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Abstract 

Due to rapid population growth and the limitation of land resources, the sustainability of agricultural ecosystems 
has attracted more attention all over the world. Human activities will alter the components of the atmosphere and 
lead to climate change, which consequently affects crop production badly. In this context, wheat is considered an 
important crop and ranks as one of the top strategic crops globally. The main objective of this research is to develop 
a new approach (a weighted climatic suitability index) for evaluating the climate suitability for wheat production. The 
specific objectives are to project the impact of future climate change on wheat suitability using three models based 
on WCSI and CMIP6‑based projections and to identify the most vulnerable area to climate change and productivity 
reduction. The climatic criteria for wheat production were selected and classified into eight indicators based on the 
Sys’ scheme and the FAO framework, and then the weighted overlay approach was used in conjunction with the 
analytic hierarchy process. To confirm the reliability of the integrated WCSI, we determined the nonlinear curve fitting 
of integrated WCSI‑induced wheat yields by the exponential growth equation. Finally, the CMIP6‑GCMs projected 
from three shared socioeconomic pathways were used for WCSI mapping and predicting wheat yields in the short 
and long term (Southern Syria was selected as a case study). The results show that the nonlinear correlation between 
wheat yields and the integrated WCSI was 0.78  (R2 = 0.61) confirming the integrated WCSI’s reliability in reflecting 
yield variation caused by climate suitability. The results indicated that WCSI for wheat will be lower over the study area 
during 2080–2100 compared to the current climate. During 2080–2100, the wheat yield is projected to decrease by 
0.2–0.8 t.  ha−1 in the western parts of the study area. The findings of this study could be used to plan and develop 
adaptation strategies for sustainable wheat production in the face of projected climate change. The results of the 
study will also help in the strategic planning of wheat production in Syria under the projected climate. The results of 
this research are limited to small areas as a case study, although they are not relevant to similar regions worldwide. 
However, the study employs novel analytical methods that can be used broadly.
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Introduction
In this era, the sustainability of the agricultural 
ecosystem has attracted more attention all over 
the world, due to rapid population growth and the 
limitation of land resources (Abd-Elmabod et al. 2020). 
In this sense, an acceleration of the global increase in 
food demand and climate change place great pressure 
on ecosystem services and global food security (Fanzo 
et  al. 2018). Furthermore, the rainfall patterns are 
expected to be changed in many regions as a direct 
consequence of climate change; while some areas will 
face extreme precipitation events, others will receive 
less amount of rainfall and an increase in the frequency, 
intensity, and duration of drought (Kharin et  al. 2018; 
Alsafadi et al. 2020b; Mohammed et al. 2020c; Mokhtar 
et  al. 2021a). Therefore, the agricultural systems in 
many regions will be significantly affected by land 
degradation (erosion and desertification) and will have 
a serious impact on human activities and food security, 
leading to migration (Mullan 2013; Wheeler & Von 
Braun 2013; Molotoks et al. 2021; Hateffard et al. 2021). 
To cope with that dilemma, the United Nations (UN) 
through its sustainable development goals (SDGs) (i.e., 
SDG 2 (zero hunger), SDG 13 (climate action), SDG 
15 (life on land)) has emphasized the necessity for 
sustainable use of terrestrial ecosystems under ongoing 
climate change (Arana et al. 2020; United Nations 2015; 
Le Blanc 2015).

Many sectors are affected by climate change, for 
instance, the energy sector (Dowling et  al. 2013), the 
agricultural sector (Hanif et  al. 2010), transportation 
(Koetse, & Rietveld 2009), insurance sector (Botzen 
et  al. 2010), tourism (Seetanah, & Fauzel 2018), 
agricultural market (Costinot et  al. 2016), food supply 
(Rosenzweig & Parry 1994), and economy (Tol 2013). 
The agricultural sector was classified as one of the most 
vulnerable sectors to climate change (Peltonen-Sainio 
et  al. 2010; Parker et  al. 2019), where the frequency 
of extreme climate events (such as droughts) has 
significantly increased (Alsafadi et  al. 2020b; Mokhtar 
et  al. 2021a) and badly affected the crop production, 
especially in semi-arid and arid regions (Bal and Minhas 
2017; Mokhtar et al. 2021b; Harsányi et al. 2021; Alvar‐
Beltrán et al. 2022). In this context, semi-arid and arid 
regions covering one-third of the world’s land are being 
used mostly for crop production (Barton et  al. 2014) 
and support 14.4% of the world’s population (Huang 
et  al. 2016). Ecosystems in these regions are delicate 
and vulnerable to intense interactions between human 
activity and climate change (Huang et al. 2010), where 
most lands are used for agricultural purposes (Huang 
et  al. 2016). However, a warmer climate accompanied 
by drought will accelerate evapotranspiration and will 

have a tremendous impact on this region, including the 
Mediterranean Basin (Peltonen-Sainio et al. 2010).

Recently, the Mediterranean Basin’s environmental 
concerns have been compounded by accelerated 
climate change (Seker and Gumus 2022), where the 
average temperature is 1.4  °C higher compared to the 
values in the late 1800s (Cramer et al. 2018), along with 
successive drought events and heat waves (Mathbout 
et  al. 2021; Alsafadi et  al. 2022b). Hence, the eastern 
part of the Mediterranean Basin was more vulnerable 
to climate change (Mesta et  al. 2022). In this context, a 
rapid increase in air temperature and decreasing trend of 
precipitation will negatively affect crop production (Bal 
et al. 2022a; Al-Bakri et al. 2011). In Syria, the agricultural 
system is suffering from serious land degradation 
(Mohammed et  al. 2022a), such as soil erosion 
(Mohammed et  al. 2020a, 2020b; Alsafadi et  al. 2022c), 
associated with miss management of land resources and 
climate change (Mohammed et  al. 2020d). However, 
climate change, especially drought, badly affected the 
agricultural sector in Syria and led to reduced crop yield 
all over the country. In this context, wheat is considered 
an important crop to support self-reliance, which ranks 
as one of the top strategic crops, with over 1.7 million 
hectares.

In this context, predicting wheat yields is a key factor 
for policymakers and agricultural managers so that they 
can modify their strategies to an expected level of crop 
production and set suitable plans of adaptation (Ben-Ar 
et al. 2016; Chen et al. 2018; Reidsma et al. 2009).

