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Abstract 

The southern Chile subduction zone is a complex tectonic environment, where the Chile Ridge, the Nazca (NZ) 
and Antarctic (AN) plates subduct underneath the South American (SA) plate. The intersection between the NZ, 
AN and SA plates is referred to as the Chile Triple Junction (CTJ). In this region, a gap, often referred to as a slab 
window, has been formed between the NZ and AN slabs due to the divergence in their plate motion velocities, 
with volcanoes existing mainly above the subducted NZ and AN plates. In this study, we constructed a three‑dimen‑
sional thermomechanical model associated with simultaneous subduction of the NZ and AN plates near the CTJ. 
The results show that the current temperature distributions on the upper surface of the slabs are higher closer 
to the Chile Ridge, and the AN plate has a distribution of elevated temperatures relative to the NZ plate at the same 
depth due to the northward migration of the CTJ and the slower convergence rate of the AN plate. Moreover, we 
calculated the water content and dehydration gradient from the temperature distribution near the upper surface 
of the slab and discussed their relationship to the distribution of volcanoes. In the northern part of the model domain, 
high dehydration gradients were obtained below the volcanic chain. Therefore, we suggest that the water released 
from the slab and the mantle wedge decreased the melting point of the mantle wedge just above the slab and pro‑
duced melts, which may have contributed to form the overlying volcanoes.

Keywords Chile Triple Junction, Thermal structure, Dehydration, Ridge subduction, Slab window, Tectonic tremors, 
Volcanoes

Introduction
In the southern Chile subduction zone, the Nazca (NZ) 
and the Antarctic (AN) plates are generated by seafloor 
spreading along the Chile Ridge. The location where the 
NZ, the AN, and the South American (SA) plates meet 
is called the Chile Triple Junction (CTJ). The CTJ is con-
sidered to have moved northward from the Miocene to 
the present and is currently located at approximately 
46°S (Fig. 1). Within this subduction zone, a gap called a 
slab window is proposed to have formed where no sub-
ducting plate exists due to the subduction of a spreading 
ridge between NZ and AN plates (Thorkelson and Taylor 
1989) that experiences a divergent motion as they sub-
duct beneath the SA plate. The slab window geometry 
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has been estimated by plate reconstruction and observed 
by seismic tomography (e.g., Breitsprecher and Thorkel-
son 2009; Russo et al. 2010; Mark et al. 2022). The spa-
tial distribution of the slab window shows that volcanoes 
exist mainly above the NZ and AN plates, with only a few 
located above the slab window. Tectonic tremors have 
also been observed in this region (Ide 2012; Gallego et al. 
2013; Sáez et al. 2019). A tectonic tremor is a type of slow 
earthquake which occurs near the upper surface of the 
slab, and dehydration near the slab top surface is con-
sidered to contribute to its occurrence (e.g., Obara 2002; 
Iwamoto et al. 2022).

Previous 2-D thermal modeling of ridge subduction 
showed elevated temperatures and a significant water 
flux in the vicinity of the upper surface of the slab, 
although the model is idealized and assumes that the NZ 
and AN plates move together after subduction (Iwamori 
2000). Groome and Thorkelson (2009) performed 3-D 
thermal structure modeling in the region, where the slab 
window exists to investigate the effects of ridge subduc-
tion and slab window migration on the thermal struc-
ture. They propose a simplified model that only considers 
thermal conduction, assuming a constant convergence 
rate and migration velocity of the slab window. Even with 
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Fig. 1 Tectonic map of the study area in and around the CTJ. The inset shows the location of the study area as a red boxed area within South 
America (SA). The blue dashed rectangle delineates the model region and the two blue orthogonal arrows indicate the +x and +y axis directions, 
respectively. The thick black lines delineate the plate boundaries at the Earth’s surface (Bird 2003), and the thin black lines indicate the depth 
(in km) of the upper surface of the oceanic plate geometry model used in this numerical simulation. The pink dashed line is the approximate 
boundary of the slab window at a depth of 50 km (Russo et al. 2010). Yellow lines show the current age of the NZ and AN plates (Seton et al. 2020). 
The colored circles represent the depths and epicenters of all tectonic tremors that occurred from January 2005 to February 2007 (Ide 2012). The 
light blue dashed line indicates the tectonic tremor‑generating area used in Figs. 5 and 6. The volcanoes are represented by solid red triangles. The 
purple and orange arrows are the convergence rate vectors of the NZ and AN plates, respectively, with respect to the SA plate, calculated using 
ITRF2014 (Altamimi et al. 2016). The bathymetry and topography data are taken from ETOPO1 (Amante and Eakins 2009)
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such a simplified model, they obtained a high tempera-
ture distribution on the forearc and asymmetric tempera-
ture structures on both sides of the slab window due to 
its structure and northward motion.

