (PCA). Close ISOMAP 
PC data points have similar patterns, and leading ISOMAP 
PCs provide proper distributed low-dimensional data 
points for clustering (Bayá et al. 2008; Tasoulis et al. 2020).

Multiple regression analysis relies on leading PCs to 
reduce the number of predictor variables in order to 
achieve improved predictions and more efficient compu-
tations (Stock and Watson 2002; Sousa et al. 2007). Sousa 
et al. (2007) used a feedforward artificial neural network 
(NN) with PCs to replace a multiple nonlinear regression 
in order to achieve improved predictions. Brunton et al. 
(2020) supported this idea and proposed the calculation 
of computational fluid dynamics (CFD) problems in low-
dimensional data points.

Traditional CFD numerical models are based on differ-
ential equations with sufficiently small spatial and tem-
poral grids. Fine grid meshes are typically associated with 
additional data points, a sufficiently small time-integration 
step to ensure computational stability, and a high com-
putational cost. Data-driven methods, that is, methods in 
which data are driven by statistics and not by physical laws 
(e.g., PCA, regression, and NNs), are used to address the 
limitations of this time-integration step. However, these 
methods cannot be solely used to solve CFD problems. 
Instead, the future trend of solving CFD problems is to 
combine both numerical and statistical methods. The term 
“data-driven” should have a generalized meaning pertain-
ing to the transplantation of data variations. Brunton and 
Kutz (2022) used several machine learning algorithms, 
such as feedforward NNs, autoencoders, and deep learn-
ing, to solve CFD problems. However, when data-driven 
methods are used in the original high-dimensional data 
space, computational cost represents a substantial bur-
den. These high-dimensional space data points should be 
counted in terms of low-dimensional data (Brunton et al. 

2020; Brunton and Kutz 2022). In other words, if statisti-
cal data-driven models do not extract meaningful reduced 
dimensional data points or reduced features, they will not 
be able to offer improved forecasts (Wilks 2019).

Machine learning or artificial intelligence (AI) 
approaches, such as data-driven models or NN have 
become increasingly popular in the field of numerical 
weather prediction (NWP) models. These approaches 
have shown in enhancing various aspects of NWP models 
including the utilization of observation data, data assimila-
tion, CFD numerical schemes, and post-processing (Bon-
avita et al. 2021; Dueben et al. 2021). The European Centre 
for Medium-Range Weather Forecasts (EMMWF) has put 
forth a 10-year development roadmap that emphasizes 
the integration of machine learning and NWP models. 
The developments include using data-driven models or 
AI models to help physical parameterization calculations 
(e.g. gravity wave drag, cloud, radiation, etc.), the tangent/
adjoint models for data assimilation or ensemble predic-
tion, and downscaling post-processing. Data-driven mod-
els offer the ability to learn and simulate the performance 
of past numerical models without being constrained by 
complex physical theorems or CFD equations. These 
approaches reduce the development and maintenance 
costs associated with creating tangent linear/adjoint mod-
els. Researchers no longer need to derive equations or 
model schemes that precisely correspond to the current 
nonlinear models. Instead, the calculations are performed 
through the composition of NN functions, eliminating the 
need for linearized and transposed operators of the origi-
nal complex nonlinear models (Hatfield et al. 2021).

In this study, we clustered and predicted Pacific SST by 
using leading ISOMAP PCs. In terms of clustering, ISO-
MAP provided well-distributed SST leading PCs. In terms 
of prediction, the leading SST ISOMAP PC trajectories 
showed similarities with the Lorenz 63 model variable tra-
jectories. Brunton and Kutz (2022) used a feedforward NN 
to study Lorenz 63 model variable trajectories. They suc-
cessfully simulated similar trajectories to those of numeri-
cal models. In this study, we hypothesized that the use of 
appropriate learning algorithms in SST PC prediction and 
the combination of these PCs with time-fixed spatial SST 
EOFs would result in improved future predictions. We also 
hypothesized that spatial SST EOFs would not change in all 
our prediction experiments and that the learning algorithms 
would focus on temporal leading SST PC variations. The 
reason for fixed EOFs is that the leading EOFs are nearly 
identical especially when calculating to remove the seasonal 
cycle or monthly climatological mean (Elken et al. 2019).