A wide variety of methods have been developed for 
estimating the agro-climatic indices needed to feed 
models for wheat yield simulation and suitability during 
the crop growth cycle and assessing the impact of climate 
change. For instance, the analog and empirical models for 
durum wheat yield forecasting (Ferrise et  al. 2015), the 
water stress index (WSI) as a daily water balance model 
(Chourghal et  al. 2016), the drought and overwhelmed 
water key indicator (DOWKI) (Kapsambelis et al. 2019), 
STICS soil-crop model by coupling gridded datasets of 
soil and climate (Brisson et al. 2002; Yang et al. 2020), the 
integrated climatic suitability, which reflects the influence 
of solar radiation, temperature, and precipitation on the 
winter wheat suitability in the entire crop growth cycle 
(Tang and Liu 2021), and several other agro-climatic 
indices, such as agricultural reference index for drought 
(ARID) (Woli et al. 2012). More recently, several studies 
have applied machine learning and deep learning models 
to predict wheat yield based on meteorological, crop 
phenological, and remote sensing data (Murakami et  al. 
2021; Srivastava et  al.2022; Wang et  al. 2020; Lischeid 
et  al. 2022). Yet, these methods are rarely assessed for 
their degree of reliability and have been compared 
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independently (Ben-Ar et  al. 2016; Basso and Liu 2019; 
Lischeid et  al. 2022). Importantly, the overmentioned 
agro-climatic indices encompass a considerable range 
of intricacy levels, and several are applied to set the 
yield forecasts. No single index performs systematically 
completely (whatever the farming type), hence no 
obvious relationship between the level of intricacy of 
indices and their reliability (Ben-Ar et al. 2016).

The models previously referred to can be classified into 
three key types: crop simulation models or biophysical 
models; statistical data-based regression models; and 
functional models (Kirthiga and Patel 2022; Basso and 
Liu 2019). Not all the models can evaluate the spatial–
temporal climatic suitability for a specific crop and 
forecast the yield accurately at the same time, and they 
cannot all transact with the climate change projection 
data from general circulation models because it depends 
on the inputs and their availability. The biophysical model 
is a process-based simulation model that accounts for 
the interaction between environmental information 
and its effect on the crop rather than using statistical or 
functional models, such as sowing date, grain size, soil 
properties, and other management practices in addition 
to weather information (Kirthiga and Patel 2022; Asseng 
et  al. 2014). Such a process-based approach results in 
highly accurate simulation of crop yields but in countries, 
such as Syria, where long historical records on the crop 
parameter values and crop management practices are 
not available, as a result, the biophysical models become 
inapplicable, in short, it is suffering from complexity, 
needing intensive parameters, and therefore difficult 
to calibrate and parameterize (Basso and Liu, 2019). 
However, the regression models are less parameter 
intensive and simple. These models fit the direct 
relationship between meteorological parameters and crop 
yield and can be considered to have good efficiency and 
satisfying output (Mathieu and Aires 2018; Srivastava 
et al. 2022), but they cannot assess specifically the climatic 
crop suitability of a single meteorological parameter 
at each phenological stage (e.g., the meteorological 
drought indices). The functional-based models, which 
define the agro-meteorological requirements based on 
crop suitability theory and the analytic process methods 
and fuzzy logic, can be used to analyze the suitability of 
a single meteorological parameter at each phenological 
stage and play an important role in examining the climatic 
suitability for a specific crop (Tang and Liu 2021). But 
these models cannot deal with the possible discrepancy 
in agro-meteorological criteria priorities, mainly when 
selecting a weight for each indicator.

Our study suggests an approach that combines the 
advantages of functional-based models in defining the 
weighted agro-meteorological requirements to evaluate 

the spatial–temporal climatic suitability and regression-
based models to forecast the crop yield accurately. 
This approach also seeks to sidestep some of the more 
unsettling limitations in the complex biophysical models 
and transacts with the climate change projection data 
from general circulation models to estimate the impact 
of climate change. Thus, the goal of this research was to 
create an approach for evaluating the climate suitability 
for wheat cultivation and yield forecasting and apply it 
as a case study in southern Syria. The specific objectives 
are 1) to evaluate the suitability of the current climate 
for wheat cultivation in southern Syria; 2) to project 
the impact of future climate change on wheat suitability 
using three models based on a weighted climatic 
suitability index and Coupled Model Intercomparison 
Project Phase 6 (CMIP6) General circulation model 
(GCM)-based projections; and 3) to identify the most 
vulnerable and sensitive area to climate change in terms 
of wheat suitability in the eastern Mediterranean.

Materials and methodology
Study area
Our research was carried out in southwestern Syria near 
the Jordanian border, between latitudes 32˚ 18ʹ and 33˚ 
15ʹ North and longitudes 35˚ 45ʹ and 37˚ 25ʹ East (an area 
of 10236.2  Km2) (Fig. 1) which represents the upper and 
middle portion of the Yarmouk basin. The study area is 
characterized by a continental climate. Spatially, the aver-
age summer temperature is between 18 and 32 °C in July, 
while the winter average is between 3 and 10 °C in Janu-
ary. The regional mean annual precipitation is 283 mm, 

Fig. 1 The study area and location of the rain gauge and climatic 
stations
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with maximum precipitation of about 550  mm in the 
mountains area (for the spanning period of 1982–2015). 
According to the Köppen-Geiger classification, the study 
area is located in the temperate wet climate C (i.e., Csa 
and Csb) in the western and central heights areas. In con-
trast, the climate is arid (Desert) and semi-arid (Steppe) 
B (i.e., Bw and Bs) in the lower areas and toward the east 
(Beck et al. 2018). The region is divided into three physi-
ographical units: mountains in the central area (Jabal 
Al Arab) and plateaus in the northwestern part (Golan 
heights extent), while a plain area in most of the study 
area (Horan plain), where the altitude ranges between 
1809  m above sea level in the central part and −  5  m 
below sea level in the western part. The major agricul-
tural land use in the area incorporates apples (Malus syl-
vestris), grapes (Vitis sp), olive (Olea europaea), tomatoes 
(Lycopersicon Esculentum), and wheat (Triticum spp).

According to the Ministry of Agriculture and Agrarian 
Reform (MoAAR) in Syria, the cultivated area of wheat 
reached about 110 thousand hectares with a production 
of about 134.6 thousand tons in 1995. While it reached 
about 76.6 thousand hectares with a production of about 
48 thousand tons in 2015. This area is considered one of 
the most significant regions in Syria in producing “durum 
wheat,” which is well-known and renowned for its high 
gluten component (Al-Saleh and Brennan 2012).

