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Abstract 

As the resolution of regional climate models has increased with the development of computing resources, Added 
Values (AVs) have always been a steady research topic. Most previous studies examined AVs qualitatively by compar‑
ing model results with different model resolutions qualitatively. This study tried to quantitatively investigate the AV 
of the high-resolution regional climate model for precipitation by analyzing the distribution of kinetic energy accord‑
ing to the different wavelengths at two different resolutions (36 km vs. 4 km), away from the traditional comparative 
analysis. In addition, the experiment that the low-resolution topography was forced to the high-resolution model was 
additionally conducted to separate the AVs associated with the topographic effect. Among the three experiments, 
two with the same topography and two with the exact horizontal resolution were compared separately. With identi‑
cal topography, the high-resolution model simulated amplified precipitation intensity more than the low-resolution 
model in all quantiles, especially for extreme precipitation. The precipitation generated by mesoscale or smaller scale 
weather/climate events was also simulated with greater intensity in the high-resolution model. With the same grid 
spacing, the more detailed topography model showed AV for increasing spatial variability of precipitation, especially 
in mountainous regions. The AVs identified in this study were related to kinetic energy with wavelengths at the meso-
beta or smaller scale. On the other hand, the kinetic energy above the meso-alpha or larger scale has no significant 
correlation with the AV of precipitation.
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Introduction
Due to climate change, natural disasters are becoming 
more intense and frequent and commonly cause severe 
damage (Coronese et al. 2019; Madsen et al. 2014; Otto 
et al. 2018; Van Aalst 2006). Moreover, as global warming 
intensifies, numerous studies have predicted increased 
summer precipitation in East Asia (Kim et al. 2018; Lee 
and Cha 2020; Park et  al. 2021). Hence, advanced pre-
cipitation forecasting technologies are essential for the 

management of these coming disasters, because East Asia 
is particularly vulnerable to precipitation-related disas-
ters due to many megacities with more than 10 million 
inhabitants situated along the coast, as well as the com-
bination of complex topography and various meteoro-
logical phenomena (Hong and Kanamitsu 2014; Lee et al. 
2017; Liu et al. 2017; Son et al. 2017). The development 
of high-performance computing resources has made it 
possible to simulate the earth system at high resolution. 
In the 1970s, the general circulation model (GCM) with 
a coarse resolution of 2.5° ~ 10° was used for climate pre-
diction (Manabe et al. 1970; Wellck et al. 1971). Recently, 
however, climate simulations have become possible using 
a GCM with a resolution of less than 1° (Kim et al. 2019; 
Sakamoto et  al. 2012; Werner et  al. 2011). Even in the 
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High Resolution Model Intercomparison Project (High-
ResMIP), an inter-comparison project of GCM simula-
tion results at high resolution, the global climate was 
reproduced with a spatial resolution of up to 25 km. The 
results of this climate simulation were evaluated to serve 
as a more reliable source for assessing climate risks (Aji-
bola et al. 2020; Haarsma et al. 2016, 2020). Meanwhile, 
a regional climate model (RCM) was developed in the 
late 1980s, allowing efficient high-resolution simula-
tion of a specific region using the dynamic downscaling 
method (Giorgi 1990). In the early stage of RCM devel-
opment, many studies were conducted using the RCM 
with a resolution of at least 60  km (Giorgi et  al. 1990; 
Mearns et  al. 1995). The RCM has also developed with 
computing technology, making it possible to conduct 
multi-decadal simulations at a very high resolution (Berg 
et al. 2019; Cha et al. 2016; Fantini et al. 2018; Kim et al. 
2018). In particular, studies have been actively conducted 
using convection-permitting models (CPMs), the current 
state-of-the-art models with very high-resolution (usu-
ally < 4 km) which can directly simulate deep-convective 
processes without convection parameterizations (Clark 
et  al. 2016; Lenderink et  al. 2021; Meredith et  al. 2020; 
Prein et al. 2015).