The forecasting of SST using nonlinear regression and 
neural networks has been explored in previous studies by 
Tangang et al. (1997, 1998a, 1998b), Tang et al. (2000), and 
Wu et al. (2006). These studies utilized leading SST PCs as 
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predictors in their models, along with sea level pressure 
and prior SST anomalies. They achieved favorable results 
in terms of correlation skills, particularly in predicting SST 
anomalies in the Pacific equator area, by considering the 
leading 5 PCs. In this work, we introduced some advance-
ments to the existing approach. Instead of using traditional 
PCs, we adopted ISOMAP PCs, which offered improved 
distribution for resolving different ENSO events. Further-
more, we extended the hidden layers of the neural net-
work, experiments with different neuron numbers, and 
incorporated 20 ISOMAP PCs as multi-dimensional space 
trajectories in our model. These modifications aimed to 
improve the forecasting accuracy of our NN model.

The remainder of this paper is organized as follows. 
Section “Data and methods” explains the clustering and 
learning algorithms used for SST prediction. Section 
“Clustering” outlines the cluster distributions and actual 
SST patterns of cluster centroids. It also provides clues 
for determining the similarity between an SST figure and 
a specific type of cluster instead of using CP or EP as a 
qualitative description. Section “Prediction” explains the 
prediction of SST through support vector regression 
(SVR) and NNs. Finally, Section “Conclusions and discus-
sion” summarizes the main research findings and poten-
tial future improvements in data-driven SST prediction.

Data and methods
SST data were obtained from the fifth version of the 
Extended Reconstructed Sea Surface Temperature data set 
of the National Oceanic and Atmospheric Administration 
(NOAA), National Climatic Data Center, based on data 
from the Comprehensive Ocean–Atmosphere Data Set, 
collected from January 1980 to December 2022. El Niño, 
normal, and La Niña events were differentiated using the 
Niño 3.4 (170°W–120°W, 5°S–5°N) index of the NOAA 
Climate Prediction Center. El Niño events were defined in 
the Niño 3.4 region when the moving 3-month average SST 
anomaly exceeded 0.5 °C for at least 5 months. In contrast, 
La Niña or so called anti-El Niño events were defined when 
the average SST anomaly fell below 0.5  °C for 5  months. 
Pacific Ocean domain (120°E–60°W, 30°S–30°N) SST was 
used for clustering and learning algorithm prediction.

In accordance with Tseng (2022), SST ISOMAP was 
calculated using the distance matrix formed by the covar-
iance of SST anomalies with a nearest neighbor number 
of 44. The results indicated that the 20 leading SST ISO-
MAP PCs explained approximately 90% of the variance in 
the reconstructed geodesic distance data matrix (cf. Fig-
ure 7 in Tseng 2022). These 20 reduced low-dimensional 
components were sufficient for clustering and data-
driven model prediction. In addition, the computational 
cost of clustering and prediction was low, and compu-
tational complexity was lower than that in the original 

high-dimensional space. About ISOMAP and the tradi-
tional PCA, we highlighted in the Appendix.

ISOMAP measures the geodesic distance to differentiate 
the structure of data PC points, so the clustering based on 
the distance k-means was used in this article. The algorithm 
k-means for clustering that minimized the total reconstruc-
tion function by the proper cluster number. The reconstruc-
tion cost function (Theodoridis et al. 2010) was defined as

where θ = (θT1 , ..., θTm)T represents different cluster 
center vectors, � · � is the Euclidean distance, xi represents 
the leading PC vectors, and

where N is the number of leading PC vectors (data 
points) and M is the number of clusters that should be 
initially provided. After obtaining a satisfactory distribu-
tion of points for the SST ISOMAP PCs, the leading 20 
PCs were selected, and k-means clustering was applied 
using the Euclidean distance calculation.