Climatic data and pre‑processing
Current climate and projected climate change of the 
Coupled Model Intercomparison Project Phase 6) 
CMIP6) for monthly temperature and precipitation 
spanning 1961–2000 and 2020–2100, respectively, were 
acquired from the WorldClim dataset at 1   km2 (30 arc-
s) spatial resolution for baseline data and 5  km2 (2.5 arc-
min) for downscaled climate change (Hijmans et al. 2005; 
Fick et  al. 2017). Downscaled monthly gridded data of 
average temperature and precipitation were used for 
three global climate models (GCMs) in Table  1: BCC-
CSM2-MR, CanESM5, and IPSL-CM6A-LR under three 
Shared Socio-economic Pathways (SSPs), 126, 245, and 
585, for two periods, 2020–2040 and 2080–2100 (https:// 
www. world clim. org).

Given that the baseline gridded data of WorldClim pre-
cipitation have biased values and uncertainties, which are 

increasingly associated with the interpolation techniques 
compared to local observations (ِAlsafadi et al. 2021), the 
bias correction method was implemented to this end as 
presented in Fig. 2a–c. The bias correction is generally 
applied for generating a relationship between the 
observed variables and modeled ones using spatial inter-
polation of the residuals. It was done based on in situ 
data from 57 rain gauges from the Syrian Meteorological 
Authority (SMA), the MoAAR, taking into consideration 
the stations located inside and outside the study area as 
shown in Fig. 1. All of these data were collected and com-
puted at a monthly time scale for the span of 1982–2015. 

Table 1 CMIP6 models used in this study

No Model Center Resolution

1 BCC‑CSM2‑MR Beijing climate center (China) 1.125° × 1.125

2 CanESM5 Canadian centre for climate 
modeling and analysis (Canada)

2.81° × 2.81

3 IPSL‑CM6A‑LR Institute pierre simon laplace 
(France)

2.5° × 1.26

Fig. 2 Illustration of the WorldClim biases correction process 
for January precipitation (values in mm/month) using local 
dataset. (a) WorldClim‑baseline data at 30 arc‑s and observed 
data, (b) interpolated biases at 30 arc‑s and observed data, 
(c) corrected‑baseline data, (d) WorldClim future data for 
the2090s (2080–2100 average) under SSP858 at 2.5 arc‑min, (e) 
WorldClim‑baseline data at 2.5 arc‑min, (f) interpolated relative future 
data to the baseline data or relative anomaly surface by 2100 at 30 
arc‑s, (g) future corrected and downscaled climate surface at 30 
arc‑second spatial resolution

https://www.worldclim.org
https://www.worldclim.org
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This gridded precipitation data were used for further cal-
culation in this research.

To acquire bias-corrected and high spatial resolu-
tion surfaces of CMIP6 projections for climate change 
at 30 arc-s, the downscaling (DC) method (Navarro-
Racines et al. 2020; Xu et al. 2021) was used as a sim-
ple approach to biases correction in which a “delta 
method” or change factor is derived from the GCMs, 
and then added onto the baseline climate (observa-
tion-corrected WorldClim data). The DC method 
includes the following steps (Fig. 2d–f ): (1) calculation 
of temperature and precipitation averages for baseline 
climate and near and far future periods (2020–2040 
and 2080–2100); (2) computation of anomalies as the 
absolute difference between future and baseline val-
ues in average temperatures and relative differences in 
amounts of precipitation (Fig. 2f ); (3) interpolation of 
these anomalies at 30 arc-s using Kriging method for 
GCMs gridded points; and (4) addition of the interpo-
lated anomalies data to the baseline from WorldClim.

Weighted climatic suitability index
Definition of agro‑climatological requirements
In this study, climatic criteria of wheat production 
were selected and classified into eight indicators that 
fall within a unified level, as illustrated by Mohammed 
et al. (2020d) based on the Sys’ scheme (Sys et al. 1993) 
and the FAO framework (FAO 1976) (Fig. 3). Our study 
labeled each wheat climatic requirement into five cat-
egories: an extremely suitable class (S1), an acceptable 
suitable class (S2), a moderately suitable class (S3), a 
tentatively unsuitable class (N1), and a completely 
unsuitable class (N2) (FAO 1976).

In the next step, we assigned the degree of limitation 
(Rank of criterion xi ) for each layer on a 0–4 rating 
scale, then merged it with the AHP weights. As such, 
the Weighted Overlay Approach (WOA) (Voogd et al. 
1982) was used to create weighted climatic suitability 
as

wi : Weight of criterion i xi : Rank of criterion i, for each 
layer on a 0–4 rating scale. WCSI : Weighted Climatic 
suitability index in percentage, which is defined by the 
nonlinear relationship between the rating scale (%) and 
degree of limitation (Fig. 3).

(1)S =

[

n
∑

i=1

wi ∗ xi

]

,

WCSI = 100+

(

−2.55∗s3
)

+

(

6.071∗S2
)

+ (−9.28∗S),

Determination of climatic indicators weightage
Even though the Geographic Information Systems (GIS)-
based linear layers combination technique has been 
considered an essential tool in processing geospatial data, 
the application of this tool alone could not transact with 
the possible discrepancy in criterion priority, mainly when 

Fig. 3 The upper scheme is the nonlinear curve fitting between the 
score of suitability (WCSI) and the 0–4 rating scale, or the degree 
of limitation. Climatic requirements for wheat cultivation, based on 
the Sys’ table (Sys et al. 1993). Note: PGC, precipitation of growing 
cycle (Oct to May); PVS, precipitation of vegetative stage (Mar); PFS, 
precipitation of flowering stage (Apr); PRS, precipitation of ripening 
stage (May); TGC, mean temp. of the growing cycle (Nov to May); TVS, 
mean temp. of the vegetative stage (Mar); TFS, mean temp. of the 
flowering stage (Apr); TRS, Mean temp. of the ripening stage (May)



Page 6 of 21Alsafadi et al. Geoscience Letters           (2023) 10:20 

selecting a weight for each indicator (Alsafadi et al. 2022a). 
To this end, the Analytic Hierarchy Process (AHP) method 
is utilized in conjunction with the linear overlay method 
or combination technique within the GIS environment 
(Feizizadeh and Blaschke 2013; Mugiyo et  al. 2021). The 
AHP is an acknowledged decision support system for 
environmental management (Alsafadi et  al. 2020a) that 
was introduced by Saaty (1977), which provides a statistical 
scale of decision consistency, arranges preference levels 
among criteria hierarchically, and simplifies priority levels 
among criteria using pair-wise comparisons, particularly 
when processing complicated decisional matters (Saaty 
1980, 1990, 2008).

Herein, the preference ratios of climatic indicators were 
assigned initially from a pair-wise partial correlations 
(PCorr) matrix of the selected criteria (climatic 
indicators) against observed yields for a span of 2000–
2015 to set the relative importance of a specific indicator 
compared to other indicators, then rounded to the 
nearest whole number, i.e., converting it to the Saaty’s 1 
to 9 scale ratios (Saaty and Vargas 1991) to assign a pair-
wise comparison matrix (PWCM) as

where Rx is the score value and the PCorr matrix has 
the property of reciprocity as an essential judgment 
expressed by 1/xi.

