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Abstract 

With the rapid development of deep learning technologies, data-driven methods have become one of the main 
research focuses in geophysical inversion. Applications of various neural network architectures to the inversion of 
seismic, electromagnetic, gravity and other types of data confirm the potential of these methods in real-time param-
eter estimation without dependence on the starting subsurface model. At the same time, deep learning methods 
require large training datasets which are often difficult to acquire. In this paper, we present a generator of 2D sub-
surface models based on deep generative adversarial networks. Several networks are trained separately on realistic 
density and stratigraphy models to reach a sufficient degree of accuracy in generation of new highly detailed and 
varied models in real-time. This allows for creation of large synthetic training datasets in a cost-effective manner, thus 
facilitating the development of better deep learning algorithms for real-time inversion and interpretation.
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Introduction
Over the past few years, methods based on deep neu-
ral networks (DNN) received significant attention in 
the geoscientific community. They have been widely 
applied to various problems such as seismic data pro-
cessing and interpretation (Zhu et  al. 2019), earthquake 
and tsunami prediction (Fauzi and Mizutani 2020; Mulia 
et  al. 2020; Fauzi and Mizutani 2020) and many others. 
Of particular interest is the application of modern deep 
learning (DL) methods to inverse problems in geophys-
ics, i.e. estimation of subsurface parameters from meas-
urements by minimizing a misfit between observed and 
simulated data. These DL inversion methods have been 
extensively developed in recent years for the inversion of 
seismic (Araya-Polo et al. 2018; Yang and Ma 2019; Wu 
and Lin 2019; Li et  al. 2020), electromagnetic (Puzyrev 
2019; Oh and Byun 2021) and gravity (Yang et al. 2021) 
data. Contrary to the conventional gradient-based 

methods, which are commonly applied in the full wave-
form inversion (FWI) but are highly sensitive to the 
starting model, DL inversion does not require specify-
ing a particular model in advance. Instead, it allows for 
direct estimation of subsurface properties from observed 
data by exploiting different layers of abstraction to detect 
low-level and high-level features in data and “learning” 
nonlinear dependencies that link data and underlying 
physical model. The majority of the modern DL inver-
sion methods employ convolutional neural networks 
(CNN), which are very efficient in spatial data handling. 
Another advantage of the method is that its most com-
putationally expensive parts, which include data prepa-
ration and network training, can be performed offline. 
Once the network is properly trained (i.e. it reaches suf-
ficiently low errors during validation), estimation of the 
unknown parameters from new data can be done online 
and takes between a fraction of a second and a few sec-
onds depending on the model complexity. This allows for 
inversion in real time.

Despite these first promising results, DL inversion 
suffers from the same drawback as other DL methods, 
namely the need for a large number of labelled data 

Open Access

*Correspondence:  vladimir.puzyrev@curtin.edu.au

1 School of Earth and Planetary Sciences and Curtin University Oil and Gas 
Innovation Centre, Curtin University, Perth, Australia
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0264-6126
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40562-022-00241-y&domain=pdf


Page 2 of 9Puzyrev et al. Geoscience Letters            (2022) 9:32 

samples. This, in turn, requires significant manual labour 
and human expert involvement. Training a modern 
DNN-based inversion network typically requires hun-
dreds of thousands of complex velocity models (Ren et al. 
2021). Quality of training data is extremely important 
since neural networks can effectively learn how to recog-
nize real geological structures in field data only if trained 
on similar (real or high-quality synthetic) examples 
(Puzyrev and Swidinsky 2021). This motivates the devel-
opment of tools for the automatic generation of diverse 
subsurface models, which can be used later as training 
data in DL inversion.

Existing approaches to velocity model generation are 
largely based on the generation of models with common 
geological structures, such as folded layers, faults and salt 
bodies (Wu et al. 2020; Ren et al. 2021; de la Varga et al. 
2019; Ao et al. 2020). These methods typically start with 
a simple initial model and sequentially add geological 
structures using randomly chosen parameters (Liu et al. 
2021). Machine learning methods can address the task 
of model generation as well. For example, in Ovcharenko 
et  al. (2019) the authors used a CNN-based style trans-
fer approach to produce realistically textured subsurface 
models based on synthetic prior models. Another alter-
native, which had only been applied to model generation 
in earth sciences for geological facies modelling (Zhang 
et  al. 2019; Song et  al. 2021) but is widely exploited in 
other fields, is to use neural networks-based generative 
models.

