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Abstract 

Physical modeling of precipitation at fine (sub-kilometer) spatial scales is computationally very expensive. This study 
develops a highly efficient framework for this task by coupling deep learning (DL) and physical modeling. This frame-
work is developed and tested using regional climate simulations performed over a domain covering Montreal and 
adjoining regions, for the summers of 2015–2020, at 2.5 km and 250 m resolutions. The DL framework uses a recurrent 
approach and considers atmospheric physical processes, such as advection, to generate high-resolution information 
from low-resolution data, which enables it to recreate fine details and produce temporally consistent fields. The DL 
framework generates realistic high-resolution precipitation estimates, including intense short-duration precipitation 
events, which allows it to be applied in engineering problems, such as evaluating the climate resiliency of urban 
storm drainage systems. The results portray the value of the proposed DL framework, which can be extended to other 
resolutions, periods, and regions.
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Introduction
Intense short-duration precipitation events can lead to 
catastrophic flash flooding in urban regions and their 
intensity/duration/frequency characteristics are thus 
widely used in the design of engineering systems, such as 

storm water drainage. In a warming climate, the intensity 
and frequency of extreme precipitation are expected to 
increase due to the increasing water-holding capacity of 
the atmosphere (e.g., IPCC 2013), which is increasingly 
being accounted for by practitioners during the design 
of civil infrastructure. Understanding projected changes 
to short-duration precipitation extremes is particularly 
important, given that rapid urbanization is occurring, 
leading to over two-thirds of the global population being 
projected to live in urban regions by 2050 (UN 2018). 
Urban regions influence regional weather and climate, 
as they are replete with anthropogenic heat and aero-
sol sources, store little water and obstruct atmospheric 
motion (e.g., Oke 1982; Huszar et al. 2014; Daniel et  al. 
2019). The urban heat island (UHI), characterized by 
higher temperatures in urban regions than surrounding 
areas, may contribute to strengthening convection which 
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can lead to enhanced precipitation extremes (e.g., Shep-
herd and Burian 2003; Mölders and Olson 2004).

Regional climate models (RCMs) are useful tools to 
study projected changes to climate, which are being 
increasingly used to inform effective adaptation meas-
ures to cope with the impacts of global warming in many 
fields. However, short-duration precipitation extremes 
are generally associated with small-scale processes, such 
as deep convection, which are not resolved at the scales 
of most existing RCM simulations and are thus approxi-
mated through various parameterizations. The recent 
studies have shown that high resolution (i.e., convection 
permitting) RCM simulations can realistically capture 
short-duration precipitation extremes due to better rep-
resentation of mesoscale dynamics, cloud microphysics, 
surface heterogeneity and orographic effects (Prein et al. 
2015; Kendon et al. 2017; Diro and Sushama 2019; Teufel 
and Sushama 2022).

Development of effective adaptation and mitigation 
strategies requires information of intense precipitation 
changes at engineering/super scales (i.e., < 1  km spatial 
resolution). The previous studies have shown that cli-
mate simulations with advanced representation of urban 
regions in RCMs are able to adequately capture urban−
climate feedbacks (e.g., Teufel et  al. 2021). However, 
despite significant developments in computing technol-
ogy, parallel programming architectures and improved 
representation of physical processes in climate models, 
high computational cost continues to be a major bar-
rier in undertaking climate simulations at engineering 
scales for sufficiently longer periods. For example, a cli-
mate simulation at 250 m requires about 1000 times the 
computing resources required at 2.5  km over the same 
domain. In addition, ensembles of climate simulations 
are generally required to quantify uncertainty in cli-
mate projections and that further amplifies the required 
resources. The recent advances in machine learning (Bre-
nowitz and Bretherton 2018; Reichstein et al. 2019) and 
its applications in various fields (e.g., Chung and Shin 
2018; Ding et al. 2020; Pradhan et al. 2020; Stengel et al. 
2020; Van et al. 2020; Ray and Chattopadhyay 2021; Bar-
rera-Animas et al. 2022; Girihagama et al. 2022) provide 
an opportunity for developing hybrid approaches, com-
bining physical understanding of atmospheric processes 
with machine learning architectures, to overcome this 
obstacle and advance studies on climate−urban infra-
structure interactions (Wu et  al. 2021) and informing 
design methodologies. In the recent years, deep learning-
based image super-resolution (SR) models built using 
convolutional neural networks (CNNs) have been devel-
oped (e.g., Wang et al. 2015; Dong et al. 2016; Lai et al. 
2017; Zhang et  al. 2018) and applied to produce high-
resolution physical fields in various domains (Li et  al. 