Through a PWCM, the AHP calculates the weight 
of each indicator (Wi) by getting the Eigenvector 
identical to the largest Eigenvalue of the matrix and then 
normalizing the aggregate of the elements to unity as

The primary input is elements of the PWCM, matrix 
A, which can be acquired as a matrix of n indicators 
created based on Saaty’s 1 to 9 scale ratios which are of 
the regulation n × n and expressed as

in which A is a PWCM with components aij . The matrix 
A has the property of reciprocity as an essential rule, 
which can be illustrated by aij = 1/aij . Subsequently, 
the total values in each column of the matrix A were 

(2)

Rx =















PCorrxi
PCorrxn

(if PCorrxiPCorrxn);More importance

1 (if PCorrxi = PCorrxn); equal importance
1

�

PCorrxi
PCorrxn

� (if PCorrxiPCorrxn); Less importance
,

(3)
n

∑

i=1

Wi = 1.

(4)A = [aij], i, j = 1, 2, 3, . . . ,n,

computed to normalize the primary PWCM, which can 
be expressed mathematically by ( 

∑n
i=1 aij = 1, 2, 3, ...n).

After completing the components of the primary 
matrix ( A ), we normalized it as a matrix B, which can be 
defined as

in which matrix B is the normalized primary matrix (A) , 
and its elements (bij) can be obtained as

Each weight ( Wi ) was calculated by dividing the total 
values of the bij within the matrix rows by the total 
number of factors or indicators ( n):

Equations (E1), (E2), (E3), (E4), and (E5) in the 
appendices demonstrate the relationships between the 
principal Eigenvalue ( �max ) and the corresponding 

Eigenvector (W) of the normalized matrix (Chen et  al. 
2010; Feizizadeh et al. 2014; Saha et al. 2021).

Ultimately, to demarcate the final wheat climatic 
suitability map, the eight thematic layers of the climatic 
indicators were integrated using Eq.  (1) and the raster 
calculator in ArcGIS tools (see Fig.  4). In a later step, 
the nonlinear curve fitting of integrated WCSI-induced 
yields is calculated by exponential growth equation as 
follows:

Wheat yields dataset in the statistical yearly report 
issued by the AMAS (2000–2021) and the climatic 
dataset collected from the SMA were used to analyze 
the relationship between the wheat yield (t.  h−1  yr−1) and 
the integrated WCSI. The yield data from 2000 to 2015 
period was used for calibration against the WCSI and 
2016–2021 data for testing against the future WCSI from 
ensemble CMIP6 GCMs.

(5)B = [bij], i, j = 1, 2, 3, ...,n,

(6)bij = aij
/

∑n
i−1 aij = 1, 2, 3, ...,n.

(7)Wi =

∑n
j=1 bij

∑n
j=1

∑n
j=1 bij

, i, j = 1, 2, 3, . . . ,n.

y = a ∗ exp(b∗WCSI).
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Results
Normalized PWCM and weights of agro‑climatological 
variables
The normalized PWCM and normalized weight 
amounts of the climatic variables were used in this 
study according to Saaty’s approach in weights 
selection, as shown in Tables 2 and 3. As provided, the 
CR value of the paired comparison is less than 10%, 
which is utilized in conjunction with the values of the 
maximum Eigenvalue, CI, and RI to indicate that the 
decision’s consistency is acceptable for the pairwise 
comparisons. The weight values for the climatic 

parameters of rainfed wheat production show that the 
PGC is the most important criterion, with a weight 
value of 0.26–0.4 and a positive relationship with wheat 
growth and yields, followed by the PVS and TFS. The 
weight values of the PFS and TGC, on the other hand, 
are the least important criterion, with a value of < 0.08.

Assessment of the WCSI against wheat yields and CMIP6 
GCMs’ predictability
The WCSI is assumed to be positively linked to wheat 
growth and yields. Herein, we calibrated and tested 

Fig. 4 Flowchart of the methodology applied for the analysis of the WCSI for wheat cultivation under climate change projections
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the WCSI and wheat yields in the whole study area. 
The WCSI-induced yield can reflect the variation that 
will be caused by climate change and was utilized to 
confirm the reliability of the integrated WCSI. For the 
2000–2015 period, the results show the nonlinear cor-
relation coefficient (r) between the wheat yields and 
the integrated WCSI at Swaida and Daraa was 0.78, 
whereas  R2 was 0.61 at p < 0.01 significant level with 
a standard error of 0.29 t.  h−1 (Fig.  5). We tested the 
predictability of the wheat yield and the WCSI using 
the ensemble GCMs’ data during the testing period 
of 2016–2021. The results indicate that the correla-
tion (r) and  R2 between observed and predicted wheat 
yields using ensemble GCMs under scenario SSP585 
were 0.52 and 0.22, respectively, whereas the correla-
tion (r) and  R2 between observed and predicted WCSI 
for the same scenario were 0.58 and 0.32, respectively 
(Table  4). This indicates that the SSP585 scenario had 
a higher probability to capture the variability of climate 
and wheat yields in the study area. The SSP245 sce-
nario, on the other hand, showed a reverse relationship 
for WSCI prediction and less predictability of the crop 
yield (See Fig. 6).

Projected change of precipitation and temperature 
during the wheat growing cycle
The spatial distribution of precipitation during the wheat 
growing cycle (PGC) for 1982–2015 and projected 

change for 2020–2100 under the scenarios SSP126, 
SSP245, and SSP585 are shown in Fig. 7.

The spatial distributions of PGC for 1982–2015 are 
similar to BCC-CSM2-MR projections under SSP245 
scenario with a slight decrease, but the PGC presented 
more decline compared with 1982–2015 for Canadian 
and French models under the SSP585 scenario. As such, 
the boundary of the PGC for 2080–2100 shifts westward, 
and the suitability in the central and western parts of the 
study area is less compared with the baseline. Projected 
change of PGC by most GCMs utilized in the study area 
suggested somewhat a consistent declining pattern in 
the regional mean PGC values, but these declines are 
more pronounced under the SSP585 scenario, i.e., the 
aggressive emissions scenario.

The spatial distribution of temperature during cycle 
(TGC) for 1982–2015 and projected change for 2020–
2100 under SSP126, SSP245, and SSP585 are presented in 
Fig. 8.

