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Abstract 

This study explores the ensemble size effect on subseasonal‑to‑seasonal (S2S) forecasts of the European Center 
for Medium‑Range Weather Forecasts (ECMWF) model. The ensemble forecast skill and its sensitivity to the ensemble 
size are assessed for the troposphere and stratosphere, and compared with theoretical estimates under the perfect 
model assumption. The degree of skill improvement in ensemble‑mean forecasts with increasing ensemble size 
agrees well with theoretical estimates in the troposphere. However, in the stratosphere, increasing the ensemble size 
does not yield as much of the skill improvement as expected. Decomposition of the mean square skill score reveals 
that the weak ensemble size effect in the stratosphere is primarily caused by a large unconditional bias, which exhibits 
no apparent decrease with increasing ensemble size. Removing such bias significantly improves the S2S forecast skill 
and ensemble size effect, suggesting that bias correction is crucial for S2S forecasts, especially in the stratosphere.
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Introduction
Subseasonal-to-seasonal (S2S) forecasts target time 
scales ranging from two weeks to two months, bridg-
ing the gap between weather and climate predictions 
(Robertson and Vitart 2018). Despite the importance 
and growing demand for S2S forecasts, the forecast skill 
within this time range remains lower than that of weather 
and climate because the S2S time scale is too long to pre-
serve the memory of the initial conditions but is too short 
to be strongly influenced by the variability of the surface 
boundary conditions (Vitart et al. 2017).

Constructing an ensemble prediction system (EPS) is 
one of the straightforward and conventional methods to 
improve the S2S forecast skill. It is well known both theo-
retically and practically that increasing the number of 

ensemble members leads to model forecast skill improve-
ment, referred to as the ensemble size effect. After Leith 
(1974), who theoretically showed that a reasonable accu-
racy of Monte Carlo forecasts can be obtained with an 
ensemble size as small as eight, several studies have 
examined a reasonable ensemble size (e.g., Déqué 1997; 
Kumar et al. 2001). Following these studies, most opera-
tional EPSs adopt ensemble sizes ranging from 15 to 51 
members by considering the balance between the com-
putational cost and performance (Leutbecher 2019).

Previous studies on the ensemble size effect have 
mostly been based on the perfect model assumption, in 
which the model is assumed to perfectly simulate the 
evolution of the real atmosphere when the true state 
is given as an initial condition (Murphy 1988b). This 
assumption considers only the uncertainty in the initial 
conditions and ignores the model uncertainty. It is dif-
ficult to directly apply this assumption to operational 
forecasts because the model itself has systematic errors. 
Model errors play an important role in limiting the model 
prediction skill and predictability (Schneider et al. 2003; 
Stan and Kirtman 2008). Branković et al. (1990) showed 
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that systematic model errors considerably reduce the skill 
gain from ensemble forecasting.

This study revisits the theoretical estimate of the 
ensemble-mean forecast skill and compares it to the 
operational forecast skill derived from the European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
real-time S2S EPS, which has a large ensemble size 
(Vitart et al. 2017). In particular, the differences in fore-
cast skill and ensemble size effect between the strato-
sphere and troposphere and those between the tropics 
and extratropics are explored. The reason for their differ-
ences is analyzed via skill score decomposition proposed 
by Murphy and Epstein (1989).

Data and methods
Data
The ECMWF real-time S2S forecast dataset is used in 
this study due to its large ensemble size (51 members). 
The ECMWF EPS simulates initial uncertainties using an 
ensemble of data assimilations (EDA) and singular vec-
tors and model uncertainties using stochastic schemes 
(e.g., Buizza et al. 2008; Leutbecher et al. 2017). Forecasts 
are initialized twice a week and integrated for 46  days. 
All forecasts initialized from June 2015 to May 2018 (312 
forecasts) are analyzed, but only the results of forecasts 
initialized during the December–January–February (DJF; 
77 forecasts) and June–July–August (JJA; 80 forecasts) 
periods are presented in this study.