As model resolutions have improved, the added value 
(AV) gained from using a high-resolution model over a 
coarser-resolution model has been constantly empha-
sized. A typical example of AV is that high-resolution 
models are particularly good at simulating extreme pre-
cipitation (Kopparla et  al. 2013; Lim et  al. 2014; Park 
et  al. 2020; Rauscher et  al. 2016; Shi et  al. 2018; Tölle 
et al. 2018; Torma et al. 2015; Vichot-Llano et al. 2021). 
For example, Fumière et al. (2020) showed that simulated 
hourly precipitation extremes in France were significantly 
improved when the horizontal resolution was enhanced. 
In addition, as the resolution was improved, the model 
performance for simulating weather events at the mes-
oscale or local horizontal scale (e.g., tropical cyclone, 
mesoscale convective system) could be improved (Jang 
and Hong 2014; Jin et al. 2014; Johnson et al. 2013; Lee 
et  al. 2020; Uddin et  al. 2021). Another benefit of high-
resolution models is that topography can be expressed in 
greater detail, improving the spatial correlation between 
modeled and observed precipitation (Güttler et al. 2015; 
Li et al. 2015; Pontoppidan et al. 2017; Smith et al. 2015; 
Tselioudis et al. 2012), especially in mountainous regions, 
such as the Alps (Torma et  al. 2015). However, there 
are also disadvantages to using high-resolution mod-
els. In some cases, precipitation was overestimated as 
the grid spacing decreased (Li et  al. 2020; Tripathi and 
Dominguez 2013). In addition, the high-resolution RCM 
may amplify the systematic bias of forcing data (Xu et al. 
2018). Research on the positive and negative effects of 

high-resolution models should continue to improve 
weather/climate predictions using numerical models.

There are also several limitations when analyzing AVs 
by comparing models with different resolutions. First, 
the uncertainty inevitably arises when forcibly convert-
ing the grid of one experiment into another to express 
AVs spatially. Hence, most previous studies have demon-
strated that the high-resolution models improve the spa-
tial distribution of the weather elements through a simple 
qualitative comparison without damaging the raw model 
data (Gibba et  al. 2019; Giorgi 2019; Lucas‐Picher et  al. 
2021). However, the qualitative comparisons can create 
a visual optical illusion which leads to misinterpreta-
tions. Another limitation is that the simple comparison 
with observation cannot sufficiently explain the dynamic/
physical processes for a specific AV. In other words, it 
is difficult to know whether the differences between the 
model experiments with dissimilar resolutions are caused 
by AVs or amplified noise. Therefore, various analysis 
methods are needed to more quantitatively investigate 
AVs of a high-resolution model and to understand associ-
ated processes.

This study was conducted based on many of the stud-
ies mentioned above, in which weather/climate event at 
a small horizontal scale is more reasonably simulated as 
the grid spacing decreases. However, this study tried to 
quantitatively estimate AVs using spectral analysis, away 
from the traditional analysis technique. It was assumed 
that as the resolution improved, kinetic energy with a rel-
atively short wavelength would increase when a weather 
event on a small-scale occurred. This study examined the 
influence of low-level (850 hPa) kinetic energy with vari-
ous wavelengths on the AV of the simulated precipita-
tion with high resolution for the Korean Peninsula. This 
study was accomplished by comparing two experiments 
with different model resolutions. This paper is organized 
in the following manner: model configuration, experi-
mental design, and analytical methods are introduced in 
“Data and methods” section. “Results” section presents 
the results for the AV of simulated precipitation with 
high resolution. Finally, the summary and conclusions are 
given in “Summary and conclusions” section.

Data and methods
Model configuration and experimental design
We used the Advanced Research WRF (ARW) model, 
version 4.1.2. The initial and boundary conditions were 
obtained from the ERA-Interim reanalysis data set 
with a spatial and temporal resolution of 0.7° and 6  h. 
The model consisted of three domains with horizon-
tal grid spacings of 36 km (d01, 277 × 173), 12 km (d02, 
262 × 220), and 4 km (d03, 214 × 214), and the target area 
was focused on the Korean Peninsula (Fig. 1a). We used 
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one-way nested domains with a Lambert conformal map 
projection. There were 33 hybrid levels from the surface 
to 50 hPa vertically. The physics options configured in the 
model included the Yonsei University planetary bound-
ary layer scheme (Hong et  al. 2006), the WRF single-
moment six-class graupel microphysics scheme (Hong 
and Lim 2006), the multi-scale Kain–Fritsch cumulus 

parameterization (Zheng et al. 2016), the Rapid Radiative 
Transfer Model for general circulation models (Iacono 
et  al. 2008), the Mesoscale Model version 5 Monin–
Obukhov surface layer scheme (Jiménez et al. 2012), and 
the Noah land surface model (Chen and Dudhia 2001). 
The simulation period was set from 0000 UTC on 1st 
May to 0000 UTC on 1st September 2001, 2006, 2009, 