The spatial distributions of TGC for 1982–2015 are 
near to GCMs projections under SSP126 for the 2020–
2040 period with a slight increase, but the TGC presented 
more increases compared with 1982–2015 for CanESM5 
and IPSL-CM6A-LR under the SSP585 scenario, as such, 

Fig. 5 Fitting the nonlinear relationship between the yields (t. 
 h−1  yr−1) and the integrated WCSI for 2000–2015

Fig. 6 The correlation matrix between observed WCI and wheat 
yields and predicted ones by GCMs’ SSP scenarios for the testing 
period of 2016–2021

Table 4 Summary of testing the ensemble GCMs’ predictability of the yield and the WCSI data during the 2016–2021 period

Predicted by GCMs 
SSP126

Predicted by GCMs 
SSP245

Predicted by GCMs SSP585

Observed WSCI r 0.48 − 0.89 0.58

R2 0.23 0.79 0.32

Observed yield r 0.30 − 0.03 0.52

R2 0.1 0.01 0.22
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the boundary of the TGC for 2080–2100 shifting from S1 
class to S0 class, where the suitability in the study area is 
higher compared with the baseline. Projected change of 
TGC by most GCMs utilized in the study area indicated 
the same patterns of increases in the regional mean of 
TGC values, but these increases are more pronounced 
for CanESM5 and IPSL-CM6A-LR under the SSP585, i.e., 
the aggressive emission scenario of 2080–2100 period; 
hence, the boundary of the TGC returns to S1 class but 
linked with an aggressive increase in temperature values.

Temporal evolution of the WCSI and wheat yield 
under current climate and CMIP6 GCMs ensemble
Figure 9 shows the temporal evolution of the WSCI and 
wheat yield from 1982 to 2015, as well as the projected 
change for 2022–2100 under scenarios SSP126, SSP245, 
and SSP585. The temporal evolution of the WSCI for 
1982–2015 presented a slight decrease, and the biggest 
decrease was in 2008. While the temporal evolution of 
the WCI and wheat yield under ensemble CMIP6 GCMs 
and SSPs presented varied projections, for instance, the 
WSCI recorded lower values than the baseline in the 

SSP585 scenario. This indicates that the WSCI and wheat 
yields will be more affected by warming and decreasing 
precipitation under SSP245 and SSP585 scenarios, i.e., 
the aggressive emissions scenarios.

Spatial distribution of the WCSI
The spatial distribution of rainfed wheat’s WCSI for the 
baseline 1982–2015 and time periods 2020–2040 and 
2080–2100 under the scenarios SSP126, SSP245, and 
SSP585 is presented in Fig. 10 and Table 5. The WCSI 
for the baseline 1982–2015 ranges from 75 to 100% and 
reveals an increasing trend from east to west. The area 
with WCSI between 95 and 85% (S2), mainly distrib-
uted in most of the study area except the western and 
central parts, accounting for roughly 77.2% of the study 
area. However, the area with WCSI higher than 95% 
(S1) accounts for 13% of the study area.

For GCM “BCC-CSM2-MR,” between 2020 and 2100 
under three SSP scenarios, WCSI values decrease 
in some parts and increase in other parts with WCSI 
values higher than the baseline and are mostly distrib-
uted in the central and western parts, while, the WSCI 

Fig. 7 Spatial distribution projected change of precipitation during the wheat growing cycle (PGC) derived from three CMIP6 GCMs
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record lower values than baseline in the eastern parts. 
The area with WSCI values between 85 and 95% (S2) 
are mainly distributed with an estimated area of 74.7, 
73.1, and 66.6% of the study area under the three sce-
narios SSP126, SSP245, and SSP585, respectively, for 
2021–2040, whereas in 2080–2100 the proportions 
are approximately 80.1, 64, and 63.1% under the three 
scenarios SSP126, SSP245, and SSP585, respectively. 
Remarkably, the boundary of the S3 class moves west-
ward and increases in the 2080–2100, covering an area 
of 19.6 and 30.8% of the study area under SSP245 and 
SSP585, respectively. Under the SSP585 scenario and 
2080–2100 period, the boundary of WCSI for S1 class 
shrinks greatly in the central and western parts and 
covers only an area of 6%.

Regarding GCM “CanESM5” projections between 
2020 and 2100 under three SSP scenarios, the WCSI val-
ues increase and decline in some parts. The area with 
WSCI values between 85 and 95% (S2) is 64.4, 64, and 
64.2% of the study area under scenarios SSP126, SSP245, 
and SSP585, respectively, for 2021–2040, whereas the 

proportions are approximately 60.8, 59.2, and 64.5% 
under the same three scenarios, respectively, for 2080–
2100. Remarkably, the boundary of the S3 class moves 
westward and increases more broadly than BCC-CSM2-
MR in the 2080–2100 period, where this region covers an 
area of 27.3 and 34.2% of the study area under the scenar-
ios SSP245 and SSP585, respectively. Under the SSP585 
scenario and 2080–2100 period, the boundary of WCSI 
for S1 class shrinks greatly in the central and western 
parts and covers only an area of 1.3%. Under the SSP245 
scenario and the 2080–2100 period, the boundary of 
WCSI for S2 class shrinks greatly in the central part and 
covers an area of 59.2%.

According to GCM “IPSL-CM6A-LR” projections for 
the same periods and scenarios, the WCSI records sharp 
increasing and decreasing trends in the study area. The 
area with WSCI values between 95 and 85% (S2) is 66.4, 
68.2, and 68.5% of the study area under three scenarios 
SSP126, SSP245, and SSP585, respectively, for 2020–
2040, but the proportion is approximately 67.3, 60.8, and 
62.6% under the same three scenarios, respectively, for 

Fig. 8 Spatial distribution projected change of temperature during the wheat growing cycle (TGC) derived from three CMIP6 GCMs
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Fig. 9 Temporal evolution of the WCSI and wheat yield under current 
climate and ensembled CMIP6 GCMs

Fig. 10 Spatial distribution of rainfed wheat’s WCSI for the baseline 
1982–2015, and both periods of 2020–2040 and 2080–2100 under 
SSP126, SSP245, and SSP585

Table 5 Area affected (%) per WCSI categories under climate change projections for three models

The values in parentheses are the amount of change compared to baseline climate values (%)

The bold values indicate a significant change in WCSI categories

Class Baseline Class SSP126 SSP245 SSP585

2020 
2040

2080 
2100

2020 
2040

2080 
2100

2020 
2040

2080 
2100

1982 
2015

S1(95–100) 13 BCC‑CSM2‑MR

S1 15.5 (+ 2.5) 14.8 (+ 1.8) 21.4 (+ 8.4) 16.4 (+ 3.4) 21.6 (+ 8.6) 6.1(− 6.9)
S2 74.7 (− 2.5) 80.1 (+ 2.9) 73.1 (− 4.1) 64 (− 13.2) 66.6(− 10.6) 63.1(− 14.1)
S3 9.8 (0) 5.1(‑4.7) 5.5 (− 4.3) 19.6 (+ 9.8) 11.8 (+ 2) 30.8 (+ 21)