The task of generating artificial data has become very 
common in the DL field in recent years, especially within 
image processing applications. Two classes of deep 
neural networks, namely Generative Adversarial Net-
works (GAN) and Variational Autoencoders (VAE), have 
achieved large success in generative modelling. GANs, 
originally proposed in 2014 Goodfellow et  al. (2014), 
have quickly become one of the most important devel-
opments in machine learning and computer vision in the 
2010s. Training of a GAN is done through an adversarial 
process involving a pair of networks: a generative model 
G that captures the data distribution, and a discrimina-
tive model D that distinguishes between samples gener-
ated by G and those coming from the training data. The 
resolution and quality of images produced by GANs 
improved rapidly from rather simple 322 and 482 pixel 
images in 2014 to realistic high-quality 10242 images in 
2019. Significant progress has been also made in improv-
ing the variety and diversity of the generated samples. 
These GAN-generated samples offer a novel method for 
data augmentation, which allows significant improve-
ment of various applied tasks (Sandfort et al. 2019).

In this paper, we present a new approach for geophysi-
cal model building based on GANs. Two state-of-the-art 

unconditional generative networks, namely StyleGAN2 
(Karras et  al. 2020) and its recent extension with adap-
tive discriminator augmentation (ADA) referred to below 
as StyleGAN2 ADA (Karras et  al. 2020), are applied to 
the creation of 2D density and stratigraphic models. 
StyleGAN2, while allowing an unprecedented quality of 
the generated images to be achieved, requires very large 
training datasets (of the order of 105 – 106 images). Using 
too little training data for GANs often results in discrimi-
nator overfitting, thus making its feedback to the genera-
tor meaningless and causing the training to diverge. The 
use of the ADA mechanism allows significant stabiliza-
tion of training in StyleGAN2 ADA when only limited 
data are available. Data and pre-trained networks are 
freely available at Github and can be used for 2D model 
generation by other researchers.

Stratigraphic forward modelling
We use the open-source modelling code Badlands (Salles 
et  al. 2018) to build 3D synthetic stratigraphic architec-
tures, which will allow rich datasets of 2D models to be 
extracted and used in network training. Badlands is able 
to simulate both landscape and stratigraphic evolution 
over space and time induced by sediment erosion, trans-
port and deposition. For this paper and amongst the dif-
ferent capabilities available, we switch on fluvial incision 
and hillslope processes, which are described by geomor-
phic equations and explicitly solved using a finite volume 
discretization. In our experiments, we assume spatially 
and temporally uniform soil properties over the region 
and we do not differentiate between regolith and bed-
rock. Under these assumptions, the continuity of mass is 
governed by long-term diffusive processes, detachment-
limited stream power law and tectonic forces (U):

with the elevation z (m), κ the diffusion coefficient for 
soil creep (Chen et al. 2014) (we choose 0.8 and 1 m2/yr 
for terrestrial and marine environments, respectively), m 
and n dimensionless empirically constants set to 0.5 and 
1, respectively, ǫ a dimensional coefficient of erodibility 
of the channel bed ( 2.e−6 yr−1 ), and PA a proxy for water 
discharge that numerically integrates the total area (A) 
and precipitation (P) from upstream regions (Salles et al. 
2018). Both κ and ǫ depend on lithology, precipitation, 
and channel hydraulics and are scale dependent (Tucker 
and Hancock 2010).

Figure 1 shows an example of the landscape and stratig-
raphy evolution simulations run for 20 million years over 
a continental scale triangular irregular network 822× 445 
km2 with a resolution of ∼ 2 km and outputs saved every 
50,  000 yr. Stratigraphic architecture records surface 

(1)
∂z

∂t
= U + κ∇2z + ǫ(PA)m∇zn,
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evolution history from sediment production in the conti-
nental domain to its transport and deposition in either the 
terrestrial or marine realm. At each internal time step, the 
stratigraphic mesh records for every node the elevation at 
the time of deposition, and the thickness of the active layers 
(which can be null in case of erosion or sedimentary hiatus) 
as well as potential thickness changes in underlying sedi-
mentary layers (due to erosion).