Fig. 1  a WRF model domains with two nests and b–d topography (m) of the innermost domain in CTRL04, LOW04, and CTRL36, respectively. The 
dashed red lines indicate the mountainous areas
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and 2011. The experimental years were selected based 
on the year in which noteworthy extreme precipitation 
events occurred in South Korea after 2000 (KMA 2012). 
The first month was used as the spin-up period. The sea-
surface temperatures were updated at 6-h intervals using 
the ERA-Interim data set. In addition, the spectral nudg-
ing technique (Cha et al. 2011; Miguez‐Macho et al. 2004; 
Moon et al. 2018; von Storch et al. 2000) was applied to 
the zonal and meridional wind components in the outer-
most domain to constrain the model to be more consist-
ent with the ERA-Interim data set. The wind components 
with wavelengths longer than 1000 km were nudged.

As the grid spacing decreases, the topography changes, 
so the actual resolution effect includes the changed topo-
graphic effect. Hence, two experiments were performed 
to investigate the impacts of the horizontal resolution 
on the precipitation simulation, isolating the different 
topography effects: (1) a control experiment (CTRL) 
with no topography change, (2) the same experiment as 
CTRL except for lower resolution topography (LOW). 
The topography in the CTRL experiments was obtained 
from the Global Multi-resolution Terrain Elevation Data 
2010 (GTMED2010) with a horizontal resolution of 5 
arc-minutes in d01 and d02 and 30 arc-seconds in d03. In 
the LOW experiment, the topography of the innermost 
domain was replaced with that of the outermost domain 
using bilinear interpolation (Fig.  1b–d). Here, CTRL36 
(same as LOW36) indicates the results for the outermost 
domain of the CTRL experiment, while CTRL04 and 
LOW04 indicate the results for the innermost domains. 
The low-resolution topography data tended to lower 
topography and its deviation, especially in the eastern 
part of the Korean Peninsula, consisting of mountain-
ous areas. The maximum difference in topography height 
between the high-resolution and low-resolution data was 
about 800 m.

We used 95 stations of the Automated Synoptic 
Observing System (ASOS) data in South Korea to verify 
the simulated precipitation. Each model data was inter-
polated on a curvilinear grid to an unstructured grid of 
ASOS using the bilinear interpolation method and then 
verified.

Analytical methods
Based on the prior studies mentioned above, we 
hypothesized that higher model resolution could 
result in (1) greater extreme precipitation intensity, (2) 
increased short-duration precipitation due to smaller 
scale weather events, and (3) increased orographic pre-
cipitation. To evaluate these hypotheses, the impacts of 
the grid spacing on (1) the precipitation intensity and 

(2) the size of the rain cell were compared between the 
two experiments with the same topography (CTRL36 
vs. LOW04). For this analysis, the results of the outer-
most domain were cropped to the area of the innermost 
domain. In addition, the effect of the different topogra-
phies on (3) the spatial distribution of simulated precip-
itation was compared between two experiments with 
the same grid spacing (CTRL04 vs. LOW04). The daily 
precipitation was extracted for analysis if it exceeded 
1 mm·day−1. Hereafter, the AVs by a higher resolution 
model with fixed topography (LOW04) and those by an 
identical resolution model with more detailed topogra-
phy (CTRL04) are referred to as the “fine-mesh effect” 
and the “detailed topographic effect,” respectively.