S2(85–95) 77.2 CanESM5

S1 21.4(+ 8.4) 21.6(+ 8.6) 21.3(+ 8.3) 13.5(+ 0.5) 20.5(+ 7.5) 1.3(− 11.7)
S2 64.4(− 12.8) 60.8(−16.4) 64(− 13.2) 59.2(− 18) 64.2(− 13) 64.5(− 12.7)

S3 14.2(+ 4.4) 17.6(+ 7.8) 14.7(+ 4.9) 27.3(+ 17.5) 15.3(+ 5.5) 34.2(+ 24.4)
S3(60–85) 9.8 IPSL‑CM6A‑LR

S1 21.2(+ 8.2) 15.6(+ 2.6) 15(+ 2) 8.8(− 4.2) 21.6(+ 8.6) 2.2(− 10.8)
S2 66.4(− 10.8) 67.3(− 9.9) 68.2(− 9) 60.8(− 16.4) 68.5(− 8.7) 62.6(− 14.6)
S3 12.4(+ 2.6) 17.1(+ 7.3) 16.8(+ 7) 30.4(+ 20.6) 9.9(+ 0.1) 35.2(+ 25.4)
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2080–2100 period. Remarkably, the boundary of the S3 
class clearly moves westward and increases more broadly 
than BCC-CSM2-MR and CanESM5 in the 2080–2100 
period, where this region covers an area of 30.4 and 35.2% 
of the study area under scenarios SSP245 and SSP585, 
respectively, while under the SSP585 scenario and 2080–
2100 period, the boundary of WCSI for S1 class shrinks 
largely in the central and western part and covers only 
an area of 2.2% of the region but it is higher than that in 
CanESM5 projections.

Compared with the baseline (1985–2015), the class 
with a WCSI between 60 and 85% (a moderately suit-
able class) is mainly distributed in the northern and 
eastern parts, and it will be increased by 21, 24.2, and 
25% for 2080–2100 under SSP585 for the three models, 
respectively, coupled with a decreasing in the S2 class by 
14.1, 12.7, and 14.6%, for 2080–2100 under the SSP585 
for the three models. According to the CanESM5 and 
IPSL-CM6A-LR projections, the spatial distributions 
of WCSI anomalies (Fig.  11) compared to the baseline 
under RCP8.5 for 2080–2100 indicate that the suitability 
will decrease in the future by 6–10% in the eastern and 
northern portions, by 2–6% in the western part, which is 
conducive to degradation the cultivation of winter wheat. 
While the BCC-CSM2-MR projection leads to optimistic 

reductions with values ranging between 0 and 6% for the 
same period and scenario.

Spatial distribution of projected wheat yields
The spatial distribution of wheat yields for the baseline 
1982–2015 and both periods of 2020–2040 and 2080–
2100 under SSP126, SSP245, and SSP585 are presented 
in (Fig. 12). The yields for the baseline 1982–2015 range 
from 0.25 to 2 t.  ha−1 and reveal an increasing tendency 
from the east to the west. The area with the lowest values 
(< 0.5 t.  ha−1) is mainly distributed in most of the study 
areas except the western and central parts, whereas the 
area with a value higher than 1 t.  ha−1 is distributed in 
the western and central parts.

Regarding the three models for 2020–2100 under three 
scenarios, the wheat yield values decrease in some parts 
and increase in other parts, with a value higher than the 
baseline in the central portion, while the area record 
lower values than the baseline in the eastern portion. 
Remarkably, the boundary of 0 to 0.5 t.  ha−1 class moves 
westward in the 2080–2100 period under SSP245 and 
SSP585 scenarios. For IPSL-CM6A-LR projections 
under the SSP585 scenario in 2080–2100, the boundary 
of 1.5 to 2 t.  ha−1 class shrinks greatly in the central and 

Fig. 11 Spatial distribution of wheat’s WCSI anomalies compared 
to the baseline 1982–2015, for both periods of 2020–2040 and 
2080–2100 under SSP 126, SSP 245, and SSP585

Fig. 12 Spatial distribution of rainfed wheat’s productivity for the 
baseline 1982–2015, and projections climate change for both periods 
of 2020–2040 and 2080–2100 under SSP126, SSP245, and SSP585
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western parts and covers a small area, while the class 
between 0 and 0.75 t.  ha−1 moved toward the central 
parts remarkably.

Compared with the baseline (1985–2015), the yields 
will be increased by 0.2–0.8 t  ha−1 in the central part 
for 2020–2040 under all scenarios and the three models. 
According to the CanESM5 and IPSL-CM6A-LR projec-
tions, the spatial distributions of yield anomalies under 
RCP8.5 for the 2080–2100 period (Fig. 13) compared to 
the baseline indicate that the productivity will decrease 
in the future by − 0.1 to − 0.2 t  ha−1 in the eastern and 
northern parts, and by − 0.2 to − 0.8 t  ha−1 in the west-
ern part. However, the results indicate that BCC-CSM2-
MR projection would lead to less yield losses for the same 
period and scenario.

Discussion
The WCSI’ predictability of wheat yields, benefits, 
and limitation
Several studies have presented the importance of 
climatic data to detect crop productivity and classified 
the agro-climatic indices into three classes to study 
this association: crop simulation models or biophysical 
models (Kotlowski 2007; Kirthiga and Patel 2022); 
empirical data-based regression models (Lobell et  al. 
2007); and functional models (Chipanshi et  al. 2015). 