Three of the leading SST ISOMAP PC temporal tra-
jectories demonstrated spiral circles with similar but 
not completely identical regular swinging behaviors and 
with different durations in each spiral cycle (Tseng 2022). 
These findings prompted a comparison with the 3D tra-
jectories of the Lorenz 63 model, which Brunton and Kutz 
(2022) employed neural network algorithms to learn and 
replicate the model’s numerical predictions. This com-
parison sparked the idea of using the leading three PCs, 
or even more components, as variables for prediction. The 
approach involved training learning algorithms to predict 
the PC points at the next time step, multiplying these points 
by the assumed time-invariant spatial EOFs, and generat-
ing predictions for SST. SVR and NNs (Algorithms 1 and 
2) were used as learning algorithms for trajectory predic-
tions. The 20 leading ISOMAP PCs were then selected for 
SVR and NN training, as in the clustering process. After the 
leading number exceeded 20, the latest 10 year correspond-
ing to the prediction period in El Niño or La Niña event 
average PCs were used to construct residual PCs (number 
more than 20). For example, if one wanted to predict SST 
from May 2019 to Apr. 2020, El Niño to normal year, then 
the residual PCs would use the time period from Mar. 2016 
to Feb. 2017, El Niño to normal year and to La Niña. These 
residual PCs were selected with spatial EOFs to obtain fine 
spatial prediction structures. They occupied few variances 
and did not influence the prediction results. Both SVR and 

(1)J(θ ,u) =

N
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uij
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NN predicted and the residual PCs were multiplied by the 
climatological spatial EOFs (from January 1980 to Decem-
ber 2018) and used to achieve SST predictions related to 
actual physical space. The idea of using EOF, leading PCs 
and residual PCs are shown in Fig. 1. When we calculated 
ISOMAP EOFs and PCs, the SST climatological mean was 
removed. We used learning algorithms to predict the lead-
ing 20 PCs and filled them with selected residual PCs, then 
times the climatological spatial EOFs to reconstruct SST 
anomalies (SSTA). Finally, we could obtain SST predictions 
by adding the climatological mean SST.

During SVR training, the SST ISOMAP PCs were 
regarded as independent components and trained individ-
ually. The SVR provided the prediction PC values. During 
the NN training process, the network resembled the feed-
forward network algorithm of Brunton and Kutz (2022) 
and exhibited three hidden layers with ten neurons. One-
step time lags in the input PC data were used as the output 
PC data in the NN. However, given the trade-off between 
computational efficiency and final prediction accuracy, no 
particular reason was given for selecting such numbers of 
hidden layers and neurons. The hidden layers 3–20 and 
the number of neurons 10–200 had been tested and there 
were no significant forecast skills improvement.

In NN prediction experiment, we arrange SST data 
into the training data set and the testing data set as the 

traditional machine learning did. At the same time, we 
made the training data set have its own training, vali-
dation, and testing data parts. This arrangement was 
for avoiding overfitting and execution efficiency. First, 
we kept Jan. 2019–Dec. 2021 period to test NN model. 
This was the testing data set and was never used in 
training process. Then, during the NN training process, 
the period of time from Jan. 1980 to Dec. 2018 was the 
training data set. There were approximately 60%, 20%, 
and 20% of the data were randomly chosen for train-
ing, validation, and testing, respectively, in training NN 
model. When the NN model was trained, 60% training 
data were used to generate the model, 20% training data 
were used for validation and for tuning the model, the 
rest 20% training data were used for testing without 
joining to tune the model. Adding the validation and 
testing data in training process could effectively gener-
ate the model and improve the overfitting. Consider-
ing only the efficiency and accuracy of generating NN 
models, there was still no particular reason to use the 
6:2:2 ratio. Consequently, the NN prediction results 
were not identical in different NN training processed, 
because the different data (including training, valida-
tion, and testing) were used to produce the NN model. 
To obtain more robust NN results, the NN model train-
ing and final prediction test were counted 20 times, and 

Fig. 1 The idea of using PCs to predict. The leading PCs are used for training algorithms and predicting to next time steps. With residual PCs 
times climatological EOFs, the predictive data on physical space SST anomalies (SSTA) can be reconstructed
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the prediction average was used as the final prediction 
value. In contrast to NN, the SVR separated the data 
into training and testing two parts. All training data 
were used for validation to generate the SVR model. The 
forecast skills for the final predictions of SVR and NNs 
were the root-mean-square error (RMSE) and anomaly 
correlation coefficient (ACC), whose equations and cal-
culation methods are outlined in detail in the appendix.