We calculated the sizes of 3-hourly rain cells dur-
ing all simulation periods to examine the relationship 
between model resolution and simulated precipitation 
events with a short duration induced by small-scale 
weather phenomena. In this study, the rain cells were 
defined as the closed contours over which rainfall 
intensity exceeded 0.1  mm for 3  h. Figure  2 shows an 
example of how to identify and group rain cells. Rain 
cells were calculated at every output interval (i.e., 3 h), 
so every rain cell is two-dimensional. It is determined 
whether or not to assign a numbering of the rain cell 
group at each calculating grid moving eastward and 
northward (see Fig. 2c). The procedure of the rain cell 
grouping at each calculating grid is as follows. First, if 
the precipitation exceeds the threshold (0.1 mm) at the 
calculating grid, the rain cell group number is assigned 
sequentially, starting 1 by comparing four surround-
ing grids. It is noted that only four of eight surround-
ing grids need to be checked (see comparing grids in 
Fig. 2c), because we checked each grid in the order of 
eastward and northward directions. A new number 
is assigned if there is no grid, where the precipitation 
exceeds the threshold among the comparing grids. 
However, if just one comparing grid exceeds the thresh-
old, the group number of corresponding comparing 
grids is assigned to the calculating grid. In addition, 
if two or more cells exceed the threshold, the smallest 
group number among the comparing cells is assigned to 
the calculating cell, and the group number of all com-
paring cells is also changed to the same number (see 
group 1 in Fig. 2c). This procedure makes it possible to 
quantify the size of the rain cell.

This study used the spectral method to examine the 
model performance for kinetic energy depending on 
model resolution (Castro et  al. 2005) and its associa-
tion with simulated precipitation in the three hypoth-
eses mentioned above. We used kinetic energy at 
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Fig. 2  a Snapshot of 3-hourly precipitation, b corresponding result of the rain cell grouping, and c illustration of rain cell grouping algorithm



Page 6 of 14Kim et al. Geoscience Letters            (2022) 9:38 

850 hPa (TOTAL), which showed the highest temporal 
correlation with precipitation at various vertical levels 
(not shown). In this study, the kinetic energy was cal-
culated as follows:

where ua850 and va850 indicate the zonal and meridi-
onal wind components at 850  hPa. We obtained the 
kinetic energy spectrum at different wavelengths follow-
ing the method of Skamarock (2004) and Bolgiani et al. 
(2020) (Fig.  3a–c). Due to the limited domain sizes, the 
model in the target area (innermost domain) can simu-
late weather/climate events ranging from meso-α to 
meso-γ scales (Orlanski 1975). In this study, the TOTAL 
within the target area was filtered based on a wavelength 
of 200 km, which was the boundary between meso-α and 
meso-β scales, using the spectral method. The wind com-
ponents with wavelengths longer (shorter) than 200 km 
were extracted as ua850GE200 and va850GE200 (ua850LT200 
and va850LT200). The kinetic energies for the new wind 
components with wavelengths of meso-α (WMA) and 
meso-β (WMB) scales were then obtained as follows:

Using WMA and WMB, we analyzed the relationship 
between decomposed kinetic energy and simulated pre-
cipitation at different model resolutions.
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Results
Validation of precipitation
Although it is difficult to verify the high-resolution 
model data, because the resolution of observation has 
not kept up with those of models, it is still necessary to 
give the observed rainfall pattern as a general benchmark 
for verifying the model performance. Thus, the spatial 
patterns of seasonal (JJA) mean precipitation between 
observation and each model data were compared in 95 
stations (Fig. 4). In the case of the low-resolution model 
(CTRL36), precipitation was underestimated in most 
regions, especially in some parts of the northwestern and 
Southern regions of South Korea. However, when the 
model resolution was higher (CTRL04 and LOW04), the 
negative biases were greatly reduced, although they did 
not improve significantly in spatial distribution. When 
detailed topographic data were used (CTRL04), the bias 
pattern was similar to that of LOW04 but showed slight 
differences depending on the region. Although CTRL04 
slightly overestimated precipitation in the mountainous 
eastern part of South Korea, it decreased mean biases by 
increasing overall precipitation compared to LOW04.

Fine‑mesh effects
Prior to the analysis of precipitation intensity, the time 
series of differences in area-averaged daily precipitation 
and energy spectrum (i.e., WMA and WMB) between 
CTRL36 and LOW04 were analyzed to examine the gen-
eral relationship between simulated precipitation and 
kinetic energy, as well as the changes in the relation-
ship depending on the model resolution (Fig. 5). As the 
resolution increased, precipitation, WMA, and WMB 
increased on most days. The variation in precipitation 