Training data
The 2D models used as the training data for our GANs 
are extracted from five 3D stratigraphic models gener-
ated using Badlands. Each density model is 8-10 km in 
length and 2-2.5 km in depth. Stratigraphic models have 
lateral dimension varying between 8 and 16 km and 
depth between 2 and 4 km (the aspect ratio is 4:1 for all 
2D models). To generate density models, we first assign 
lithological types which represent different shale–sand 
proportions (Bouziat et  al. 2019) to the Badlands-pro-
duced layers. The resulting density for each cell is calcu-
lated as:

Here, as ρshale and ρsand we use a porosity-dependent 
combination of matrix and pore fluid. As the matrix, we 
have either shale with 2.8 g/cm3 density or quartzite with 
a density of 2.65 g/cm3 ). The pore fluid is chosen as a 
saltwater with a density of 1.146 g/cm3 . The sand poros-
ity varies between 40% at the surface and 22% at depth 

(2)ρ = Vshale · ρshale + (1− Vshale) · ρsand .

of 2 km, while the shale porosity varies between 70% and 
35%.

Figure  2 shows several representative density and 
stratigraphy models from the training dataset. We can 
observe several realistic features including faults and pro-
grading sedimentary packages. Density increases with 
depth, however, the rate of this increase varies considera-
bly. Both density and stratigraphic training sets consist of 
5,000 different 2D models each. They are passed to GANs 
as single-channel grayscale images.

GAN setup
The training of a GAN involves training both generator 
and discriminator models simultaneously and in com-
petition with each other (Goodfellow et  al. 2014). The 
generator gradually learns to generate more realistic 
looking samples that could deceive the discriminator, 
while at the same time the latter learns to distinguish 
these better quality-generated samples from the real 
ones. As the architecture and properties of the Style-
GAN2 model, we use the config-e predefined configura-
tion which offers a compromise between quality of the 
generator and computational effort needed for training 
(Karras et  al. 2020). The generator and discriminator 
networks have 24.85 and 24.03 million trainable param-
eters, respectively. The first layer of the discriminator 
has the shape of 1 x 512 x 512, which corresponds to 
a single-channel 5122 image. 32 filters are used in the 
first convolutional layer. The last convolutional layer of 

Fig. 1  A Landscape evolution model outputs showing simulated elevation changes over time induced by spatially variable tectonic regimes and 
climatic (sea-level and precipitation) forcings. B Bottom panel shows recorded stratigraphic architecture after 20 Myr extracted as a 3D volume for 
the shaded red box defined in A. The volume can be sliced in all directions, here the cross-section A-B is visualized and coloured based on individual 
layer thicknesses. Contour lines are drawn every 250 kyr
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the discriminator has dimensions of 512 x 4 x 4. Table 1 
reports the main training statistics and compares per-
formance on NVIDIA GTX 1080 Ti and V100 GPUs. 
The length of the training process is described by the 

number og “kimg” that are thousands of real images 
shown to the network.

As the metric to assess the quality of generated 
images, we use the Fréchet inception distance (FID) 

Fig. 2  Sample models from the training datasets. A Density models. B Stratigraphic models
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which compares the distribution of generated images 
with the distribution of real images using the features 
from the last 2048-dimensional pooling layer (pool 3) 
of a pretrained Inception-v3 convolutional neural net-
work (Heusel et  al. 2017). Lower FID is better since it 
means that real and generated samples are similar in 
terms of the distance between their activation distribu-
tions. From Table 1, we observe that StyleGAN2 ADA 
takes a significantly fewer number of iterations to be 
trained (although ADA iterations take on average twice 
as long as the original StyleGAN2 iterations) and thus 
requires less GPU time, while delivering similar FID 
scores.