2009; Trinh et al. 2014; Vandal et al. 2017; Xie et al. 2018; 
Stengel et al. 2020). The CNN-based SR approach is data-
driven and does not require solving complex analytical 
formulations, which dramatically decreases the compu-
tational cost of generating high-resolution data once the 
parameters of CNNs are properly trained and validated.

This study focuses on the development, validation 
and application of a novel framework combining the 
physically based regional climate model GEM (Global 
Environmental Multiscale) outputs with deep learning 
techniques to efficiently generate precipitation informa-
tion at applied engineering-oriented fine spatial scales. 
Such fine resolution information is extremely useful for 
evaluating climate resiliency of urban infrastructure sys-
tems to flash flooding in urban centers such as Montreal, 
where flash flooding caused by high-intensity rainfall is 
a recurrent problem. Montreal is the second largest city 
of Canada and is the major economic hub in eastern 
Canada. Weather related disruptions can trigger cascad-
ing impacts on various interconnected urban systems in 
Montreal. Given such a high impact of short-duration 
precipitation extremes in urban regions, the objective of 
this study is to develop an efficient and physically consist-
ent emulator for intense precipitation during the summer 
season for Montreal, at the sub-hourly time scales associ-
ated with deep convection, to support studies on climate 
resilience of various urban systems. In addition, the goal 
is to keep the development as generic as possible so that 
the developed framework can be extended to other sea-
sons, periods and regions of the world.

The remainder of this manuscript is organized as fol-
lows: “Methodology” section describes the machine 
learning framework, the physical climate model, and the 
experiments performed. “Results” section presents the 
outputs obtained from the machine learning model and 
compares them to the climate model outputs. Finally, 
“Discussion and conclusions” section provides discus-
sion, conclusions and future avenues of research. Main 
highlights of the study are also discussed in this section.

Methodology
Deep learning framework
Given that precipitation evolves in both space and time, 
the objective of generating high-resolution (HR) precipi-
tation from low-resolution (LR) precipitation is func-
tionally similar to the problem of video super-resolution 
(VSR). VSR differs from single image SR in that temporal 
relationships are exploited by combining the information 
from multiple LR frames to reach better quality results. 
Many existing VSR methods approach the problem by 
combining a batch of LR frames to estimate a single HR 
frame, effectively dividing the task of VSR into a large 
number of separate multiframe SR subtasks (Caballero 
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et al. 2017; Liu et al. 2017; Makansi et al. 2017; Tao et al. 
2017). However, generating each output frame separately 
reduces the method’s ability to produce temporally con-
sistent HR frames, often resulting in artifacts.

The deep learning (DL) framework used in this study 
is inspired by the one proposed by Sajjadi et  al. (2018), 
named frame-recurrent video super-resolution (FRVSR; 
Fig.  1a). This recurrent approach passes the previ-
ously estimated HR frame as an input for the follow-
ing iteration. Information from past frames can thus 
be propagated to later frames which helps the model to 
recreate fine details and produce temporally consistent 

videos, significantly outperforming other state of the art 
methods.

In this study, two physical considerations are taken 
into account to adapt the FRVSR approach to the task of 
generating SR precipitation. First, in VSR the displace-
ments from one frame to the next (called optical flow) 
are typically estimated from the frames themselves—Saj-
jadi et al. (2018) used an encoder−decoder CNN for this 
task. The same approach could be chosen for SR precipi-
tation, but instead, the physical fact that precipitation is 
advected by wind is used to derive optical flow, which has 
the advantage that flow estimates are available at all times 

Fig. 1 a The architecture of the FRVSR framework by Sajjadi et al. (2018). Blue boxes are used for LR input data, yellow boxes for field operators, 
green boxes for HR data and red boxes for CNNs. Loss terms are shown in orange. b Proposed deep learning framework for precipitation. c GEM 
computational domain at 2.5 km (brown; every 5th grid cell shown) and 250 m (blue; every 20th grid cell shown). The outer thick lines represent the 
model domain, while the inner thick lines represent the model free domain. Background colors represent orography (m asl). d Urban fraction in the 
250 m domain. Water bodies are shown in dark blue
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and locations, given that wind is a continuous field. This 
approach also avoids having to train an additional CNN 
and needing to merge two loss terms. Second, the CNNs 
in Sajjadi et al. (2018) operate in LR space, enabling faster 
training, but imposing some constraints on the choice of 
the upscale factor (4 × in their case). This is undesirable 
in SR precipitation, where the upscale factor may vary 
depending on the specific resolutions of the HR and LR 
climate simulations. In addition, applying transposed 
convolutions or similar methods to generate HR outputs 
can result in undesirable gradients and artifacts—for 
these reasons, the CNN in the proposed SR precipitation 
framework is set to operate in HR.