The ECMWF S2S prediction model uses a Vari-
able Resolution EPS (VAREPS; Buizza et al. 2007; Vitart 
et al. 2008), in which the model horizontal resolution is 
changed during model integration. The atmospheric hor-
izontal resolution is approximately 32 km up to forecast 
day 10 and approximately 64  km from day 10 onwards 
before the resolution upgrade in the Integrated Forecast-
ing System (IFS) cycle 41r2 on 8 March 2016. Afterward, 
the resolution is set to approximately 18 km for the first 
15  days and approximately 36  km thereafter. ECMWF 
Interim reanalysis (ERA-Interim; Dee et  al. 2011) data, 
which are used as initial conditions, are employed as ref-
erence data for model verification and climatology calcu-
lation. In all analyses, the pentad moving-averaged data 
are used, and the climatology is calculated for the period 
1981–2010. Verifications are conducted for 50- and 500-
hPa geopotential height forecasts, which represent the 
stratospheric and tropospheric forecast skills, respec-
tively, in the Northern Hemisphere extratropics (30°–
90°N), tropics (30°S–30°N), and Southern Hemisphere 
extratropics (30°–90°S). The bias-corrected forecasts are 
obtained by subtracting the mean bias from the forecasts 
in a cross-validated way, wherein the year for which the 
bias is calculated is left out (Polkova et al. 2022).

Evaluation metrics
This study evaluates forecasts with the mean square 
skill score (MSSS), which is a diagnostic measure 
used in the standardized verification system for deter-
ministic long-range forecasts (World Meteorological 
Organization 2006). The MSSS is defined as one minus 
the ratio of the mean square error (MSE) of forecasts 
 (MSEf) to the MSE of reference data  (MSEc):

where

Here, f is the forecast; o is the observation; c is the daily 
climatology of the ERA-Interim data; τ is the forecast day; 
and subscripts i, j, and k denote the forecast initialization 
time, grid point, and ensemble member, respectively. The 
angle bracket denotes an area-weighted average over all grid 
points within the region of interest (Ng) and over all initiali-
zation dates (Nf) (e.g.,  MSEf  =  1

Nf

∑Ng
j=1

cosθj

∑Nf

i=1

∑Ng

j=1

{
f̂ij − oij

}2

cosθj , where θj is the latitude in degrees). f̂  
denotes the average of the first Ne ensemble members, 
where Ne ranges from 1 to 51 for the ECMWF real-time S2S 
forecasts. The order of ensemble members follows the num-
bering provided by the S2S dataset. Note that  MSEc is the 
climatological variance of a given variable, representing the 
natural variability. The MSSS equals one for perfect predic-
tions, but typically decreases with time as forecast errors 
grow. When the error of the prediction system  (MSEf) is 
larger than the natural variability, the MSSS becomes nega-
tive, which is considered that the system loses its 
predictability.

Skill decomposition
Murphy and Epstein (1989) proposed a method to 
identify the source of the forecast skill through MSSS 
decomposition. The MSSS is decomposed into four 
terms involving the anomaly correlation coefficient 
(AC), conditional bias (CB), unconditional bias (UB), 
and difference between the mean sample and historical 
climatologies (CV) as follows:

(1)MSSS(τ ,Ne) = 1−
MSEf (τ ,Ne)

MSEc(τ )
,

MSEf (τ ,Ne) =

〈{
ˆfij(τ ,Ne)− oij(τ )

}2
〉
,

f̂ij(τ ,Ne) =
1

Ne

∑Ne

k=1
fijk(τ ),

MSEc(τ ) =

〈{
cij(τ )− oij(τ )

}2〉
.
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where

Here, the prime denotes the anomaly with respect to 
the long-term climatology calculated from the ERA-
Interim data. For instance, f ′ij = fij − cij is the anomaly 
in the forecast field generated by the i-th initialization 
at j-th grid point. In this study, long-term climatology of 
reanalysis is taken to be the reference for both observa-
tions and forecasts (Murphy and Epstein 1989) to decom-
pose the MSSS into the above four terms. Note that the 
third and fourth terms on right hand side of Eq. (2) (i.e., 
 UB2 and  CV2) become zero when observed and fore-
casted anomalies are defined against their respective cli-
matologies which are calculated over the same period as 
the forecasts to be assessed (Goddard et al. 2013).

The term  AC2 in Eq.  (2) is the square of the anomaly 
correlation coefficient and is considered as a measure of 
the potential skill that the prediction system can have 
when the biases are eliminated (Murphy 1988a; Murphy 
and Epstein 1989). This term ranges from zero to one, 
and the prediction system generally has a higher skill 
when this value is closer to one. The term  CB2, which is 
the squared difference between the anomaly correlation 
coefficient and the ratio of the standard deviations of the 
forecast and observed anomalies, is a measure of the con-
ditional bias. This term vanishes only when the slope of 
the regression line, in which the observed anomalies are 
regressed on the forecast anomalies, is equal to one. The 

(2)