In and around the CTJ, the presence of the slab win-
dow is considered to affect the thermal structure, being 
highly relevant for heat flow (Villar-Muñoz et  al. 2014; 
2021), shallow depth melts (Anma and Orihashi 2013) 
and Patagonian plateau basalts formed by magma ris-
ing through the slab window (Gorring et al. 1997; Guivel 
et  al. 2006). To better understand the thermal structure 
in this region, it is necessary to properly consider vari-
ous factors, such as a  precise subduction geometry, the 
subduction history of the oceanic plates, and the for-
mation of the slab window. In this study, we use a more 
realistic 3-D slab geometry than those of previous stud-
ies, and consider the spatiotemporal variation in the ages 
and convergence rates of the NZ and AN plates along 
the trench axis. Under these conditions, we performed a 
three-dimensional thermomechanical numerical simula-
tions to predict the thermal structure associated with the 
simultaneous subduction of these plates including the 
subduction of the active spreading center. Furthermore, 
using the obtained thermal structure and phase dia-
grams of hydrous minerals, we calculated the distribution 
of water content and the dehydration gradient near the 
upper surface of the NZ and AN slabs, and investigated 
the relationship between these distributions and the loca-
tions of tectonic tremors and volcanoes.

Results
Comparison between the observed and calculated Curie 
point depths
Manea and Manea (2011) studied the crustal thermal 
structure in Mexico, by estimating the distribution of 
the Curie point depth based on magnetic anomaly data. 
They found the Curie point depth to be relatively deep 
in the forearc region, consistent with the position of the 
flat subducted Cocos plate, and concluded that the Curie 
point depth varies with the geometry of the subducting 
plate. In addition, Ji et  al. (2019) performed numerical 
simulations of a 3-D thermal structure, similar to our 
study, in north-central Chile, and calculated the heat 
flow from their thermal structure model. Their model 
is constrained by both the observed heat flow, and also 
the heat flow converted from the Curie point depth in Li 
et al. (2017). The Curie point is the temperature at which 
a material loses its magnetism, and Li et  al. (2017) per-
formed the inversion of the magnetic anomaly data to 
estimate the Curie point depth, defining this depth as the 
550  °C isothermal surface based on Mayhew (1982) and 
Tselentis (1991). In this study, we consider the depth of 
the 550 °C isotherm of the thermal structure obtained in 

our numerical simulation as the Curie point depth. We 
compare such an  isotherm spatial distribution with the 
Curie point depth distribution of Li et al. (2017) to evalu-
ate the validity of the 3-D thermal structure obtained 
in our numerical simulation. The scarcity of heat flow 
observations in the region defined by the model domain 
limits our ability to statistically validate our models 
against an adequate/representative number of measure-
ments. Instead, we define our optimal model as the one 
that minimizes the RMS of the residuals between the 
Curie point depth distribution of our numerical simula-
tion and that of Li et al. (2017), see Eq. (S1) in Text S1. 
We refer the reader to the Supplementary Information 
for details of our methodology and the model used to cal-
culate the 3-D thermal structure associated with subduc-
tion of the oceanic NZ and AN plates.