Fig. 3  Kinetic energy spectrum (m2s−2) at different wavelengths (km) in a CTRL04, b LOW04, and c CTRL36, respectively. The kinetic energy with 
wavelengths longer (shorter) than 200 km is indicated by WMA (WMB)
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Fig. 4  Summer (June to August) mean precipitation (mm) during experimental period for a ASOS, and its biases (mm) for b CTRL04, c LOW04, and 
d CTRL36, respectively. The mean values of the biases are written on the top-right of each panel
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and WMB with different model resolutions was signifi-
cant in most years; however, it was not significant in the 
case of WMA. As the model resolution was higher, mean 
WMB (WMA) increased by 4.57 times (1.31 times) when 
the mean precipitation increased by 3.47  mm·day−1. 
Likewise, the t test results demonstrated significant 
changes in precipitation and WMB but not in WMA 
(Table 1). In other words, the difference in precipitation 
simulated by models with different resolutions could 
be more relevant to WMB than WMA. Moreover, the 

precipitation is more correlated temporally to WMB than 
WMA, especially in 2001 and 2011. Despite the small 
magnitude of WMB compared to WMA, WMB could 
be a significant driver of the difference in precipitation 
between the two simulations with different grid spacings. 
Decreasing grid spacing resulted in increased precipita-
tion caused by smaller scale weather/climate events.

We then analyzed whether the general relations 
between daily precipitation and WMB could also be 
applied to extreme precipitation (Fig. 6). We aggregated 
spatial-mean daily precipitation, WMA, and WMB 
and then classified them into 5 groups depending on 
their quantiles. The light, intermediate, and extreme 
precipitation belonged to the two leftmost quantiles 
(80–100%), two middle quantiles (20–60%), and the 
rightmost quantile (0–20%), respectively. The differ-
ence in precipitation intensity between different grid 
spacings tended to increase as the quantiles decreased, 
which meant that extreme precipitation intensities 
were more enhanced at high resolution. However, 
WMA did not exhibit much variation in resolution 

Fig. 5  Area-averaged daily precipitation and kinetic energy of LOW04 (left) and their changes compared to CTRL36 (right) for a, b 2001, c, d 2006, 
e, f 2009, and g, h 2011; yellow bar, red line, and blue line represent the precipitation (mm·day−1), WMA [m2·s−2 (left) ratio (right)], and WMB [m2·s−2 
(left) ratio (right)], respectively. The temporal correlation coefficients between precipitation and kinetic energy are written on the top-right of each 
panel

Table 1  Changes in daily precipitation (mm·day−1) and 
kinetic energy (m2·s−2) between LOW04 and CTRL36 with their 
significances (p value) calculated from t test

The values in bold with stars are statistical significance at 90% level

2001 2006 2009 2011

Precipitation 2.3 (0.13) 3.9 (0.02)* 4.1 (0.01)* 3.5 (0.03)*
WMA 3.8 (0.35) 1.6 (0.82) 0.7 (0.90) 5.7 (0.52)

WMB 2.3 (0.00)* 3.1 (0.00)* 2.7 (0.00)* 2.9 (0.00)*
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across all quantiles, suggesting that varying precipita-
tion intensities between different model resolutions 
were irrelevant for WMA. However, high-resolution 
WMBs at all quantiles were higher than low-resolution 
ones, especially at upper quantiles (i.e., higher precipi-
tation intensity and larger WMB). The t test results in 
Table 2 proved the significance of the variation in pre-
cipitation and WMB with different model resolutions. 
Figure 3 shows that WMB could drive the phenomenon 
of increased precipitation at a higher resolution, espe-
cially extreme precipitation.

Earlier results indicated that higher resolution mod-
els increased simulated precipitation due to WMB 
rather than WMA. Because WMB has a shorter wave-
length, it could induce intense precipitation in lim-
ited areas. Hence, the next step was to explore how 

models with different resolutions simulated precipi-
tation intensity based on rain cell sizes (Fig. 7). Here, 
after rain cells in all simulations were aggregated, they 
were divided into 8 groups according to the size of the 
rain cell. It is noted that the size threshold was set to 
362 km2 considering the grid spacing of the low-reso-
lution model (CTRL36). Two experiments exhibited 
significant differences in the simulated spatial devia-
tion, average, and maximum precipitation intensity of 
rain cells with a small size ranging to 4002 km2. The 
higher resolution model reproduced higher intensities 
of both mean and extreme precipitation of small-scale 
precipitation than the lower resolution one. In addi-
tion, the LOW04 simulated high spatial deviation of 
rain cells with relatively small size, which indicated 
intensities of small-scale precipitation were higher 
than the CTRL36. Meanwhile, in rain cells with a large 
size of 4002 km2 or more, the differences between 
model results decreased as the size increased. Con-
sidering that the range of the meso-β (meso-α) scale 
was 20–200 km (200–2000 km), as shown in Fig. 3, the 
differences in the performance for the precipitation 
simulation depending on the grid spacing occurred 
in the meso-β and part of the meso-α scale. This AV 
was considered to be correlated with kinetic energy, 
as shown in previous results. WMA showed a differ-
ent pattern to precipitation. Compared to WMB, the 
impact of grid spacing on WMA was negligible, but 
the differences in WMA between experiments were 