MSSS(τ ,Ne) =
AC2(τ ,Ne)− CB2(τ ,Ne)− UB2(τ ,Ne)+ CV2(τ )

1+ CV2(τ )
,

AC2(τ ,Ne) =

〈{
f̂ ′ij(τ ,Ne)− 〈f̂ ′ij(τ ,Ne)〉

}{
o′ij(τ )− 〈o′ij(τ )〉

}〉2

〈{
f̂ ′ij(τ ,Ne)− 〈f̂ ′ij(τ ,Ne)〉

}2
〉〈
{
o′ij(τ )− 〈o′ij(τ )〉

}2
〉 ,

CB2(τ ,Ne) =






AC(τ ,Ne)−

√〈{
f̂ ′ij(τ ,Ne)− 〈f̂ ′ij(τ ,Ne)〉

}2
〉

√〈{
o′ij(τ )− 〈o′ij(τ )〉

}2〉






2

,

UB
2
(τ ,Ne) =

{〈
f̂ ′ij(τ ,Ne)− o′ij(τ )

〉}2

〈{
o′ij(τ )−

〈
o′ij(τ )

〉}2〉 ,

CV
2
(τ ) =

〈
o′ij(τ )

〉2
〈{

o′ij(τ )− �o′ij(τ )�
}2〉 .

term  UB2 is the square of the ratio of the mean model bias 
to the standard deviation of the observed anomalies. This 
term is a measure of the unconditional bias and vanishes 
only for unbiased forecasts. Note that even if the model 
bias is small,  UB2 can be large if the variance of observa-
tion is sufficiently small. The difference between the con-
ditional bias and unconditional bias is well illustrated in 
Fig. 5 of Bradley et al. (2019). The term  CV2 is the square 
of the ratio of the mean of the observed anomalies to 
the standard deviation of the observed anomalies (i.e., 
the inverse of the coefficient of variation of the observed 
anomalies) and is related to how much the observed state 
deviates from the climatology. For more information, see 
Murphy and Epstein (1989).

Theoretical ensemble size effect
Under the perfect model assumption, the forecast skill 
of the ensemble-mean forecast, determined by the MSE, 
can be expressed in terms of the ensemble size (Ne) 
and the average skill of individual ensemble members 
MSEf (τ ) (Murphy 1988b):

See the Appendix for a detailed derivation of Eq.  (3). 
By substituting Eq. (3) into Eq. (1), the theoretical MSSS 
of the ensemble-mean forecast can also be expressed in 
terms of the ensemble size and the mean score of indi-
vidual member forecasts MSSS(τ ) as follows:

The above two equations indicate an improved forecast 
skill with increasing ensemble size.

Figure  1a shows how the theoretical MSSS increases 
with the ensemble size for a given MSSS . Adding the first 
few ensemble members dramatically improves the fore-
cast skill of EPS, especially when the skill of individual 
ensemble members is lower. However, with increasing 
ensemble size, the ensemble size effect becomes satu-
rated. The theoretical MSSS of the ensemble-mean fore-
cast for an infinite ensemble size is

which is the maximum MSSS that the EPS can have. 
When the average MSSS of individual ensemble 
members, MSSS , is lower than −1, the MSSS of the 

(3)MSEf (τ ,Ne) =
Ne + 1

2Ne
MSEf (τ ).

(4)MSSS(τ ,Ne) = 1−
Ne + 1

2Ne

{
1−MSSS(τ )

}
.

(5)MSSS(τ ,∞) =
1

2

{
1+MSSS(τ )

}
,
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ensemble-mean forecast becomes negative, indicating a 
loss of forecast skill even with an infinite ensemble size.

To measure the degree of skill improvement achieved 
by the ensemble-mean forecast, we define the skill 
improvement ratio (SIR) as the ratio of the increase in 
the MSSS attained using the ensemble-mean forecast to 
its theoretical maximum value with an infinite ensem-
ble size:

Under the perfect model assumption, the SIR is given 
by (Ne–1)/Ne, which is a function of the ensemble size 
only and independent of the skill of individual ensem-
ble members (Fig. 1b). For example, 10 and 51 ensem-
ble members lead to an increase in the MSSS equivalent 
to 90% and 98%, respectively, of its maximum value. 

(6)SIR(Ne) =
MSSS(τ ,Ne)−MSSS(τ )

MSSS(τ ,∞)−MSSS(τ )
.