Algorithm 1: SST predic�on by SVR

1. Select the 20 leading ISOMAP PCs and train each time 

evolution PC individually by using SVR

2. Use those different SVRs to predict the testing time leading 20 

PCs

3. Combine the 20 predicted leading PCs and previous period
residual PCs to obtain a complete PC set.

4. Multiply the complete PC set by the climatological EOFs to 
recompose the SST prediction pattern.

Algorithm 2: SST predic�on by NN

1. Select the leading 20 ISOMAP PCs. Split the PC data into two 

periods for training and testing

2. Define the input PC time stream as x (1, 2, …, N − 1) and the 

output PC time stream as x (2, 3, …, N). Further divide the 

training data into training (60%), validation (20%), and testing 

(20%) to generate the NN model. This NN model can predict 

one-step time series prediction

3. Given the starting time x(T) in the testing data

For i = T, T+m–1

x(i+1) = NN model(x(i))

end

NN model predicts the x from T+1 to T+m

4. Repeat Step 2-3 20 times to get 20 different NN models. Take

the average forecast values from the 20 NN predictions.

5. Combine the 20 predicted leading PCs and previous period 
residual PCs to obtain a complete PC set.

6. Multiply the complete PC set by the climatological EOFs to 
recompose the SST prediction pattern.

Clustering
Figure  2 depicts the relationship between the cost 
function defined in Eq.  (1) and the number of clus-
ters. No elbow point minimizing the cost function and 

representing the optimal number of clusters was identi-
fied. Therefore, seven clusters were subjectively selected. 
As shown in Fig.  2, cluster numbers exceeding seven 
resulted in small values of the cost function. These clus-
ters (greater than seven or more) did not highlight clear 
differences in the SST distributions.

Figure 3 shows the centroids of seven clusters and the 
distribution of these clusters. The seven events close to 
these seven centroids were as follows: two El Niño events 
(October 1987 and December 2009), two La Niña events 
(February 2006 and October 2011), and three normal 
events (September 1984, June 1994, and June 2014). 
Analysis of these cluster centroids revealed clear El Niño/
La Niña CP and EP events. Even normal events were 
easily divided into three clusters depending on the SST 
anomalies (warm or cold) in the western coast of South 
America. Notably, the event observed in September 1984 
was a normal SST event, whereas the event observed in 
October 1984 was a La Niña event. The centroid close to 
September 1984 lay on the dividing line between normal 
and La Niña events. In addition, the SST anomaly pattern 
of cold water in the EP in September 1984 was similar to 
a La Niña phenomenon. The warm or cold SST anoma-
lies belonged to the CP or EP type could be revealed 
clearly in this cluster map. Strong ENSO and EP events 
tended to appear on both sides of the iso 1 axis (x axis), 
with the first PC approaching their minima or maxima. 
The first PC had the strong east–west variation pattern 
around the equator (cf. Figure  6 in Tseng 2022). It cor-
responded the strong EP events with larger the first PC 
values. In contrast, CP and weak events were observed 
in locations with smaller the first leading PC around the 
value 0 in the iso 1 axis direction. These results are con-
sistent with those of previous studies investigating warm 
and cold events (Kao and Yu 2009; Yu et al. 2011).
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Fig. 2 Clustering cost function and number of clusters 
in the k‑means algorithm. A relatively small value of the cost function 
indicates an appropriate number of clusters
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Tracing a single El Niño and La Niña case revealed the 
unique trajectory or preferable location of this specific 
case. The EP case did not abruptly skip to a CP pattern. 
Instead, it evolved over time, as in the case of 1997/98 
EP El Niño evolving between 2002/03 CP El Niño and 
1998/2000 EP La Niña. The clustering positions and tra-
jectories provided additional clues to analyze the El Niño 
or La Niña processes instead of analyzing the entire SST 
anomalies or variations of the Niño 3.4 index. When 
compositing the similar event cases, this clustering pro-
vides the guidance. For the future implementation, the 
numerical SST model results or their ensemble results 
can be projected on this clustering map. The model 
results can be used to examine the differences with these 
real historical events.