The estimates of FRVSR tend to improve with time, 
i.e., for the first frame of a scene, its performance can-
not exceed that of a single-frame image reconstruc-
tion method. For subsequent frames, the framework is 
able to leverage past information, thus producing better 
estimates. One implication of this is that if movement 
between consecutive frames is too fast, each frame will 
appear relatively independent from the previous ones, 
and a significant fraction of the new frame will not have 
been previously seen by the DL model, which would 
degrade its performance. To avoid this, displacements 
between frames should be small—in the case of SR pre-
cipitation, this can be achieved by using the highest feasi-
ble temporal resolution, as constrained by the timestep of 
the climate model.

Figure 1b shows the DL framework used in this study. 
The inputs consist of LR precipitation fields and LR 
storm motion estimates (derived from cloud-level winds). 
LR information first needs to be upscaled to HR, which is 
accomplished using bilinear interpolation on precipita-
tion and each storm motion component (u, v). The HR 
storm motion is then used to advance the previous HR 
precipitation estimate in time, which is then used along-
side the upscaled LR precipitation as inputs to SRNet, 
which outputs the new best estimate of HR precipita-
tion. The above procedure is then repeated for each sub-
sequent timestep. SRNet is a 5-layer CNN in which the 
convolutional kernel of each layer is 3 × 3 and each layer 
outputs 16 feature maps. The rectified linear unit (ReLU) 
function is used as the activation function for all convo-
lutional layers. The loss function is defined as the mean 
squared error (MSE) of the reconstruction (for all grid 
cells and all timesteps).

Climate model and simulations
The limited area version of the physically based model 
GEM (Côté et  al. 1998; Girard et  al. 2014) is used to 
perform simulations for the summers (June–August) 
of 2015–2020, at 2.5 km (low) and 250 m (high) resolu-
tion. The experimental domains for the two resolutions 

are shown in Fig. 1c, with the smaller 250 m resolution 
domain covering the city of Montreal. The urban cover-
age for Montreal and surroundings is shown in Fig.  1d. 
GEM is used for numerical weather prediction at Envi-
ronment and Climate Change Canada (ECCC). The land 
part of the model is represented using the Canadian 
Land Surface Scheme–CLASS (Verseghy 2011), while 
the urban regions are represented by the Town Energy 
Balance (TEB; Masson 2000) model. Condensation pro-
cesses are computed by a double-moment microphys-
ics scheme (Milbrandt and Yau 2005). More details on 
the parameterizations used can be found in Diro and 
Sushama (2019). The urban climate simulation at high 
resolution is driven at the lateral boundaries by the low 
resolution GEM simulation, which is in turn driven by 
ERA5 reanalysis data (Hersbach et  al. 2020) from the 
European Centre for Medium-Range Weather Forecasts. 
GEM outputs at 1-min intervals from both simulations 
constitute the input data for the DL framework, and 
match the timestep of the LR simulation. The HR simu-
lation uses a 10 s timestep, but the highest feasible tem-
poral resolution is constrained by the coarser timestep of 
the LR simulation (60 s).

Deep learning experiments
It is fundamental to note that the HR GEM simulation 
is driven by the LR GEM simulation only at the lateral 
boundaries, which means that the HR simulation has 
considerable freedom to develop its own precipitation 
evolution, which often differs from the LR simulation in 
precipitation coverage and intensity. Although expected, 
these differences make it unadvisable to train the DL 
framework using the HR and LR simulation outputs 
directly. Instead, a two step process is developed: first, 
the DL framework is trained using the HR data and LR 
data generated from it (this is the method by which VSR 
frameworks are usually trained); and second, the trained 
framework is applied to the LR simulation outputs to 
generate HR data.

