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Abstract 

In recent decades, the two polar regions have exhibited strikingly different changes, with much greater warming in 
the Arctic than the Antarctic. However, the warming asymmetry between the two polar regions is quite small during 
the second half of the twentieth century. By using a multi-member ensemble of simulations with the Community 
Earth System Model, this study investigates the relative contributions of greenhouse gases, aerosol, and ozone forc-
ings to the responses of Arctic and Antarctic surface temperature during 1955–2000. Results show that both the 
greenhouse gases- and aerosols-induced changes are greater in the Arctic than in the Antarctic, yet they are opposite 
and act to balance each other, leaving a limited warming in the Arctic and hence a small bipolar asymmetry. Using a 
radiative kernel, feedback analysis reveals that both greenhouse gases and aerosol forcings influence the polar surface 
temperature through albedo feedback related to sea ice changes and lapse rate feedback related to strong surface 
temperature inversion. The ozone forcing can hardly excite any surface temperature changes over the polar regions 
even in the Antarctic with the strongest ozone depletion, which is due to a cancellation between the cooling effect 
from radiative forcing and cloud radiative feedback, and the warming effect from lapse rate feedback and enhanced 
atmospheric heat transport from lower latitudes.

Keywords:  Arctic, Antarctic, Surface temperature, Ozone depletion, Lapse rate feedback, Atmospheric heat transport

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
During the past two decades, a robust feature in both 
observed and modeled surface temperature changes is 
the enhanced warming over the Arctic, known as the 
famous Arctic amplification (Holland and Bitz 2003; Ser-
reze and Francis 2006; Serreze and Barry 2011; Cohen 
et al. 2014; Stuecker et al. 2018). By contrast, the warm-
ing in the Antarctic is relatively modest and is largely 
spatially heterogeneous (Doran et al. 2002; Li et al. 2021). 
In particular, the Antarctic Peninsula is found to be a 
region with one of the largest warming trends since the 

1950s, whereas the Southern Ocean and the eastern Ant-
arctic have experienced little warming, and even cool-
ing, over recent decades (Thompson et al. 2011; Armour 
et  al. 2016; Oliva et  al. 2017). This asymmetric surface 
temperature change between the two polar regions has 
global climatic, ecological, and social impacts, and thus 
its underlying mechanisms have been investigated as a 
hotspot (Turner et al. 2005; Masson-Delmotte et al. 2006; 
Hall 2010).

However, the bipolar asymmetry only becomes signifi-
cant in the recent decades (Fig.  1a). During the second 
half of the twentieth century, the observed surface tem-
perature changes in the two polar regions are in nearly 
equal magnitude, exhibiting a symmetric warming 
feature. It is unclear whether the absence of the bipo-
lar warming asymmetry during this period was rooted 
in externally forced response or internally generated 
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variability. A recent paper by England (2021) pointed out 
that the detrended surface temperature variabilities in 
the Arctic and the Antarctic since the 1920s are deter-
mined by external forcings and Pacific decadal variability, 
respectively. However, they mainly analyzed the multi-
decadal oscillation around a linear trend since the 1920s, 
while in this paper we focus on the bipolar symmetric 
warming trend during 1955–2000 and the related main-
taining mechanisms.

For the surface temperature changes in the Arctic, 
many previous observational and modeling studies 
ascribed an important role to the effects of increasing 
greenhouse gases (GHG) and the related radiative feed-
backs (Holland and Bitz 2003; Stroeve et al. 2012; Zhang 
et al. 2018; Liu et al. 2018, 2020). Overall, the GHG forc-
ing can contribute about 2.43 W m−2 to the direct radia-
tive forcing of global temperature change (Houghton 
et  al. 2001). In addition, the GHG-induced warming is 
further amplified by albedo feedback related to sea ice 
melting and lapse rate feedback associated with the ver-
tical structure of the atmospheric warming (Budyko 
1969; Alexeev et  al. 2005; Cai 2005; Screen and Sim-
monds 2010; Pithan and Mauritsen 2014; Burt et al. 2016; 
Goosse et al. 2018; Stuecker et al. 2018). However, GHG 
concentration has shown a rapid increase since the 1950s 
(Additional file 1: Fig. S1), then why did the accelerated 
Arctic warming occur in recent decades? It is reason-
able to speculate that other anthropogenic forcings and/
or natural variability might contribute. For instance, 
increased anthropogenic aerosol (AER) forcing is found 
to have mediated the GHG-induced warming in the Arc-
tic (Emori et  al. 1999; Myhre et  al. 2014; Bellouin et  al. 
2020; Cohen et al. 2020; England et al. 2021). In addition, 