Although our clusters could exhibit CP/EP ENSO 
events through locations different from the cluster cen-
troids, or provide guidance for composite similar CP/EP 
cases. These ISOMAP PC clusters marked or anchored 
centroids or historical points to clearly visualize and 
examine current or future SST event trajectories. We 
thought the process of any one event was also important 
and the dynamics should be restored. When examining 
the recent La Niña event from August 2020 to Febru-
ary 2023 (Fig.  6a), we could find an evolutionary ISO-
MAP PC trajectory close to the CP La Niña centroid in 

February 2002 but ultimately quite different from the 
2002 case. We also noticed that this latest La Niña event 
evolved slowly and the beneath dynamics worth study-
ing in the future. We thought studying this latest case by 
composite analysis must be very careful.

Prediction
In this section, we compared the predictions of SVR 
and NN for SST. The testing period was concentrated 
between 2019 and 2022, preceded by the training period. 
This was to ensure that the training data set did not con-
tain the testing data used for prediction, and that the 
learning algorithms had not acquired known answers 
before making the prediction. To validate the SVR and 
NN forecasts, 36-month consecutive time periods were 
selected from Jan. 2019 to Dec. 2021, and their RMSE 
and ACC values were averaged. Because the SVR could 
not get good prediction results by using the training data 
far from the initial forecast month. For example, to pre-
dict the Jan. 2020 SST in SVR, the last of training data 
set time was Dec. 2019. But for NN, the training data set 
time limit was from Jan. 1980 to Dec. 2018. This arrange-
ment was because the NN prediction results much better 
than the SVR. Moreover, we found that the last training 
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Nor 2 201406

Niño 2 200912
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Fig. 3 Two‑dimensional projection of seven clusters (different color points) and their centroids (+ sign) with k‑means clustering based on the 20 
leading ISOMAP PCs. The figure depicts SST anomalies close to the centroids
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data time in NN prediction did not need to be 1 month 
before the start prediction month as in SVR.

For the SVR, orthogonal PCs capable of being sepa-
rated during training were used. Figure  4a depicts the 
three leading ISOMAP PCs versus time variations for 
both training and testing scenarios. The blue curves 
represent the training sets, the green curves represent 
the testing sets, and the red curves represent the SVR-
predicted values. The same training and forecasting 
procedures were used in the 20 leading PCs. The other 
17 ISOMAP PCs training and testing process were not 
shown in here. As shown in Fig. 3a, the training period 
spanned from January 1980 to December 2021. In this 
case, the prediction period spanned from January 2022 
to October 2022. Notice that the second PC SVR testing 
accuracy was worse than the first or the third PCs. Due 
to the second ISOMAP PC variation differed from the 
other two PCs, the second ISOMAP PC values exhib-
ited a monotonically decreasing trend over the period 
of 41 years. SVR always tried to get the predictive val-
ues in the final training time and the testing stage back 
to higher than what actually happened. The second PC 
monotonically variation was similar to the second PC 
in Li et al. (2019) monotonically rising findings. Other 
random time periods exhibited comparable acceptable 
training results but poor testing results (not shown).

To achieve future predictions, a feedforward NN was 
used to train the 20 leading PCs within the training 
period from January 1980 to December 2018. Figure 4b 
depicts the NN prediction trajectory (blue) and actual 
observation trajectory (red) for the first three ISOMAP 
PCs from March 2021 to December 2021. For conveni-
ence, only the trajectories composed of the first three 
PCs are shown in Fig.  4b. Once the prediction trajec-
tory perfectly matched the observation trajectory, the 
forecast was regarded as the optimal solution. Although 
we were unable to match the NN trajectory with the 
observed trajectory, the forecast skills were acceptable 
and still outperformed the SVR forecasts (Fig. 5). We also 
noticed that prediction performance should be examined 
by forecast skills rather than the leading PC trajectories. 
However, we did not illustrate the NN ISOMAP PCs 
individually as we did with the SVR, because the NN PCs 
exhibited similar variations during the training period 
but unsatisfactory testing results (forecasts). Further-
more, the SVR PC 3D prediction trajectories were not 
illustrated, because they were inferior to those of the NN.