For the first step, it is desirable to generate LR data in 
which precipitation follows the spatiotemporal evolution 
of the HR data as closely as possible, given that during 
training the DL framework will strive to minimize errors 
in both space and time in the reconstruction of HR pre-
cipitation. This generated LR data  (LRG) is obtained by 
simply averaging the HR fields over each LR grid cell. 
Here, the data for the summers of 2015–2018 is used as 
the training dataset, and the data for 2019 is used as the 
validation dataset. Finally, the data for 2020 are used as 
the test dataset.

For the second step, the unseen LR simulations out-
puts for the entire 2015–2020 period are used as inputs 
to the trained DL framework. The HR outputs from the 
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framework will closely follow the spatiotemporal evo-
lution of the LR data, which differs from the HR truth. 
Given this, and the focus on high-intensity precipitation 
events, the performance of the framework needs to be 
assessed in terms of statistical similarity, such as the abil-
ity to reproduce the precipitation frequency–intensity 
relationships, often used for the design of urban drainage 
networks.

Results
Reconstruction of HR information from  LRG data
The performance of the DL framework is assessed by 
comparing its estimates to the HR truth, for unseen data 
in the testing period (i.e., summer of 2020). Comparisons 

are performed both for select intense precipitation 
events, and in terms of overall statistics for the testing 
period.

Figure  2a shows the precipitation intensities for 
1-min snapshots during selected heavy precipita-
tion events. It can be seen that the DL framework 
performs very well compared to the HR truth, being 
able to reproduce many details not visible in the  LRG 
input for all of the events. For instance, the HR truth 
for event 1 shows the presence of many cores (local 
maxima) of heavy precipitation. The DL framework is 
able to realistically capture most of those cores, being 
only slightly smoother than the HR truth. The same is 
true for events 3 and 4, although for the latter, the finest 

Fig. 2 a Precipitation fields (mm/h) for select high-intensity precipitation events, from  LRG (top), DL model (middle) and HR truth (bottom). b 
Frequency–intensity relationships for the three datasets in a, over the entire HR domain. c As b, but for Montreal’s downtown core



Page 6 of 9Teufel et al. Geoscience Letters           (2023) 10:19 

structures (only few HR gridcells wide) are not fully 
reproduced. The DL framework also performs very well 
at delineating the regions with precipitation intensities 
above 1 mm/h and it is also able to emulate the spatial 
structure of precipitation cores, in which high-inten-
sity precipitation is surrounded by lesser precipitation 
intensities, a feature not seen in  LRG, where a grid cell 
with high-intensity precipitation can be adjacent to one 
with zero or negligible precipitation.

To further assess its performance, the ability of the 
DL framework to reproduce the precipitation inten-
sity−frequency relationship is evaluated. In Fig.  2b, 
it can be seen that the frequency of very heavy pre-
cipitation (above 20  mm/h) is underestimated when 
averaging the HR data over a LR grid. For the heavi-
est intensities (100  mm/h and above), the frequency 
is underestimated by up to 50%. The DL framework is 
able to well reconstruct the frequency of heavy precipi-
tation, reversing most of the underestimation present 
in the  LRG input, and being close to the HR truth over 
the entire range of precipitation intensities. Since the 
performance of the framework for specific locations 
within the domain is also of interest, Fig. 2c shows the 
intensity−frequency curves for Montreal’s downtown 
core. Compared with Fig.  2b, the underestimation of 
the heaviest precipitation rates is more pronounced in 
 LRG, reaching close to 80%. The DL framework is able 
to correct a significant fraction of the underestimation, 
but not its entirety. One potential explanation would be 
higher frequency of precipitation events with very fine 
spatial structures over the downtown core, which are 
not fully reproduced by the DL framework (as previ-
ously mentioned).

Generation of HR information from actual LR data
Given that the developed DL framework performs well 
at reconstructing the HR truth from the  LRG data (see 
“Reconstruction of HR information from LRG data” sec-
tion), the next step is to apply the framework to the actual 
LR data and assess the realism of the generated output 
in terms of its similarity to the HR truth. Given that the 
fields cannot be directly compared at the grid cell level 
due to the differences between LR and HR GEM, meas-
ures of statistical similarity are used.

GEM simulations at LR exhibit a significantly greater 
degree of spatial autocorrelation than the  LRG data cre-
ated from HR fields (Fig. 3a). This is not surprising, con-
sidering that the actual resolution of a climate model is 
around 4–6 times coarser than its grid spacing, which 
means that the  LRG data are expected to have a greater 
amount of spatial detail (originally resolved at HR) than 
the corresponding LR data.