some AER, like black carbon, can effectively reduce the 
surface albedo through deposition on snow and ice and 
hence play a warming effect in the Arctic (Flanner et al. 
2007; He et al. 2014; Qian et al. 2015). As for the ozone 
forcing, although the ozone depletion (OD) is confined 
to the Southern Hemisphere, increased Ozone-depleting 
substances are observed in the Northern Hemisphere, 
which traps more outgoing longwave radiation and thus 
contributes positively to the Arctic warming (Ramana-
than et al. 1987; Shine 1991; Marshall et al. 2014; Virgin 
and Smith 2019; Polvani et al. 2020).

For the Antarctic, on the one hand, the warming pat-
tern is likely modulated by atmospheric circulation asso-
ciated with internally generated variability (Vaughan 
et al. 2003; Mayewski et al. 2009; Steig et al. 2009; Eng-
land, 2021; Tewari et  al. 2021). For example, the rapid 
warming over West Antarctic in recent decades is found 
to be related to the multi-decadal sea surface tempera-
ture variability in the North Atlantic and tropical Pacific 
(Ding et  al. 2011; Wang et  al. 2020; Eayrs et  al. 2021). 
On the other hand, the surface temperature changes in 
the Antarctic are also affected by external forcings, espe-
cially the anthropogenic emissions of ozone-depleting 
substances. For example, the OD in the Antarctic lower 
stratosphere is found to be responsible for the poleward 
shift of the Southern Hemisphere atmospheric circula-
tion during the austral summer over the second half of 
the twentieth century (Thompson et  al. 2000; Polvani 
et al. 2011; Fogt and Marshall 2020), which further con-
tributes to the rapid warming over the Antarctic Pen-
insula through advecting warm air from lower latitudes 
and enhancing ocean upwelling that transports warmer 
water from the subsurface to the surface (Solomon et al. 

Fig. 1  Time series of surface temperature change (K) over the Arctic (red) and the Antarctic (blue) in a Berkeley Earth’s primary product and b 
CESM-LENS. The temperature change is relative to a monthly climatological mean obtained by averaging over 1951–1980. The thick solid and 
dashed lines represent linear trends from 1955 to 2000 and from 2000 to 2020, respectively
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1986; Turner et al. 2005; Monaghan et al. 2008; Joughin 
et al. 2012; Pritchard et al. 2012; Li et al. 2014; Wang et al. 
2020). However, by analyzing climate model outputs, Pol-
vani et al. (2021) found that the Southern Annular Mode 
change due to the OD has limited influence on the sea ice 
expansion around Antarctica in recent decades.

Since the externally excited climate response is tangled 
with the internally generated low-frequency variability, 
it is extremely challenging to identify the relative roles of 
different external forcings in shaping the climate change 
in the polar regions, not to mention their contributions 
to the symmetric responses between the Arctic and the 
Antarctic during the second half of the twentieth century. 
One possible approach to help us better understand the 
problem is to employ large ensembles of the same model 
initialized with the different conditions but perturbed by 
the same external forcing. With ensemble member mean, 
we can separate the externally forced response from the 
internally generated variability to a large extent.