Fig. 1 a Theoretical MSSS of the ensemble‑mean forecast for a given mean score of individual ensemble members ( MSSS(τ ) = −1, −0.6, −0.2, 0.2 
and 0.6; represented by different colors) and b SIR multiplied by 100 (%) with varying ensemble sizes



Page 5 of 12Han et al. Geoscience Letters           (2023) 10:37  

Again, it is clear from Fig.  1b that the ensemble size 
effect becomes saturated with increasing number of 
ensemble members.

Results
Figure  2 shows the temporal evolution of the MSSSs of 
individual ensemble members calculated from Eq.  (1) 
(solid gray lines) and their mean (solid black line) as 

Fig. 2 Temporal evolution of the MSSSs for (left) 50‑ and (right) 500‑hPa geopotential height forecasts initialized during the DJF 2015–2018 period 
in the (top) Northern Hemisphere extratropics, (middle) tropics, and (bottom) Southern Hemisphere extratropics of individual ensemble members 
(solid gray lines) and their mean (solid black line) as well as the MSSSs of the ensemble mean with varying ensemble sizes (Ne = 2, 10, and 51; solid 
colored lines). The corresponding theoretical MSSSs of the ensemble‑mean forecast calculated from Eq. (4) with varying ensemble sizes are shown 
as dashed colored lines
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well as the MSSSs of the ensemble mean with varying 
ensemble sizes (Ne = 2, 10, and 51; solid colored lines) 
for 50- and 500-hPa geopotential height forecasts initial-
ized during the DJF 2015–2018 period in the Northern 
Hemisphere extratropics, tropics, and Southern Hemi-
sphere extratropics, and the corresponding theoretical 
MSSSs of the ensemble-mean forecast calculated from 
Eq.  (4) (dashed colored lines). At both the 50- and 500-
hPa levels in all regions, a high degree of forecast skill is 
maintained over the first few forecast days, but the skill 
sharply decreases afterward. The stratospheric forecast 
skill decreases slower and, therefore, remains higher than 
the tropospheric skill on earlier forecast days. However, 
it decreases continuously with time during the integra-
tion period, in contrast to the tropospheric forecast 
skill which becomes nearly constant after approximately 
30 forecast days. The stratospheric MSSSs eventually 
become much lower than the tropospheric ones on later 
forecast days (solid colored lines in Fig. 2). The forecast 
skill in the tropics is higher than that in the extratropics, 
which can be partly explained by the strong modulation 
of the tropical atmosphere by the underlying sea surface 
temperature (Shukla 1998).

While the operational forecast skill is in good agree-
ment with the theoretical estimate in the troposphere 
(compare the solid and dashed colored lines in the right 
column), there is a large discrepancy between them in 
the stratosphere (left column). The stratospheric MSSSs 
are substantially lower than the corresponding theoreti-
cal values except after 40 forecast days with Ne = 2 in the 
Northern Hemisphere extratropics (Fig. 2a). This is par-
ticularly true in the tropics and summer hemisphere 
(Fig.  2b and c). The tropical stratospheric skill of the 
ensemble-mean forecast with Ne = 2 is even lower than 
the average skill of individual ensemble members (com-
pare the solid dark cyan and black lines in Fig. 2b). The 
skill improvement is also relatively minor in the trop-
ics and summer hemisphere when the ensemble size is 
increased from Ne = 2 to Ne = 51 (compare the solid dark 
cyan and dark blue lines in Fig. 2b and c). Similar results 
are also obtained with the JJA forecasts (Additional file 1: 
Fig. S1). These results indicate that the ensemble size 
effect is different depending on the region.

The discrepancy between the estimated and opera-
tional forecast skills implies that increasing the ensemble 
size does not necessarily ensure as much of an improve-
ment in forecast skill as expected. This also indicates that 
the perfect model assumption does not hold for opera-
tional forecasts, especially in the stratosphere. In this 
study, the source of the weak ensemble size effect in the 
stratosphere is identified with the skill decomposition 
method described in the Data and Method section.

Figures 3 and 4 show the results of MSSS decomposi-
tion, i.e.,  AC2,  CB2,  UB2, and  CV2, for the 50- and 500-
hPa geopotential height forecasts initialized during the 
boreal winter in the Northern Hemisphere extratrop-
ics and tropics, respectively. The overall features of the 
Southern Hemisphere extratropics are similar to those of 
the Northern Hemisphere extratropics and are therefore 
not presented here.  AC2 decreases more slowly with the 
forecast days in the stratosphere than in the troposphere. 
Therefore, its values in the stratosphere are higher than 
those in the troposphere (first row in Figs.  3 and 4). In 
particular, in the tropical stratosphere, the forecasts 
maintain relatively high  AC2 values during the forecast 
period. This implies that the model possesses a higher 
potential forecast skill in the stratosphere than in the 
troposphere, especially in the tropics.  AC2 increases with 
increasing ensemble size, as shown in previous studies 
(e.g., Leith 1974; Murphy 1988b; Branković et al. 1990), in 
both the stratosphere and troposphere.