In our study, we focus on the WCSI as one of the 
empirical regression models for the prediction of wheat 
yield. It is less process oriented than crop simulation 
models and requires fewer auxiliary data compared to 
biophysical models, such as sowing date, grain size, soil 
properties, and other management practices (Asseng 
et  al. 2014; Kirthiga and Patel 2022). It is calibrated on 
historical agro-climatic data during the crop growing 
season with as little a priori information as possible, 
which makes it flexible and applicable using climate 
change projections, which cannot be easily applied using 
functional and process-based models (Mathieu and 
Aires 2018; Wallach et  al. 2021). It ranked the optimal 
values of temperature and precipitation during the crop 
growing season and transferred them to a numerical 
scale that took into account the optimal values and the 
critical limits for the growth and productivity of wheat. 
Simply put, it can be considered a climate indicator 
based on the optimal and critical values for wheat 
growth, unlike the meteorological indices that depend 
on the standardized values of a climatic element and its 
deviation from the mean. Therefore, the negative values 
of the meteorological drought index may not reflect the 
critical limits affecting the yield (Nxumalo et  al. 2022), 
especially in wet climates where the water balance is 
permanently positive in the higher latitudes. This leads 
to a negative correlation with the crop yield, which some 
studies interpret as a main factor for wheat yield losses 
in these areas due to wet stress (Mokhtar et  al. 2021b; 
Mohammed et al 2022b). Therefore, considering this type 
of indicator when estimating may lead to a deterioration 
in the performance of the outputs; herein, the WCSI 
works to avoid this limitation by using the functional 
relationships (optimum curves). This is consistent with 
what was found by Lischeid et  al. (2022); the models 
yielded an optimum temperature curve for months of 
the growing season, which indicated harmful impacts 
of extreme temperatures on yield, particularly during 
the critical phenological stages, such as grain filling 
and flowering. On the other hand, Li et al. (2019) found 
clear harmful effects of extreme precipitation on maize 
yield, where optimum precipitation in summer and 
late spring exceeded that of earlier months. However, 
this contradicts what was discovered by Pirttioja et  al. 
(2015) using the 26 biophysical-based models, which 
assumed a monotonic increase in wheat yield with 
increased precipitation in some countries (e.g., Spain, 
Germany, and Finland), but some studies confirm that 
most biophysical-based models tend to underestimate 
the negative impacts of excess precipitation above 
the optimum limits (Lobell and Asseng 2017; Webber 
et  al. 2020). The optimum curves effects have acquired 
considerable attention recently in the context of global 

Fig. 13 Spatial distribution of wheat productivity anomalies 
compared to the baseline 1982–2015, for both periods of 2020–2040 
and 2080–2100 under SSP 126, SSP 245, and SSP585



Page 15 of 21Alsafadi et al. Geoscience Letters           (2023) 10:20  

warming and climate change effects, specifically for 
wheat (Webber et al. 2018).

Although the WCSI presented good outputs in the 
prediction of wheat yield, it has some limitations: the 
effects of extreme weather events during the growing 
season were not taken into consideration in the WCSI’s 
parameters. In this study, the same set of parameters for 
winter wheat was used for all regions by considering the 
symmetric distribution of climate. The other major factor 
affecting yield prediction is the distribution of wheat 
varieties, whose agro-climatic characteristics (optimal 
values) could show some variations across the regions, 
and leading to uncertainties in their climate suitability, 
thus uncertainties in yield prediction. As such, adding 
new parameters, such as phenological data and sowing 
periods, and their application on a local scale needs 
further study in the future. However, presenting an 
integrated approach to crop yield modeling is a pivotal 
point for a better understanding of the potential impacts 
of climate change on crops, such as wheat, to develop 
appropriate mitigation strategies under climate change 
conditions.

Climate change and its effect on wheat production
Climate change has adversely affected the agricultural 
sector all over the world on both the global and regional 
scales (Ahmad et  al. 2015, 2019; Abbas et  al. 2017; Liu 
et  al. 2018). The southern part of Syria is subjected 
to climate change, especially drought, which had a 
negative impact on the agricultural sector and led to 

a decrease in crop yield, particularly in the first decade 
of the twentieth century (Mohammed et  al. 2020c). 
In this research, the impact of current and future 
climate (2020–2040, 2080–2100) on wheat production 
was assessed by using a new approach "the Weighted 
Climatic Suitability Index" under future climate data 
derived from three different GCMs (BCC-CSM2-MR, 
CanESM5, and IPSL-CM6A-LR). The results revealed 
that the baseline climate is moderately suitable (S2) for 
wheat production (Table 5). Previously, Mohammed et al. 
(2020d) reported that both precipitation and temperature 
were suitable (S1) for wheat production in the southern 
part of Syria. The differences between current research 
and Mohammed et al. (2020d) could be mainly explained 
by the implementation of the new approach (i.e., WCSI) 
based on AHP weights and WLC.

Regardless of the model that was implemented, cli-
mate change will pose a major threat to wheat produc-
tion in the southern part of Syria (Table 5, and Fig. 13). 
Nonetheless, the BCC-CSM2-MR was more optimistic 
than the other models in terms of climate suitability for 
wheat production in southern Syria, as can be detected 
in the Appendices (Figs.  14, 15, and 16). However, the 
differences in the model’s prediction can be explained by 
the difference in the inputs that are used in each model 
to simulate the feedback of the ecosystem on climate 
and climate change. In this context, the CanESM5 was 
reported to be one of the pioneer models with coarse 
resolution and high equilibrium climate sensitivity 
(Swart et al. 2019). Global climate models are expecting 

Fig. 14 Projected change of wheat agro‑climatological zones during the growing cycle derived from BCC‑CSM2‑MR
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an increase in the earth’s temperature along with an 
increased level of  CO2 concentration, which will have a 
different impact on crop production (Emam et al. 2015). 
On one hand, elevated  CO2 concentration  (CO2 ferti-
lization effect) could have a positive effect on crop pro-
duction (e.g., wheat) (Kimball 1986). On the other hand, 
projected climate change (elevated temperature, changes 
in precipitation pattern, drought, flood, etc.) will have 
a negative impact on the length of the growing season 

(Emam et  al. 2015; Bal et  al. 2022b), crop yield (Adams 
et al. 1988; Ahmed et al. 2016), and stability of the agri-
cultural sector (Agovino et al. 2019).

From a rainfed agricultural point of view, climate 
plays an important role in crop production (Isik, & 
Devadoss 2006; Harsányi et al. 2021; Aslam et al. 2017), 
especially in the semi-arid region (Emam et  al. 2015; 
Clay et  al. 2014). Hydroclimatic deficiencies are one of 
the biophysical deficiencies that negatively affected crop 

Fig. 15 Projected change of wheat agro‑climatological zones during the growing cycle derived from CanESM5

Fig. 16 Projected change of wheat agro‑climatological zones during the growing cycle derived from IPSL‑CM6A‑LR
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yield, which include unsuitable precipitation in space and 
time, along with high evapotranspiration (Rockström & 
Falkenmark 2000; Yeşilköy and Şaylan 2021). In fragile 
ecosystems, such as arid and semi-arid regions (like 
Syria), the time and amount of precipitation during the 
growing cycle are the important factors that determined 
crop yield. Precipitation during the growth cycle was 
regarded as the most important variable in this study, 
with a weightage of 0.26 to 0.4, and positively linked to 
wheat growth and yields. Many scholars emphasize the 
importance of precipitation for rainfed wheat production 
(van Ogtrop et  al. 2014; Kumar et  al. 2020; Aixia et  al. 
2022; Zhang et al. 2022; Lischeid et al. (2022)). It is good 
to mention here that the Mediterranean climate of the 
study area is distinguished by higher evaporation in the 
grain-fill period which badly affected the crop yield and 
grain quality (Ahmed et  al. 2016; Ahmed and Hassan 
2015).