By employing the Community Earth System Model 
large ensemble (Kay et al. 2015), this study performs an 
analysis on the relative roles of three major climate driv-
ers (i.e., GHG, AER, and OD) on the radiative forcing 
and related feedbacks over the polar climate, as well as 
the bipolar symmetric warming during the second half 
of the twentieth century. As is shown later, we find that 
the OD forcing, although being strong over the Antarctic, 
can hardly excite any surface temperature changes over 
the polar regions due to the cancellation between the 
changes in lapse rate feedback, the cloud feedback, and 
the atmospheric heat transport. The GHG forcing indeed 
favors the generation of Arctic amplification with greater 
warming in the Arctic than the Antarctic, however, the 
AER forcing induces a greater cooling in the Arctic and 
substantially mitigates the bipolar asymmetry. “Data and 
methods” section leads on to “Results” section that pre-
sents the polar surface temperature changes induced by 
individual forcing as well as the underlying mechanisms, 
followed by “Summary and discussion”.

Data and methods
CESM‑LENS
We examine the large ensemble set of historical simula-
tions of the National Center for Atmospheric Research’s 
Community Earth System Model version 1 (CESM-
LENS; Kay et  al. 2015). CESM-LENS consists of cou-
pled atmosphere, land, ocean and sea ice models. The 
atmospheric component is the Community Atmosphere 
Model version 5 (CAM5; Kay et al. 2015) with 30 vertical 
levels and 1.25o × 0.94° horizontal resolution. The land 
component, Community Land Model version 4 (CLM4; 
Lawrence et  al. 2012), has the same horizontal resolu-
tion as CAM5. The ocean component, the Parallel Ocean 

Program version 2 (POP2; Danabasoglu et al. 2012), has 
a nominal 1° horizontal resolution with meridional grid 
spacing decreasing to 0.3° near the equator. Vertically, 
it has 60 unevenly spaced vertical layers with the high-
est resolution of 10 m near the surface. The sea ice com-
ponent, the Community Ice CodE (CICE; Hunke et  al. 
2010), has the same horizontal grid as POP2.

We analyze five simulation ensembles in CESM-LENS. 
To enable the comparison with observations, we first 
use the historical ensemble consisting of 42 realizations 
spanning from 1920 to 2020. The three “fixed” ensem-
bles follow the same simulation protocol as the histori-
cal ensemble, except that one forcing agent (GHG, AER, 
or OD) is fixed at a constant level (1920 levels for GHG 
and AER, 1955 level for OD; England et  al. 2016; Len-
aerts et al. 2018; Deser et al. 2020). Note that the GHG 
and AER ensembles consist of 20 members, and the OD 
ensemble includes 8 members. In the following analysis, 
we select the same number of the historical ensemble as 
the single forcing ensemble for the sake of equality. The 
Arctic and Antarctic regions are defined as 60° N–90° N 
and 60° S–90° S, respectively.

For any variable of interest, we first subtract individual 
forcing-fixed ensemble from the historical ensemble and 
average over 1955–2000. Then, the response to the indi-
vidual forcing is obtained with the average further sub-
tracting a base value, which is defined as a mean over 
1945–1965 for the GHG- and AER-fixed ensembles, and 
1955 for the OD-fixed ensemble (since this set of experi-
ments start from 1955). Note that the base value has been 
tested with different time periods and the results are 
essentially the same.

Radiative kernels
The energy balance of an atmospheric column in an equi-
librium state is among the top-of-atmosphere (TOA) 
heat flux ( F ′

TOA
 ), the surface heat flux ( F ′

s ), and the con-
vergence of the vertically integrated atmospheric heat 
transport ( ∇ · F ′):

where prime indicates the difference between two sim-
ulations. Changes in atmospheric energy storage are 
very small and set to zero in this equation. To evaluate 
the contributions from various physical processes, we 
employ the radiative kernel method (Soden et  al. 2008) 
to decompose the TOA radiative anomalies ( F ′

TOA
 ) into 

contributions from different radiative feedbacks:

where RF represents the instantaneous radiative forcings, 
with the GHG forcing being obtained from GISS modelE 