Figure 5a, b depicts 36-case average forecast RMSE and 
ACC values. The forecast initial time is from Jan. 2019 
to Dec. 2021, with total 36 cases and 48-month predic-
tions. The blue curves belong to the SVR results, and the 
red curves belong to the NN results. Since SVR forecasts 
underperform beyond 10  months, 10 is chosen here as 

the number of lead months. The forecasting ability of 
the NN was superior to that of the SVR, with an RMSE 
value between 0.3 and 0.4 and an ACC value between 
0.68 and 0.8. Some test cases maintained an ACC value of 
0.7 for approximately 18–24 months. On the other hand, 
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Fig. 4 a Three leading PCs from the training data (blue curves), 
testing data (green curves), and SVR prediction (red curves). The 
training period lasted from January 1980 to December 2021, 
and the prediction period lasted from January 2022 to October 
2022. b Three leading PC trajectories obtained from NNs (blue 
curve) and true observations (red curve) between March 2021 
and December 2021
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for Niño 3.4 area predictions (Fig. 5 red dashed curves), 
these scores were similar to or even slightly higher 
than those of SST forecasts in ECMWF seasonal model 
(Molteni et  al. 2011), hybrid coordinate ocean model 
(Thoppil et al. 2021), and National Centers for Environ-
ment Prediction/Environmental Model Center Global 
Ensemble Forecast System (personal communication 
with Yuejian Zhu).

An intriguing case occurred between May 2019 and 
December 2022. SST anomalies revealed El Niño events 
in the first 2 months, followed by normal events, La Niña 
events, brief normal events for approximately 2 months, 
and then La Niña events once again. Figure  6a depicts 
this evolution of 3D ISOMAP PCs. In Fig. 6c, this actual 
observation trajectory is represented by a red curve, and 

the NN forecast trajectory is represented by a blue curve. 
Initially, the NN was unable to accurately predict this 
period but the trend was acceptable. As shown in Fig. 6b, 
the initial 12-month ACC values remained between 0.6 
and 0.7, and the RMSE values remained between 0.4 and 
0.7. For the final outputs, using predictive PCs, residual 
PCs, spatial EOFs, and climatological monthly mean SST, 
physical space SST predictions could be reconstructed. 
Figure  7a shows at lead times of the 7–9  months SST 
predictions, and the validation period is from October to 
December 2021, the same period as the PC trajectories in 
Fig. 4b. The ACC values in this period time were 0.6–0.7 
and the RMSE values were 0.35–0.4. The right column 
of the Fig. 7b shows the real observation from ERSSTv5 
data.

To summarize, based on Fig. 6, although the ensemble 
mean forecast trajectory (Fig.  6c blue curve) primarily 
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Fig. 5 Forecast initial time from Jan. 2019 to Dec. 2021, 36‑case 
prediction average values of RMSE and ACC versus lead months. 
The blue curves belong to the SVR, the red curves belong to the NN, 
and the red dashed curves focus on Niño 3.4 area: a RMSE, b ACC. The 
gray curves highlight all 36‑case prediction values
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Fig. 6 a Three leading SST ISOMAP PC trajectories between May 
2019 and December 2022. SST anomalies reveal El Niño events, 
normal events, La Niña events, normal events again, and then La Niña 
events. El Niño, normal, and La Niña event are marked by red, yellow, 
and blue points, respectively. b RMSE and ACC values from the NN 
during this period. c NN prediction trajectory (blue curve) and true 
observation (red curve) during this period
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followed the second PC variation and not the first PC 
variation as in the observation period (Fig. 6c red curve), 
the NN forecasts outperformed the SVR forecasts. At 
least, the initial 12-month predictions were acceptable. 
During this period, half of the prediction trajectory sam-
ples turned right along the first PC axis positive direc-
tion, whereas the other half turned left along the first PC 
axis negative direction. If the selected ensemble forecasts 
had large differences in this positive–negative mode, the 
ensemble average would remove the positive–negative 
first PC variation and remain the trajectory variation 
contributed by other PCs that did not differ significantly 
among the ensemble members. Averaging the results 
served as a reminder that the data composite analysis 
would have yielded similar results that would have elimi-
nated the main variation.