Fig. 6  Variation of precipitation intensities across different quantiles. The colored bars represent the intensity of simulated precipitation (mm·day−1) 
for each quantile; red and blue lines indicate the results of WMA (m2·s−2) and WMB (m2·s−2), while solid and dashed lines indicate CTRL36 and 
LOW04

Table 2  Changes in the intensity of simulated precipitation 
(mm·day−1) between LOW04 and CTRL36 for each quantile, and 
corresponding kinetic energy (m2·s−2) with their significance (p 
value) calculated from t test

The values in bold with stars are statistical significance at 90% level

80–100% 60–80% 40–60% 20–40% 0–20%

Precipita‑
tion

0.1 (0.18) 0.3 (0.02)* 1.8 (0.00)* 2.4 (0.00)* 2.9 (0.08)*

WMA 3.5 (0.36) 1.2 (0.76) 0.9 (0.86) − 2.5 (0.68) 2.5 (0.82)

WMB 1.2 (0.00)* 1.5 (0.00)* 2.0 (0.00)* 2.6 (0.00)* 3.7 (0.00)*



Page 10 of 14Kim et al. Geoscience Letters            (2022) 9:38 

prominent when the size of the rain cell was more 
expansive. However, WMB showed a pattern similar 
to precipitation; the values obtained from the models 
with different resolutions exhibited significant differ-
ences when the rain cells had a small size. As the grid 
spacing decreased, the model simulated smaller scale 
precipitation caused by more WMB.

Detailed topographic effects
Two experiments were conducted with the same grid 
spacing but different topography to analyze the impact 
of the detailed topography on precipitation simulation 
(Fig.  8). Compared to LOW04, CTRL04 could express 
more detailed topography, especially in the mountainous 
regions located in the eastern region of the Korean Penin-
sula (see also Fig. 1b, c). In LOW04, the ranges of terrain 

Fig. 7  Variation in precipitation intensities based on the size of the rain cell: a–c standard deviation, average, and maximum precipitation 
intensities, respectively, for each rain cell on a 3-hourly scale (mm·3 h−1). d Changes in WMA and WMB of LOW04 compared to CTRL36 (%)

Fig. 8  Different precipitation intensities depending on the topography: the difference in temporal mean a topography (m), b share of WMB in 
TOTAL (%), and c precipitation intensity (mm·day−1) between CTRL04 and LOW04
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height in the mountainous regions were 500–700  m, 
whereas CTRL04 expressed the height of 800–1000  m, 
close to the actual topography. The changed topography 
affected the simulation of kinetic energy. The changes 
in the proportion of WMB in the total kinetic energy 
increased markedly in mountainous areas. In addition, 
regions of increased precipitation were primarily consist-
ent with those of increased WMB. As with denser grid 
spacing, detailed topography increased WMB, which 
induced small-scale precipitation caused by orographic 
lifting.

More quantitative analysis was conducted to ensure 
relationships among topography, precipitation, WMA, 
and WMB (Fig.  9). We classified daily precipitation, 
WMA, and WMB into 5 groups depending on the top-
ographic height. In the rightmost quantile (0–20%), 
which has the highest elevation, precipitation of CTRL04 
was significantly greater than that of LOW04. How-
ever, there was no significant change in precipitation 
between the two experiments in other quantiles. Most 
of the increased precipitation in CTRL04 occurred at 

high altitudes. WMA tended to decrease as the altitude 
increased in both experiments, and there was little sig-
nificant difference between the two experiments. Hence, 
it is hard to correlate precipitation increment at high alti-
tudes with WMA. However, the WMB of CTRL04 was 
significantly higher than that of LOW04 in the rightmost 
quantile, consistent with Table 3. The increase of WMB 
at high altitudes could drive increasing precipitation in 
CTRL04.