(1)0 = F
′

TOA + F
′
s + ∇ · F

′
,

(2)
F
′

TOA = RF + R
′
PLK + R

′
LPS + R

′

ALB + R
′
WV + R

′
CLD,
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(Hansen et al. 2007), and the AER and OD forcings from 
ACCMIP (Lamarque et al. 2013), respectively. The rest of 
the terms in Eq. (2) are the Planck feedback 

(

R
′
PLK

)

 , lapse 
rate feedback 

(

R
′
LPS

)

 , albedo feedback 
(

R
′

ALB

)

 , water vapor 
feedback 

(

R
′
WV

)

 , and cloud feedback 
(

R
′
CLD

)

 . Follow-
ing Liu et al. (2018), the cloud radiative feedback is esti-
mated as a residual of the other terms in Eq. (2) to close 
the energy budget. These feedbacks are adopted from the 
radiative kernels derived from the Rapid Radiative Trans-
fer Model (RRTM) proposed by Huang et al. (2017).

Results
Surface temperature
Comparing Fig.  1b to a, the ensemble mean of the his-
torical simulations in CESM-LENS can faithfully capture 
the observed warming trends during 1955–2000 in both 
polar regions, indicating that the symmetric warming 
feature is largely determined by external forcings rather 
than internal variabilities. Thus, we first examine the sur-
face temperature changes in the historical simulations 
and the contributions from each individual forcing dur-
ing the second half of the twentieth century (Fig. 2).

The area-weighted surface temperature response in 
the Arctic reaches ~ 0.27 K (Fig. 2a), which is more than 
twice of the global mean surface temperature warming 
(~ 0.10 K). While the amplified warming in the Arctic is 
entirely attributed to the GHG forcing (~ 0.73 K; Fig. 2c), 
AER acts to reduce it to a large extent (~ − 0.56  K; 
Fig.  2e). In contrast, the OD forcing has a very limited 
impact on the Arctic surface temperature (~ − 0.06  K; 
Fig. 2g).

Similar to the situation in the Arctic, the surface tem-
perature change in the Antarctic is also characterized 
by an enhanced warming (~ 0.28  K; Fig.  2b), and the 
warming appears to be larger in the Indian sector of the 
Southern Ocean. In terms of the GHG-induced surface 
temperature response, the warming in the Antarctic 
(~ 0.40  K; Fig.  2d) is only about half of that in the Arc-
tic, clearly exhibiting an Arctic amplification feature. 
However, different from the strong cancellation between 
GHG- and AER-induced responses in the Arctic, the 
AER-induced cooling in the Antarctic (~ − 0.15 K; Fig. 2f ) 
is very weak and cannot offset the GHG-induced warm-
ing. In addition, it is somewhat striking to see the small 
contribution from OD (~ 0.03 K; Fig. 2h), since previous 
studies have argued that the OD forcing can exert strong 
influence on the Southern Hemisphere troposphere and 
surface temperature changes since 1950s (Solomon 1990; 
Randel and Wu 1999; Cionni et al. 2011; Thompson et al. 
2011; Previdi and Polvani 2017; Xia et al. 2020). We will 
show evidence later that this small surface temperature 
change induced by OD is due to a cancellation between 
the cooling effect from radiative forcing as well as cloud 

radiative feedback and the warming effect from lapse rate 
feedback as well as atmospheric heat transport.

Radiative forcings
The area-mean radiative forcings ( RF ) over the two 
polar regions due to GHG, AER and OD are presented 
in Fig.  3. Because of its well-mixed nature, the GHG-
induced RF is positive and similar in magnitude between 
the Arctic (~ 0.82 W m−2 ) and Antarctic (~ 0.71 W m−2 ). 
The RF due to AER forcing is much smaller in mag-
nitude than that to GHG forcing, and it is much larger 
in the Arctic (~ − 0.22  W m−2 ) than in the Antarctic 
(~ − 0.09 W m−2 ). The OD-induced RF also appears to 
be asymmetric over the two polar regions, and it is quite 
negative in the Antarctic (~ − 0.38  W m−2 ) because of 
the reduced downwelling longwave radiation there (Ram-
anathan and Dickinson 1979; Ramaswamy et al. 1992; de 
F. Forster and Shine 1997; Chen et al. 2007; Shindell et al. 
2013; Chiodo et al. 2017; Virgin and Smith 2019).