Conclusions and discussion
In this study, low-dimensional SST PC points obtained 
using ISOMAP were used to differentiate clusters and 
predict variations in time trajectories. By highlight-
ing SST anomaly patterns, these clusters were able to 
determine the relationships between various ENSO and 
normal events. With three clusters, the corresponding 
centroids easily identified El Niño, normal, and La Niña 
events. The new ENSO index was also used to meas-
ure the entire Pacific basin SST anomaly, as opposed to 
merely the small-area Niño 3.4 index. Overall, the evolu-
tion of centroids over time served as an intriguing aspect 
of ENSO evolution.

By inverting the forecasts with climatological spatial 
EOFs, we studied the time variations of low-dimensional 
PC points and used them to predict future SST through 
SVR and NNs. This method was computationally more 
efficient than the original high-dimensionality numerical 

Fig. 7 SST prediction by NN (left column a) and real SST observation from ERSSTv5 (right column b). The prediction initial time is Mar. 2021 
in Fig. 3b. The period from Oct. 2021 to Dec. 2021 is the forecast lead month number 7–9. The ACC value is around 0.6–0.7
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model, and it produced acceptably accurate long-term 
forecasts. Although the slow change of the SST model 
was a possible reason for the forecast accuracy, the fore-
cast based on low-dimensional data points was still one 
of the potential forecast models to obtain the correct SST 
in a short time.

Currently, our data-driven models are being developed 
to predict other atmospheric variables, such as wind vec-
tor field data. Because the wind vector fields usually have 
discontinuity in time variation that are difficult for learn-
ing algorithms. Other dimensionality reduction tech-
niques, such as self-organizing maps, which successfully 
cluster zonal wind in boreal summer (Rousi et al. 2022), 
probably provide the low-dimensional wind information 
to do NN forecasts. Moreover, we are employing and 
evaluating autoencoders and diffusion maps that were 
used to replace ISOMAP for the prediction of atmos-
phere–ocean fluids. We also extend this data-driven 
ISOMAP and NN methods for learning historical and 
ensemble member predictions in low-dimensional space, 
which can be used for improving ensemble forecasts.

Despite the need for additional tuning of SVR and 
NN parameters, such as slack variables and the num-
ber of neurons, current models have been worked well. 
However, the optimal number of hidden layers in NNs 
remains unclear, and other function compositions may 
yield superior results. Moreover, because of the limited 
SST sample size, simple models were used to avoid over-
fitting. Therefore, future research should investigate low-
dimensional changes predicted by numerical weather 
models as a potential solution.

Appendix

PCA and ISOMAP
Tenebaum et al. (2000) proposed isometric feature map-
ping (ISOMAP) to solve the classification problem and 
obtain well-distributed low-dimensional data points. 
They pointed out that the traditional PCA considers the 
data under linear framework. For example, traditional 
PCA taking the data points’ time evolution is resolved by 
the linear view, to measure the data by the Euclidean dis-
tance, the line segment. In contrast, the ISOMAP meas-
ures the distance between two data points based on the 
geodesic distance, which more closely reflects the actual 
distance by the view of tracing along the local linearity 
in the original nonlinear structure. The geodesic distance 
is calculated on the framework of the nearest neighbor 
graph. In brief, ISOMAP constructs the weighted near-
est neighbor distance graph first and then solves this 
weighted distance by traditional PCA (Tenebaum et  al. 
2000; Tseng 2022). Basically, the key point is to build 

the reasonable distance matrix. The distance matrix can 
be regarded as another kind of covariance matrix. If one 
considers all the data points to be the neighbors, ISO-
MAP would be degenerated to traditional PCA. Moreo-
ver, Izenman (2008) points out when the isotropic kernel 
function is used in distance matrix, the kernel PCA will 
be identical to ISOMAP.