Figure  2 shows  comparison between the distribu-
tion of Curie point depths of Li et al. (2017) and that for 
the optimal model. The Curie point depth distribution 
obtained  in this study is shallower closer to the ridge 
due to the young oceanic plates subducting near the 
trench (Fig. 2b, f ). In addition, the calculated Curie point 
depths were deeper in the northern part of the model 
domain than those in the southern part around the pro-
file G–G’ in Fig. 2b. This is due to the northern part of 
the model domain being far from the northward-moving 
ridge, and the fast convergence rate of the NZ plate. It 
should be noted that the   calculated  Curie point depth 
along the profile G–G’ is not deep, because this area is 
strongly affected by frictional heating at the plate bound-
ary  (Fig.  2g). On the inland side, the calculated  Curie 
point depths are nearly constant, because the shallow 
part of the model domain is covered by the stratified 
upper and lower crusts (Fig. 2h). The Curie point depths 
calculated in this study show a greater variability than 
those of Li et al. (2017), especially in terms of the extreme 
values in the region. However, it should be noted that the 
positions of these extreme values correspond to seismic 
velocity anomalies identified in the region, as discussed 
in the following section.

Thermal structure
Because the grid interval in the depth direction is 
approximately 3.3  km in this numerical simulation, we 
performed a linear interpolation of temperature between 
each grid point in the depth direction and obtained the 
temperature distribution along the slab surface in the 
optimal model (Fig.  3). It should be noted that the slab 
length of AN plate is shorter than that of the NZ plate, 
because the AN plate has a slower convergence rate 
meaning the slab did not penetrate across the width of 
the model domain during the calculation time of 15 Myr. 
We obtained a tendency for the temperature distribution 
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Fig. 2 a Colors represent the spatial distribution of the Curie point depth from Li et al. (2017), in positions where data exist in the model domain. 
The black dashed lines are the locations of the profiles shown in (c–h). b Colors represent the spatial distribution of the Curie point depth 
for the optimal model obtained in this study. Profiles are the same as in (a). c Comparison between observed and calculated Curie point depths 
along profile C–C’. The black and red lines denote values of Curie point depths in Li et al. (2017) and calculated values obtained from this study, 
respectively. d–h are the same as (c) except for profiles D–D’ through H–H’, respectively
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at the upper surface of the slab to strongly depend on the 
age of the subducting oceanic plate. Therefore, higher 
temperatures at the slab surface occurred closer to the 
ridge, even at the same depth. In addition, the subducted 
current AN plate region had a higher temperature dis-
tribution than the subducted current NZ plate region. 
This can be attributed to the following two reasons: the 
CTJ, which is the hottest point along the trench axis, was 
located at y = −150 km at the beginning of the calcula-
tion (15 Ma), and subsequently moved northward to its 
current position of y = 0 km. Therefore, from the begin-
ning of the calculation to the present, the temperature at 
the slab surface in the current AN plate region is higher 
than that of the current NZ plate region, because the 
younger oceanic plate is subducting in the current AN 
plate region. Another possible cause is that the AN plate 
is subducted at a slower rate than the NZ plate, so that 
the subducting plate is heated by the surrounding mantle 
for a longer period.