Kernels decomposition
To understand how GHG and AER radiative forcings 
contribute to the symmetric surface temperature changes 
during the second half of the twentieth century in both 
polar regions, and why the OD forcing is less effective in 
causing the surface temperature change in the Antarctic, 
we decompose the TOA heat flux into radiative feed-
backs based on Eq. 2.

As shown in Fig. 3, in both polar regions, the warming 
response to GHG forcing is mainly contributed by radia-
tive forcing, lapse rate and albedo feedbacks. The water 
vapor feedback also makes a contribution, but it is quite 
feeble because of the dry atmosphere there (Payne et al. 
2015; Held and Soden 2000). The Planck feedback is nec-
essarily the opposite to the temperature change and is the 
major damping term to the warming response. The cloud 
radiative feedback and surface heat fluxes also act to sup-
press the Arctic warming but to a small magnitude. The 
contributions from these processes due to AER are over-
all opposite to those due to GHG. The above results are 
consistent with previous studies (Soden and Held 2006; 
Shell et al. 2008; Soden et al. 2008; Pithan and Mauritsen 
2014; Stuecker et al. 2018).

Regarding the situation in OD, its impact occurs mainly 
in the Antarctic. In particular, the convergence of the 
vertically integrated atmospheric heat transport ( ∇ · F ′ ) 
appears to be a major contributor and works to transport 
more energy into the Antarctic, which is quite different 
from its feebleness in both GHG and AER. In addition, 
the lapse rate feedback is another major warming pro-
cess in the Antarctic. However, the warming induced 
by atmospheric heat transport and lapse rate feedback 
is largely balanced by the cooling due to cloud radiative 
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Fig. 2  Surface temperature changes (K) in the a, b historical simulation and the contributions from c, d GHG, e, f AER, and g, h OD over the two 
polar regions during 1955–2000 relative to 1945–1965 for GHG and AER and 1955 for OD. The area-weighted surface temperature anomalies are 
labeled in the corresponding panels
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feedback and exerted radiative forcing, resulting in a 
small surface temperature change in the Antarctic.

The albedo feedback is largely proportional to sea 
ice cover changes and the related mechanism is quite 
straightforward, and thus not the focus in the following 
analysis. Apart from the albedo feedback, the lapse rate 
and cloud feedbacks, as well as atmospheric heat con-
vergence, make significant contributions to the energy 
balance, especially in the Antarctic. We next examine 
physical mechanisms related to these processes, with a 
focus on the compensation relationship among them in 
OD.

Lapse rate feedback
The lapse rate feedback is closely related to the uneven 
change of vertical temperature profile (Manabe and 
Wetherald 1975; Wetherald and Manabe 1988). The cou-
pling mechanisms between the surface and the upper 
atmosphere are quite different between the high-lati-
tude and tropical regions, i.e., the coupling is through 
radiation in the former while it is through deep con-
vection in the latter. Therefore, the lapse rate feedback 
is usually positive in the high latitudes and negative in 
the tropics (Hansen et  al. 1984; Graversen et  al. 2014; 
Pithan and Mauritsen 2014). Specifically, the GHG-
forced inversion layer in the polar regions results in a 
larger warming in the near-surface air than in the upper 
troposphere (Fig.  4d, f ), which leads to the return of 

longwave radiation and further amplifies the surface 
warming (Fig.  4a). Meanwhile, the deep convection in 
the tropics results in warmer upper troposphere than the 
surface (Fig. 4e), and thus the lapse rate feedback is nega-
tive there. The pattern of lapse rate feedback in AER is 
almost a mirror image of that in GHG in the troposphere 
(Fig. 4b).