The  CB2 tends to increase with the forecast days, but 
the increase rate decreases and even becomes negative 
on later forecast days (second row in Figs.  3 and 4). In 
the extratropics, its values in the stratosphere are lower 
than those in the troposphere on earlier forecast days but 
higher on later forecast days (Fig. 3b and f ). However, in 
the tropics,  CB2 is much smaller in the stratosphere than 
that in the troposphere throughout the forecast period 
(Fig.  4b and f ). The conditional bias, which represents 
the linear slope between the forecast and observed states, 
can be understood as errors in the amplitude of eddies 
deviating from the mean state. Son et  al. (2020) who 
examined the extratropical prediction skill of the S2S 
prediction models showed that eddy amplitude error is 
higher in the extratropical troposphere than in the strato-
sphere on earlier forecast days, and this may be attribut-
able to the failure to predict the amplitude of synoptic 
scale eddies in the troposphere.  CB2 effectively decreases 
with increasing ensemble size. Even with 10 ensemble 
members (Ne = 10),  CB2 becomes close to zero in the 
tropics.

While both  AC2 and  CB2 make the MSSS increase with 
the ensemble size,  UB2 exhibits no obvious decrease with 
increasing ensemble size (Fig.  4c). Note that  UB2 in the 
tropical stratosphere with Ne = 2 is larger than that of 
individual forecasts. Hence,  UB2 inhibits the ensemble 
size effect. In the stratosphere,  UB2 increases more dra-
matically with the forecast days in the tropics than in the 
extratropics (Figs.  3c and 4c). In the troposphere where 
the model bias is small (Lawrence et  al. 2022),  UB2 is 
close to zero throughout the forecast period (Figs. 3g and 
4g). Note that despite the large model bias related to the 
wintertime polar vortices (Lawrence et al. 2022),  UB2 in 
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Fig. 3 Temporal evolution of the four terms (from top to bottom:  AC2,  CB2,  UB2, and  CV2) of MSSS decomposition for (left) 50‑ and (right) 500‑hPa 
geopotential height forecasts initialized during the DJF 2015–2018 period in the Northern Hemisphere extratropics of individual ensemble 
members (gray lines) and their mean (black line) as well as those of the ensemble mean with varying ensemble sizes (Ne = 2, 10, and 51; colored 
lines). Note that  CV2, which is independent of the forecasts, is indicated with a green line



Page 8 of 12Han et al. Geoscience Letters           (2023) 10:37 

Fig. 4 Same as Fig. 3, but in the tropics
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the extratropical stratosphere is relatively small because 
the variance of observation is large there (Additional 
file  1: Fig. S2). In contrast, in the tropical stratosphere 
where the variance of observation is small, a considerably 
large  UB2 is observed. Note that UB can be understood 
as a failure to predict the mean state. Son et  al. (2020) 
showed that the model errors associated with the zonal-
mean flow grow rapidly in the stratosphere. The tropical 
stratospheric bias might be related to the quasi-biennial 
oscillation (QBO) which dominates the circulation of the 

tropical stratosphere (Lawrence et  al. 2022). The  CV2, 
which is independent of the forecasts, is large in the trop-
ics because of a small variance of observation, while it is 
negligible in the extratropics.

Because  UB2 inhibits the ensemble size effect, one 
of the simplest ways to enlarge the gain obtained from 
ensemble forecasts is to subtract the model mean bias 
from the forecast, referred to as bias correction. Figure 5 
shows the temporal evolution of the MSSSs of the fore-
casts after bias correction. Compared with the results 

Fig. 5 Same as Fig. 2, but after bias correction
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in Fig. 2, it is apparent that the MSSS increases consid-
erably in the stratosphere. In particular, in the tropical 
stratosphere, even the individual forecasts after bias cor-
rection maintain MSSSs greater than 0.5 until the end of 
the forecast period. Note that lower degrees of freedom 
could be the physical reason why the geopotential height 
forecasts in the tropical stratosphere requires a smaller 
ensemble size than other regions to reach the saturation 
of skills. More importantly, the discrepancy between the 
estimated and operational skills in the stratosphere sub-
stantially decreases. As shown in Additional file 1: Fig. S3, 
the operational skill after bias correction becomes almost 
the same as the theoretical skill during the JJA period. 
Therefore, the expected forecast skill improvement with 
increasing ensemble size is attained after bias correction 
even in the stratosphere. Similar results are also obtained 
in temperature forecasts as shown in Additional file  1: 
Figs. S4 and S5. These changes in the operational forecast 
skill and ensemble size effect are more pronounced at the 
S2S time scale.