Distributions of water content and dehydration gradient
As previously described, we performed a linear inter-
polation of temperature in the depth direction, using 
the thermal structure of the optimal model, to calculate 
temperature values, at 1 km intervals in the depth direc-
tion, throughout the slab surface. We calculated the 
maximum water content, corresponding to the tempera-
ture and depth of each data point, to obtain the distribu-
tions of the maximum water content and the dehydration 
gradient along the slab surface. The slab was assumed 
to consist of three layers, and different phase diagrams 
were applied to each layer to determine the water con-
tent and dehydration gradient of hydrous minerals near 
the upper surface of the slab (Fig.  4). The dehydration 
gradient is defined as the difference in the water content 
(wt%) per unit length (km) along the subduction direc-
tion (Suenaga et al. 2019). We use the phase diagrams of 
ultramafic rock, turbidite, and MORB   with the follow-
ing respective  layers thickness; the mantle wedge was 
set up to extend 2 km vertically above the upper surface 
of the slab, the oceanic sedimentary layer was set from 
the upper surface of the slab to a depth of 2 km, the oce-
anic crust was set at depths between 2 and 7  km from 
the upper surface of the slab, and the slab mantle was set 
from a depth of 7 km from the upper surface of the slab 
to the bottom of the oceanic plate (Fig. S1).

The water content distribution at present (0  Ma) is 
shown in Fig. 5, and the distribution of the dehydration 
gradient along the current subduction direction is shown 
in Fig. 6. In all layers, the profiles of water content along 
the trench axis had lower values near the ridge due to 
its higher temperature (Fig. 5a–d). At the bottom of the 
mantle wedge just above the slab, brucite, antigorite, 
chlorite, and amphibole phases exist, in this order, from 
the trench to the inland side, and the water content varies 
greatly at each phase boundary (Figs. 4a and 5a). There-
fore, from the trench to the inland side, there are three 
dehydration zones at the bottom of the mantle wedge, 
just above the slab, with dehydration gradients of approx-
imately 0.16 wt%/km, 0.22 wt%/km, and 0.12 wt%/km 
(Fig. 6a). In the oceanic sedimentary layer, the dehydra-
tion gradient distribution has small values, with a maxi-
mum of 0.04–0.08 wt%/km, due to the gradual change 
from phengite lawsonite blueschist phase to amphibole 
phengite zoisite eclogite phase along the subduction 
direction (Figs. 4b, 5b and 6b). In the oceanic crust, the 
dehydration reaction from blueschist phase to amphibole 
phase and amphibole eclogite phase occurs in the south-
ern to central part of the model domain. In contrast, the 
dehydration reaction from the lawsonite blueschist phase 
to the lawsonite eclogite phase occurs on the inland side 
in the northern region (Figs.  4c and 5c). These two dif-
ferent dehydration reactions occur in the oceanic crust, 
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the dehydration zone with 0.1 wt%/km is located near the 
trench in the southern to central part, whereas the dehy-
dration zone with 0.06 wt%/km is located inland in the 
northern part (Fig. 6c). The distribution of the dehydra-
tion gradient at a depth of 9 km from the upper surface 
of the slab, which is in the slab mantle layer, is located 
inside the slab, not directly exposed to the hot surround-
ing mantle, and so it can maintain lower temperatures 
on the inland side. Therefore, the dehydration reactions 
from antigorite phase to chlorite phase and from chlorite 
phase to amphibole phase have moved farther inland, 
rather than above the slab, which uses the same phase 
diagram (Figs. 5d and 6d).

Discussion
Thermal structure
The 3-D model presented in this study is an idealized 
model with a constant northwards migration velocity of 
the CTJ. The chosen value of 1.0 cm/year is more-closely 
aligned to the recent tectonic situation, and, therefore, is 
most representative of the regions, where the spreading 
center has not yet been subducted (to the north of the 
present-day CTJ) and where the ridge has recently been 
subducted (in the vicinity of the present-day CTJ). These 

regions coincide with the positions of observed tectonic 
tremors (Ide 2012), young NZ plate subduction (Russo 
et al. 2010), recent ridge subduction (Gallego et al. 2010) 
and the southernmost part of the Southern Volcanic 
Zone in Chile (Stern 2004). The locations of older slab 
windows, located southwards of the present-day CTJ, will 
be positioned slightly to the east of their actual positions 
in this model, due to the assumption of AN plate subduc-
tion starting in the model at 15 Ma, and, therefore, mak-
ing further eastwards progress than that calculated by 
Breitsprecher and Thorkelson (2009). However, the ther-
mal conditions on the upper surface of the slab for these 
older slab windows will be largely representative of the 
actual situation.