However, the lapse rate feedback due to the OD forc-
ing is positive in both high-latitude and tropical regions 
(Fig.  4c), a result quite different from those due to the 
GHG and AER forcings. Shown in Fig. 4d–f are the verti-
cal temperature change profiles in the atmosphere under 
the three forcings, respectively. Deviation from the ver-
tical uniform temperature profile will result in lapse rate 
feedback. It is clear that the strongest warming due to 
GHG and cooling due to AER occur at the lower (upper) 
troposphere in the polar regions (tropics), leading to 
positive (negative) lapse rate feedback there (Fig. 4a, b). 
In contrast, the strongest temperature changes due to 
OD occur at the bottom of the stratosphere as well as the 
upper troposphere, especially in the Antarctic and equa-
torial regions with strong OD forcing, which reduces the 
outward emission of longwave radiation and leads to pos-
itive lapse rate feedback there. Therefore, the lapse rate 
feedback due to OD is mainly determined by the atmos-
pheric temperature structure of the stratospheric cool-
ing, which is different from that due to GHG and AER 
that is controlled by the surface–troposphere coupling.

Fig. 3  Surface temperature changes (K) and contributions to the TOA heat flux ( W m
−2 ) from radiative forcing ( RF ), feedbacks of Planck 

(

R
′
PLK

)

 , 
lapse rate ( 

(

R
′
LPS

)

 , albedo 
(

R
′
ALB

)

 , water vapor 
(

R
′
WV

)

 and cloud 
(

R
′
CLD

)

 as well as atmospheric heat convergence ( ∇ · F ′ ) and surface heat flux ( F ′s ) in 
GHG (red bars), AER (blue bars), and OD (yellow bars) over the a Arctic (60°–90° S) and b Antarctic (60°–90° N). The error bars denote the standard 
deviations of values in CESM-LENS members. Note the y-axis scales in a and b are different
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Cloud radiative feedback
Over the Antarctic, the contribution from cloud radia-
tive feedback is quite strong, especially in response to 
the GHG and OD forcings. We next examine the ver-
tical temperature and cloud fraction changes in the 
atmosphere (Fig.  5). Both the GHG- and OD-induced 
atmospheric temperature changes are featured with cool-
ing in the lower stratosphere and warming (or weak cool-
ing) in the upper troposphere, which increases instability 
and local relative humidity and thus enhances the forma-
tion of high-level clouds there (Fig.  5d, f; Hansen et  al. 
1997; Hodnebrog et  al. 2014; Xia et  al. 2018). Increas-
ing clouds reflect more solar insolation back to space in 
summer and thus have negative feedback on the surface 
temperature change. On the other hand, the increasing 
clouds emit more longwave radiation to the surface and 
thus has a warming effect (Zelinka et al. 2012). Overall, 
the shortwave cooling effect dominates, causing a nega-
tive cloud radiative feedback in GHG and OD over the 
Antarctic (Fig. 3b).

Atmospheric heat convergence
For the Arctic region, the contribution from atmos-
pheric energy transport ( ∇ · F ′ in Fig.  3a) is negligi-
ble compared to those from other major feedbacks 
in all three forcing scenarios, indicating that the Arc-
tic surface temperature change is dominated by local 
feedbacks. For the Antarctic region, in contrast, the 
atmospheric heat convergence ( ∇ · F ′ in Fig.  3b) 
induced by OD plays a critical role and acts to mediate 
the negative instantaneous radiative forcing.