Given that the DL framework is trained using the  LRG 
data, it is desirable to transform the actual LR data so 
that it better resembles the  LRG data. The transforma-
tion applied reduces spatial autocorrelation (Fig. 3a) and 
is functionally similar to a sharpening filter. The transfor-
mation is performed by convolution with a 3 × 3 kernel, 
in which the center element has a value of 1.88, the four 
corners are zero, and the other four elements are − 0.22 
(the sum of all elements equals one as to not introduce 
bias). These values are chosen with the goal of improv-
ing the frequency−intensity relationship of the LR data, 
which is much closer to  LRG after the transformation 
(Fig. 3b).

Applying the trained DL model to the transformed 
LR data produces HR estimates that closely follow the 

Fig. 3 a Median spatial autocorrelations in  LRG, LR (GEM) and LR (transformed), and their differences with respect to  LRG. b Frequency–intensity 
relationships for the three datasets in a 
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spatiotemporal evolution of precipitation in LR GEM, 
but with the statistical characteristics of HR GEM. Fig-
ure 4a shows that LR GEM significantly underestimates 
the frequency of occurrence of torrential precipita-
tion (above 50  mm/h), which is greatly improved (i.e., 
much closer to the HR truth) after applying the DL 
framework. It is worth noting that the locations of high 
values in the DL outputs resemble those of LR GEM, 
which are not the same as in HR GEM. Given the rela-
tive rarity of such heavy precipitation, the differences 
in the location of the maxima are a consequence to the 
small sample size (6  years) and not indicative of long-
term means. In terms of the precipitation intensity−
frequency relationship (Fig.  4b), the DL framework 
produces results that are very close to the HR truth 
over the entire intensity range (from 1 to 100  mm/h). 
Even for specific areas, such as Montreal’s downtown 
core (Fig. 4c) the performance of the DL framework is 
quite adequate and much better than the original LR 
data.

Discussion and conclusions
In this study, a physics-informed deep learning frame-
work that enhances the resolution of precipitation from 
2.5 km to 250 m (i.e., by a factor of 10) is developed and 
tested for Montreal, which is the second largest city in 
Canada, using outputs from a physically based regional 
climate model. It is noted that the deep learning frame-
work is able to recreate fine details and produce tempo-
rally consistent precipitation fields by taking into account 
physical atmospheric processes, such as the advection of 
precipitation by wind, which is the novelty of this study. 
The results show that the deep learning model is capable 
of capturing many of the fundamental characteristics of 
intense short-duration precipitation events at fine spa-
tial scales, such as their coverage, intensity and spatial 
structure.

When applying this framework to outputs from 
coarser climate simulations in future studies, it is 
important to account for the fact that the actual reso-
lution of the precipitation data is coarser than its grid 
spacing, meaning that the data will be overly smooth 

Fig. 4 a Ratio of spatial frequency of rainfall intensity above 50 mm/h with respect to HR truth, from LR GEM (left) and DL model (right). b 
Frequency–intensity relationships for the three datasets in a, over the entire HR domain. c As b, but for Montreal’s downtown core
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and preprocessing (e.g., sharpening) would be required 
to increase the quality and realism of the estimates 
produced by the framework. Potential future improve-
ments to this framework include taking into account 
the spatial structure of precipitation and/or control-
ling variables (e.g., buoyancy, wind speed/shear), and 
improvements to storm motion estimates, given that 
storms often influence atmospheric circulation at local 
scales and thus not always follow regional-scale winds. 
We intend to explore such ideas in future research.

Finally, the benefits of a properly trained deep learn-
ing framework capable of generating engineering 
scale precipitation information cannot be overstated. 
For a fraction of the computational cost of conven-
tional methods that involve high-resolution numerical 
regional climate models, long simulations of precipita-
tion with ample spatial and temporal detail can readily 
be performed, and even generating several ensembles 
of simulations is readily feasible, which is fundamental 
for quantifying uncertainty in climate projections. This 
advancement in modeling intense precipitation events 
using physics-informed deep learning framework will 
facilitate the development of effective adaptation and 
mitigation strategies for the climate challenges being 
faced by highly interconnected engineering systems 
in complex urban environments. It is hoped that the 
outcomes of this study and the developed theoreti-
cal framework will trigger several additional studies in 
other urban regions of the world.
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