Both PCA and ISOMAP adopt the same eigen function 
solving processes. Now, we take PCA as the example. 
Given the data matrix.

Ymn,
where m is the spatial dimensions, and n is the tempo-

ral dimensions.
Assume that we choose YT

mn Ymn to solve the PCA, 
then we can get.

YT
mn Ymn Pn = Pn�nn,
where P is eigen vector matrix and � is eigen value 

matrix. Since YTY is symmetric matrix, so PTP = I.
It is easy to get

and if we assume one matrix z the relation with Y and P 
as.

zmn = Ymn Pnn,
then we could get.

zTmn zmn = �nn.
That implies

If we do not care the magnitude of z and P, the z can 
be EOF and the P is PC. Or we can rearrange the EOF 
and PC by square root of eigenvalues � . In here, notice 
that the data Y can be separated into z spatial modes 
times P temporal modes two parts.

Support vector regression
Support Vector Regression (SVR) is a machine learn-
ing algorithm that is widely used for regression tasks. 
It is based on the Support Vector Machines (SVM) 
algorithm, which is primarily used for classification. 
SVR uses the concept of support vectors, which are 
data points that lie closest to the decision boundary. 
The decision boundary is defined by a hyperplane in 
a high-dimensional feature space. SVR introduces the 
concept of ε-insensitive loss function, where errors 

PTYTYP = �

(3)Ymn = zPT = z/
√
� · PT

√
� = eof · PC
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within a certain tolerance ε are ignored. The optimi-
zation problem in SVR involves finding the hyper-
plane that maximizes the margin while satisfying the 
ε-insensitive loss. The SVR formulation involves mini-
mizing the following objective function:

Given kernelized model (Gaussian kernel was used 
in this article).

f (x) = wTφ(x)+ b,
use ε-insensitive loss functionand minimize

subject to.

y − (wTφ(x)+ b) ≤ ε + ξ +

(wTφ(x)+ b)− y ≤ ε + ξ −

ξ +
, ξ − ≥ 0

,

where w represents the weight vector, b is the bias 
term, x is the input data, and y is the corresponding 
target value. The ξ+ and ξ− are slack variables for 
measuring the distance between data points and the 
correct hyperplanes. The C parameter controls the 
trade-off between the margin width and the training 
error. SVR utilizes a kernel function to map the input 
data into a high-dimensional feature space, allowing 
for nonlinear relationships to be captured.

Neural networks

The NN model used in this article consists of an input 
layer, an output layer, and three hidden layers. Both the 
input layer and the output layer have 20 neurons, rep-
resenting 20 principal components (PCs). Each hidden 
layer contains 10 neurons. The calculation between each 
layer is defined as follows:

where h = σ(z) =
2

1 + e−2z
− 1.

The activation function used is a hyperbolic tangent 
sigmoid function σ followed by a linear combination 
function that maps the l inputs x = (x1, ..., xl)

T to m hid-
den neurons h = (h1, ..., hm)

T . During training process, 
weights w and biases b will be adjusted to minimize the 

eε(y, f (x)) =

{

0 , if
∣

∣y − f (x)
∣

∣ < ε
∣

∣y − f (x)
∣

∣− ε , otherwise

(4)
1

2
�w�2 + C

n
∑

i=1

( ξ + + ξ − )

(5)y = h(
∑

wTx + b) ,

loss function, which is the mean square error (MSE) 
between input PCs and output PCs.

RMSE and ACC 
The RMSE is defined as

where Di is the deviation between the forecast and the 
verified analysis field and wi is the weighting function 
defined by the following cosine latitude:
wi = 1

/

cosφi(φ is latitude),

where N is the number of samples. The ACC is defined as

where fi, f , ai, a are given as follows:

fi = Fi − Ci, f =
N
∑

i=1

wifi

/

N
∑

i=1

fi,

ai = Ai − Ci, a =
N
∑

i=1

wiai

/

N
∑

i=1

ai,

where F, A, and C are the forecast, verified analysis 
field, and climatological value, respectively.
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√

√
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∑
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∑
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√
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