We compared the temperature distribution at the upper 
surface of the slab obtained in this study with the bound-
ary of the slab window at a depth of 50 km in Russo et al. 
(2010) (Fig. 3). It should be noted that the horizontal dis-
tance from the trench to the location where the depth of 
the upper surface of the slab is 50  km is approximately 
x = 170  km with the slab geometry used in this study. 
The isotherms at the upper surface of the slab obtained 
in this study align approximately with the boundary of 
the slab window inferred by seismic tomography. The 
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calculated  temperature inland from the slab window 
boundary exceeds 1000 °C (Fig. 3). In addition, the seis-
mic tomography of Russo et al. (2010), at depths of 100 
and 200  km showed a fast Vp anomaly associated with 
the subduction of the NZ plate to the north of 46°S. This 
is consistent with the results of this study which shows 
lower temperatures north of the CTJ and an increased 

Curie point depth in the position of this fast tomographic 
anomaly. A second seismic tomography study of Gallego 
et al. (2010) observes a slow Rayleigh wave group velocity 
anomaly corresponding to the most-recently subducted 
ridge underneath the Taitao Peninsula (Fig.  1), which 
is consistent with the westward extension of the higher 
(> 800  °C) temperatures observed on the upper surface 
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of the slab and shallowest Curie point depths obtained in 
this study. Therefore, the thermal structure of the upper 
surface of the slab is consistent with the locations of the 
slab window and the oceanic plates observed in previous 
studies. Although we do not account for the material-
ity of the slab window in the used continuous 3-D slab 

geometry, our analysis recognizes the slab window as a 
thermal boundary.

Distributions of water content and dehydration gradient
Hydrous minerals, transported by the subduction of the 
oceanic plate, produce water through dehydration reac-
tions, which decrease the effective normal stress near the 
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upper surface of the slab and generate tectonic tremors 
(e.g., Obara 2002). It is also shown that dehydration from 
the hydrous minerals decreases the melting point of the 
mantle wedge to produce melts and contribute to the for-
mation of volcanoes (e.g., Iwamori 1998; Kawakatsu and 
Watada 2007). Therefore, we compared the distributions 
of water content and the dehydration gradient obtained 
in this study with the source region of tectonic tremors 
and the distribution of volcanoes (Figs. 5 and 6).

At the bottom of the mantle wedge, just above the slab, 
no high dehydration gradient was observed within the 
tectonic tremor-generating area: the dehydration from 
antigorite to chlorite was approximately 0.22 wt%/km 
on the updip side of the tremor area, and the dehydra-
tion from chlorite to amphibole was approximately 0.12 
wt%/km on the downdip side (Fig.  6a). In the oceanic 
sedimentary layer and crust, the water content gradually 
decreases going from the trench to the updip limit of the 
tectonic tremor-generating area and reaches nearly 0 wt% 
in the tremor area (Fig. 5b, c). Thus, the high dehydration 
gradient values are located near the trench, on the updip 
side of the tectonic tremor-generating area (Fig. 6b, c). In 
the slab mantle, the maximum water content is about 2–4 
wt% near the tectonic tremor-generating area, but a high 
dehydration gradient was not identified near the tremor 
area due to the relationship between the maximum 
water content distribution and the subduction direction 
(Figs. 5d and 6d). Because of these results, it is difficult to 
explain the occurrence of tectonic tremors by the dehy-
dration gradient distribution of this optimal model, as 
previous studies have shown that dehydration contrib-
utes to the occurrence of tectonic tremors in southwest 
Japan and southern Alaska (e.g., Obara 2002; Iwamoto 
et al. 2022). This is because the tectonic tremor-generat-
ing area is near the CTJ, where the upper surface of the 
slab experiences significantly elevated temperatures, and 
consequently the water is dehydrated before it can be 
transported to the tremor area. Therefore, to associate 
the dehydration with the occurrence of tectonic trem-
ors, it is necessary to shift the location of dehydration in 
the downdip direction by decreasing the temperature of 
the slab. Incidentally, when the frictional heating at the 
plate boundary was not considered and the northward 
ridge migration rate was 4.0 cm/year, the temperature at 
the upper surface of the plate boundary was decreased. 
Thus, the hydrous minerals can exist in the tectonic 
tremor-generating area and dehydration was observed in 
the mantle wedge just above the slab, oceanic sedimen-
tary layers, and oceanic crust near the tremor area (Addi-
tional file 1: Figs. S3 and S4). Therefore, we believe that 
a parameter setting that results in lower temperatures 
near the upper surface of the slab when compared to the 
optimal model is preferable to explain the relationship 