Scientifically, the suitability of the current climate 
for any crop production could be defined through the 
suitability of climate factors (assuming all other factors 
are suitable), which include temperature and incoming 
radiation (Rockström & Falkenmark 2000; Jiu-jiang et al. 
2022). In this sense, our results also reported that the 
mean temperature during the flowering stage influences 
the climate suitability for wheat production (Tables 2 and 
3). In general, the gradual increase in air temperature 
has a negative impact on crop yield (Aslam et al. 2017). 
Hence, increased temperature due to climate change 
will directly increase the atmospheric water demand, 
which will accelerate plant transpiration, causing climate 
crop stress conditions (Rockström & Falkenmark 
2000). However, this process is affected by many 
multidimensional factors, such as climate conditions, 
crop type (C3 or C4), and growth phase (emergence, 
tillering). Emam et  al. (2015) reported that decreasing 
precipitation and increasing temperature in the semi-
arid region will directly affect the groundwater recharge, 
and indirectly the soil water content which will inhibit 
crop production in the rainfed area which is supported 
by our findings (Table  5 and Fig.  10). Since wheat 
belongs to plant group C3, which can tolerate climate 
change to a certain extent, the projected climate change 
(higher temperatures) will shorten the wheat growing 
cycle leading to reduced biomass and yield under high 
emission scenarios (Aslam et al. 2017). So, the increases 
in temperature during the wheat growing cycle under 
low and medium emission scenarios in the short term 
(the middle of the current century) remain within the 
optimal limits for the growth and maturity of wheat, as 
can be seen in the output of all models (BCC-CSM2-MR, 

CanESM5, and IPSL-CM6A-LR) under scenarios SSP126 
and SSP245 for the 2020–2040 period in Fig. 8.

Our results indicated that the CMIP6 GCMs’ 
projections under the SSP585 scenario and 2015–2100 
period showed a reduction of wheat yields by -0.2 to 
-0.8 t/ha due to a reduction of 4–12% of WCSI greatly 
in the western part, i.e., by 10–30% in general. A few 
studies were carried out to assess the impact of climate 
change on wheat production in the Mediterranean 
Basin. For example, future climate projections based on 
GCMs showed a 20% decrease in wheat yield in Turkey 
due to low precipitation and high transpiration, as well 
as a shorter grain-filling period (Özdoğan 2011). In 
Jordan, Al-Bakri et  al. (2011) projected a reduction of 
wheat and barley yields by 10–20% and 4–8%, due to a 
reduction of precipitation by 10–20%. Similarly, Nassiri 
et  al. (2006) concluded that climate change will reduce 
rainfed wheat yield by 18% (in 2025) and 24% (in 2050) 
due to a reduction in the length of the growing cycle 
and a precipitation deficit. Wheat yields in Algeria tend 
to decrease with future climate change, with a −  36% 
relative change in wheat yield between the future and 
the baseline (Chourghal et al. 2016). In contrast, Ashraf 
Vaghefi et  al. (2014) evaluated the impact of different 
climate scenarios on wheat production and water 
resources and reported that climate change will have a 
positive effect in some parts and a negative in other parts; 
this is consistent with the findings of our study.

Conclusion
The change in a suitable area for wheat cultivation in 
Syria during 2020–2100 compared to 1982–2015 was 
estimated using a newly proposed “Weighted climate 
suitability index.” Weights were assigned to eight 
climate-related suitability criteria using the AHP and the 
consistency of the weights was evaluated. Future climate 
data derived from three GCMs from the latest CMIP6 
was used for three emission scenarios, viz., SSP126, 
SSP245, and SSP585 for the period 2020–2100. The 
results indicated a decrease in area under the “extremely 
suitable” and “acceptable suitable” categories and an 
increase in area under the “moderately suitable” category 
for wheat production. This study has also identified that 
the yield reduction will be higher in western parts than 
in eastern and northern parts. Hence, more emphasis 
should be given to climate change adaptation strategies 
in wheat production, especially in the western parts of 
the study area. The results of this study will also help in 
the strategic planning of wheat production in Syria under 
the projected climate scenarios. Reports of this research 
are limited to small areas as a case study, although it is 



Page 18 of 21Alsafadi et al. Geoscience Letters           (2023) 10:20 

not relevant to similar regions worldwide. However, the 
study employs novel analytical methods that can be used 
broadly.

Appendix

Equations appendix
In AHP method it is substantial that the weights derived 
from PWCM be harmonious. As such, the Weighted Sum 
Vector (WSV) was computed to discover the consistency 
or inconsistency among the studied indicators. Due to 
random matrix figuration, some of the inconsistencies 
may be present in the outputs (Saaty 1980, 1990). We 
used Equations (E1) and (E2) to compute the Consistency 
Vector (CV) by multiplying the matrix A by the criteria 
weights (Feizizadeh et al. 2014):

in which the CV was derived by dividing the WSV by the 
criteria weights, can be expressed as

The lambda value ( �max ) which is the maximum 
Eigenvalue of the matrix (Saaty 1977) beingcomputed by 
the mean value of the CVs is obtained as

The consistency ratio ( CR ) as a coefficient of the 
degree of the matrix coherence and consistency 
was obtained, to report the likelihood of the 
matrix judgement and compatibility priorities were 
implemented randomly (Saaty 1977) is obtained as:

The RCI  is the random consistency index introduced 
by Saaty (1980) for n = 8, RCI  = 1.41, and the CI  is the 
consistency index and is being calculated as follows:

in which the maximum Eigenvalue of the matrix (�max) 
was calculated by Equation (E3). The CR coefficient 
should be equal to 0.10 or less, indicating that the degree 
of cohesiveness in the PWCM is acceptable; otherwise, it 
is indicating that the PWCM is incompatible and should 
be reevaluated (i.e., when the CR coefficient is > 0.10).

(E1)WSV = [aij ∗ wj], i, j = 1, 2, 3, . . . ,n,

(E2)

CV =

[

wsvj1

wj1

]

,

[

wsvj2

wj2

]

,

[

wsvj3

wj3

]

, ...

[

wsvjn

wjn

]

.

(E3)�max =
cv1+ cv2+ cv3+ ...cvn

no. of criteria
.

(E4)CR =
CI

RCI
.

(E5)CI =
�max − n

n− 1
,
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