Summary and conclusions
This study proved that simulated precipitation on the 
Korean Peninsula varied depending on the horizontal 
resolution (36 km vs. 4 km). In addition, in this study, we 
attempted to evaluate AVs using spectral analysis quan-
titatively. We classified kinetic energy into WMA and 
WMB based on a wavelength threshold of 200  km and 
investigated which one induced more significant changes 
in simulated precipitation as the horizontal resolu-
tion increased. In addition, because the topography was 
affected by the change in model resolution, we analyzed 

Fig. 9  Precipitation intensities (bar graph, mm·day−1), WMA (red line, m2·s−2), and WMB (blue line, m2·s−2) of CTRL04 and LOW04 depending on 
different quantiles of topographic height (%)

Table 3  Changes in the intensity of simulated precipitation (mm·day−1) between CTRL04 and LOW04 for each quantile of 
topography, and corresponding kinetic energy (m2·s−2) with their significance (p value) calculated from t test

The values in bold with stars are statistical significance at 90% level

80–100% 60–80% 40–60% 20–40% 0–20%

Precipitation 0.04 (0.97) 0.86 (0.42) 0.96 (0.38) 0.45 (0.68) 1.84 (0.07)*
WMA − 4.29 (0.24) − 2.01 (0.56) − 1.17 (0.71) − 2.75 (0.30) − 0.53 (0.76)

WMB 0.13 (0.51) 0.26 (0.14) 0.26 (0.11) 0.22 (0.33) 0.74 (0.02)*
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the fine-mesh effect after fixing the topography at two 
different resolutions. We also analyzed the detailed top-
ographic effect by fixing the grid spacing for two differ-
ent topographic resolutions. With the same topography, 
decreased grid spacing increased in extreme precipita-
tion intensities. Furthermore, the mean and maximum 
precipitation intensity for small rain cells increased. 
Analysis of the detailed topographic effect showed 
that the precipitation in mountainous areas increased 
when the high-resolution topography data were used, 
although the grid spacing was the same. The fine-mesh 
and detailed topographic effects all induced an increase 
in precipitation. The increased precipitation caused by 
higher resolution was not significantly related to kinetic 
energy at the meso-α or larger scale. However, the sim-
ulated kinetic energy at the meso-β or smaller scale sig-
nificantly affected the changes in precipitation simulated 
by models of different resolutions. As the model resolu-
tion was enhanced, the simulated precipitation induced 
by weather/climate events on a meso-β or smaller scale 
increased. In addition, even if only the topography was 
detailed, while the model resolution was fixed, precipita-
tion in the mountainous region at high altitudes induced 
by WMB (i.e., orographic lifting) increased.

As advancements in computing resources make it 
possible to conduct simulations with higher and higher 
resolutions, the impact of the model resolution should 
be investigated continuously. Especially, since sum-
mer precipitation in East Asia appears in mixed results 
of meteorological phenomena on various scales (e.g., 
monsoon on the synoptic scale, MCS on the mesoscale, 
and orographic effect on the regional scale), the Korean 
Peninsula is a place worth investigating AVs. This study 
emphasized that a high-resolution model should be used 
if the weather/climate to be analyzed has a small horizon-
tal scale. Conversely, high-resolution models are not nec-
essary if the analysis is conducted at a sufficiently large 
scale. Thus, the AV identified in this study, which refers 
to enhanced precipitation for small-scale weather/cli-
mate events in a high-resolution model, can be applied 
in a micrometeorological field, such as analyzing urban 
climate.

In this study, only the effects of the horizontal resolu-
tion were considered, but a few studies revealed that 
vertical resolution also greatly affected precipitation sim-
ulation (Liang et al. 2022; Ma et al. 2012; Volosciuk et al. 
2015). Hence, it is necessary to apply the methodology of 
this study to investigate the sensitivity of the vertical res-
olution. In addition, one limitation of this study is that it 
was difficult to verify the model performance for kinetic 
energy, because there was no high-resolution reanalysis 
data that covered the whole analysis region. Further-
more, the experimental design was limited to a particular 

domain size, target area, and model resolution, making 
it difficult to conduct experiments under various condi-
tions. In future research, the results of this study should 
be generalized to expand the experimental matrix. The 
disadvantages of increased model resolution should also 
be examined.
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