between dehydration and the tectonic tremor-generating 
area.

In the northern part of the model domain, where vol-
canoes are densely aligned in the north–south direction, 
the dehydration gradients along the current subduction 
direction are large near the volcanic chain in each layer 
(Fig.  6). Specifically, there are two dehydration zones of 
0.22 wt%/km and 0.12 wt%/km in the mantle wedge just 
above the slab. In addition, approximately 0.03 wt%/km 
in the oceanic sedimentary layer, 0.06 wt%/km in the oce-
anic crust, and 0.22 wt%/km in the slab mantle. There-
fore, a considerable amount of water was supplied near 
the upper surface of the slab and in the bottom of the 
mantle wedge just above the slab, decreasing the melting 
point and producing magma to form volcanoes above. In 
addition, it is considered that little water is transported to 
the downdip side of the tectonic tremor-generating area, 
cutting off the Southern Volcanic Zone, because the tec-
tonic tremor-generating area is located closer to the ridge 
and has a higher temperature distribution compared to 
the northern part of the model domain.

Conclusions
In this study, we constructed a three-dimensional ther-
momechanical model, in and around the CTJ, associated 
with subduction of the NZ and AN plates, underneath 
the SA plate. From the relationship between tempera-
ture and depth obtained in our numerical simulation, we 
calculated the water content and dehydration gradient 
near the upper surface of the slab. The significant results 
obtained in this study are summarized as follows:

A) The temperature distribution at the upper surface of 
the slab is higher closer to the ridge, and the current 
subducted AN plate has a higher temperature than 
the current subducted NZ plate. This is because the 
CTJ has moved northward to reach its current posi-
tion from the beginning of the calculation (15 Ma), 
and the AN plate is subducting at a slower conver-
gence rate than the NZ plate.

B) At the mantle wedge just above the slab, no high 
dehydration gradient was observed within the tec-
tonic tremor-generating area. The dehydration from 
antigorite to chlorite was approximately 0.22 wt%/km 
on the updip side, and the dehydration from chlorite 
to amphibole was approximately 0.12 wt%/km on the 
downdip side of the tremor area. The water content 
in the oceanic sedimentary layer and oceanic crust 
gradually decreased on the updip side of the tectonic 
tremor-generating area, because the ridge is sub-
ducting and the temperature is high near the current 
CTJ. Therefore, it is difficult to explain the relation-
ship between the occurrence of tectonic tremors and 
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dehydration with the optimal model in this study. To 
explain this relationship, the model  with lower slab 
surface temparature with no frictional heating at the 
plate boundary and high ridge migration rate is pre-
ferred.

C) In the northern part of the model domain, the rela-
tively low temperature distribution allows the trans-
portation of hydrous minerals to the deeper inland 
side. The maximum dehydration gradients are 0.12–
0.22 wt%/km in the mantle wedge just above the slab, 
0.03 wt%/km in the oceanic sedimentary layer, 0.06 
wt%/km in the oceanic crust, and 0.22  wt%/km in 
the slab mantle. We propose that water released from 
these layers decreased the melting point, producing a 
melt which forms the volcanoes above.
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