Numerical examples
Figure  3 shows several density models generated by the 
StyleGAN2 network. Here, we compare models gener-
ated using three different values of ψ parameter (Kar-
ras et  al. 2020), whose value determines the deviation 
of generated images from the average. The truncation 
parameter is commonly used to trade-off between the 
quality and variability of the output. Thus, ψ equal to one 
is equivalent to no truncation, while ψ values close to 
zero result in quality improvement at the cost of reduced 
variety. In this example, we observe a higher degree of 
similarity in the models shown in Fig. 3a. Larger values 
of the truncation parameter ψ clearly lead to higher vari-
ability in the generated samples (Fig. 3b, c).

In Fig.  4, we show examples of stratigraphic models 
generated independently of the density models by the 
StyleGAN2 network. These models resemble well the 
training set and include from 5–6 to 30 individual layers 
with highly varying thicknesses and different degrees of 
dip. The effect of the truncation parameter ψ is similar 
to the previous case. The network successfully generated 
stratigraphic features such as downlap, toplap, prograda-
tion, clinoform geometries, and structural features such 
as folds. Qualitative evaluation of the generated strati-
graphic models confirms their visual consistency with the 
training data.

Finally, density models generated by the StyleGAN2 
ADA are shown in Fig.  5. For this network, we use the 
same training data and values of the ψ parameter as for 

the classical StyleGAN2. The quality of the generated 
samples are similar between these two cases, and so is 
the effect of ψ . Sample variability at ψ = 0.75 (Fig. 5c) is 
higher compared to the case shown in Fig. 3c. The train-
ing time required to reach similar FID scores is signifi-
cantly smaller for ADA (Table 1).

Discussion and conclusions
Methods based on deep learning (DL) recently cap-
tured the attention of the geophysical community and 
have become one of the main focuses of research in geo-
physical modelling and inversion. Their main advantages 
include no dependence on the starting subsurface model 
and real-time estimation of model parameters from new 
data using the pretrained network. On the other hand, 
all DL-based methods for inversion and interpretation 
of geophysical data require large training datasets which 
often limits their usage for practical applications. In this 
paper, we present a generator of 2D subsurface models 
based on StyleGAN2 and apply it to the generation of 
synthetic density and stratigraphy models. As a training 
set, we use a representative set of subsurface models gen-
erated using Badlands modelling code. Once our GANs 
are trained and reach a sufficient degree of accuracy, they 
can be used to generate in real-time sufficiently detailed 
and varied artificial geological models, which have fea-
tures similar to the models used in training. This allows 
creating multiple synthetic density and stratigraphy mod-
els in a cost-effective manner. A similar approach can be 
used to create subsurface models with different physi-
cal properties such as velocity models. The proposed 
method can serve as a useful augmentation tool for train-
ing sets in DL inversion, thus facilitating the development 
of more advanced tools for real-time estimation of sub-
surface parameters from collected data. The pretrained 
networks and sample sets of 2D subsurface models used 
in this paper are available online at https://​github.​com/​
vpuzy​rev/​geolg​an/

Finally, we note that GAN framework was extended to 
the conditional setting (Mirza and Osindero 2014). Such 
conditional GAN has both the generator and the discrim-
inator conditioned on some additional latent variables, 
e.g., a class label, which allows generation of samples 

Table 1  Training statistics and final FID scores of our GAN models. The term “kimg” refers to thousands of real images shown to the 
network and thus defines the length of the training process

GAN Models Total Time (s/kimg) FID

kimg 1080 Ti  1 V100 2 V100

StyleGAN2 config-e Density 512 x 512 7500 156.2 95.4 58.7 35.62

StyleGAN2 config-e Stratigraphy 512 x 512 6000 155.8 95.7 58.9 22.05

StyleGAN2 ADA Density 512 x 512 1000 292.1 191.3 156.9 36.03

https://github.com/vpuzyrev/geolgan/
https://github.com/vpuzyrev/geolgan/
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Fig. 3  Density models generated by the StyleGAN2 network. A ψ = 0.25 . B ψ = 0.5 . C ψ = 0.75
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Fig. 4  Stratigraphic models generated by the StyleGAN2 network. A ψ = 0.25 . B ψ = 0.5 . C ψ = 0.75
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Fig. 5  Density models generated by the StyleGAN2 ADA network. A ψ = 0.25 . B ψ = 0.5 . C ψ = 0.75
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belonging to a specific class. This opens possibilities for 
generation of models with predefined characteristics 
which might find further applications in interpretation 
problems.
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