Here, it should be stated that the above analyses aim 
not to evaluate the skill of the real-time forecasts, but 
to quantify the importance of the unconditional bias 
and its relationship to the theoretical estimate. For this 
purpose, the model mean bias is corrected with the 
real-time forecasts (see Data and Methods). However, 
in the operational forecasts, the bias correction is con-
ducted with the long-term reforecasts. By considering 
the application of this study to the operational fore-
casts, the same analyses are repeated by correcting the 
model mean bias with the long-term reforecasts over 
the past 20 years which are available from the S2S pre-
diction project website. Although there is a difference in 
the degree to which skill is improved, similar results are 
obtained (Additional file 1: Fig. S6). This result indicates 
that the ensemble size effect closer to the theoretical 
estimate can be obtained by removing the uncondi-
tional bias regardless of the details of the bias correc-
tion method.

Summary
This study explores the forecast skill and its dependency 
on the ensemble size in ECMWF real-time S2S forecasts. 
The results are particularly compared with theoretical 
estimates obtained under the perfect model assumption. 
In the troposphere, a high degree of skill is maintained 
for the first few days, after which the forecast skill rapidly 
declines and then stabilizes, and exhibit a good agree-
ment with the theoretical estimate. The forecast skill in 

the stratosphere is higher than that in the troposphere on 
earlier forecast days, but decreases continuously, eventu-
ally becoming lower than the tropospheric skill on later 
forecast days. The stratospheric skill decreases much 
faster than the theoretical estimate, especially in the 
tropics.

The discrepancy between the estimated and opera-
tional skills in the stratosphere is mostly attributed to 
the unconditional bias resulting from model drift. By 
applying bias correction, the stratospheric forecast 
skill is substantially increased, becoming comparable 
to the theoretical estimate. The skill improvement with 
increasing ensemble size also follows the theoretical 
estimate. This result does not mean that the model can 
be assumed to be perfect, but should be understood in 
the limited sense that it is possible to expect an ensem-
ble size effect obtained under the perfect model assump-
tion when the unconditional bias is negligible. The results 
obtained in this study are not unique to the ECMWF 
model. Although not shown, essentially the same results 
have been found in analyses of the Centre National 
de Recherches Météorologiques (CNRM) model of 
Météo-France.

While bias correction can improve the ensemble size 
effect, the extent to which it can do so practically depends 
on various factors such as the specific bias correction 
method, the quality of reforecasts or climatology used 
for bias correction, and the target variable. The impor-
tance of bias correction for operational forecasts may not 
be surprising (e.g., Son et al. 2020). However, this study 
quantifies its importance and relationship to theoretical 
estimates. The optimal ensemble size for operational S2S 
forecasts is also estimated. For example, it is revealed that 
an ensemble size of 10 to 20 yields a forecast skill that is 
approximately 90% to 95% of the theoretical maximum 
skill.

Appendix
A detailed derivation of Eq. (3) is as follows:

MSEf (τ ,Ne) =

〈{
f̂ij(τ ,Ne)− oij(τ )

}2
〉

=

〈{
f̂ij(τ ,Ne)− f̄ij(τ )

}2
+

{
oij(τ )− f̄ij(τ )

}2

−2
{
f̂ij(τ ,Ne)− f̄ij(τ )

}{
oij(τ )− f̄ij(τ )

}〉
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where an overbar denotes an average over a forecast 
probability density function (p.d.f ), and the second and 
last terms, i.e., averages of the sum of random covari-
ances, are zero. Then, by denoting the variance of a fore-
cast p.d.f by D,

where do = 
{
oij(τ )− f ij(τ )

}2

 , and �do� = �D� is assumed 
for simplicity. Thus, using that  MSEf(τ, 1) = 2〈D〉 for 
Ne = 1, we obtain the following equation indicating that 
an ensemble mean forecast is superior to an individual 
forecast:

which corresponds to Eq. (5) in Murphy (1988b).
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