To examine the relationship between changes in 
atmospheric energy transport and local energy balance 
over the Antarctic due to OD, we regress the anoma-
lous TOA net heat flux 

(

F
′

TOA

)

 against the anomalous 
atmospheric heat convergence ( ∇ · F ′ in Fig.  6a) from 
1955 to 2000. It is found that they are significantly neg-
atively correlated with a correlation coefficient being 
− 0.81 at the 99% confidence level, suggesting that the 
atmosphere works to transport more energy from lower 

Fig. 4  Spatial pattern of lapse rate feedback contribution to the TOA heat flux ( W m
−2 ) due to a GHG, b AER and c OD. Vertical temperature 

changes (K) in the atmosphere due to GHG (red), AER (blue), and OD (yellow) in the d Antarctic (60°–90° S), e Tropics (25° S–25° N), and f Arctic 
(60°–90° N)
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latitudes to the Antarctic to mediate the TOA energy 
imbalance exerted by the OD forcing.

A decomposition of F ′

TOA
 into longwave ( F ′

LW
 ) and 

shortwave ( F ′
SW

 ) components finds that the strong 

negative correlation between F ′

TOA
 and ∇ · F ′ is largely 

due to its longwave component (Fig.  6c). In particular, 
the OD forcing causes a strong cooling in the lower strat-
osphere (Fig.  5c), which in turn leads to a reduction in 

Fig. 5  Changes of zonal mean temperature (K) and cloud fraction (%) due to a, d GHG; b, e AER; and c, f OD forcings in the Southern Hemisphere

Fig. 6  Linear regression of a OD-induced TOA heat flux ( F ′
TOA

 ) and its components of b shortwave ( F ′
SW

 ) and (c) longwave ( F ′
LW

 ) onto atmospheric 
energy convergence ( ∇ · F ′ ) in the Antarctic (60°–90° S) during 1955–2000. Lines are a least-squares linear fit to the data, r is the correlation 
coefficient, and all of the flux variables are filtered with a 12-month running mean. d Zonal mean wind climatology from the historical simulation 
(contours) and its change due to OD (color) in the Southern Hemisphere
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outward emitted longwave radiation. The reduced down-
welling longwave radiation further cools the troposphere 
and stratosphere in the Antarctic, enlarging the meridi-
onal temperature gradient. Since the synoptic wave fluxes 
of heat are essentially diffusive, the increased meridi-
onal near-surface temperature gradient triggers a more 
complex dynamical effect (Held 1999; Grise et al. 2009). 
This effect on the fluxes of heat in the lower troposphere 
further causes a heat flux convergence in the Antarctic 
(Haynes et  al. 1991; Song and Robinson 2004; Thomp-
son et al. 2006). In addition, this poleward wave fluxes of 
heat can drive a poleward shift and a strengthening of the 
subpolar jet (Fig.  6d), in agreement with previous stud-
ies (Karoly 1990; Lorenz and Hartmann 2001; Thompson 
et  al. 2011; Grise et  al. 2013; Previdi and Polvani 2014; 
Swart et al. 2015).

In contrast, the shortwave component has limited con-
tribution (Fig. 6b) because the high albedo over the Ant-
arctic region reflects most of the downward shortwave 
back to space. This is further supported by the close-to-
zero albedo feedback in the Antarctic (Fig. 3b), indicating 
that the OD forcing has only a small impact on sea ice 
changes (not shown).

Summary and discussion
During the second half of the twentieth century when 
anthropogenic forcings were strong, both the observa-
tions and model simulations show a symmetric warming 
between the Arctic and the Antarctic, which is in sharp 
contrast to the Arctic amplification and strong bipolar 
asymmetric warming during the recent decades. While 
the latter has been extensively studied, this study exam-
ines the symmetric warming in the Arctic and Antarctic 
during 1955–2000 and identify the relative contributions 
from GHG, AER, and OD by employing the CESM-
LENS. We find that the OD forcing has little impact 
even in the Antarctic where the ozone depletion is the 
strongest, and the GHG-induced warming in the Arctic 
is largely mitigated by the AER-induced cooling. Taken 
together, there appears to be a small warming asymmetry 
between the Arctic and Antarctic.

We quantitatively partition the surface temperature 
changes into contributions from various climate feed-
backs by using radiative kernels. It is found that GHG 
induces surface temperature changes mainly through 
lapse rate feedback and albedo feedback in both polar 
regions, and the feedbacks are stronger in the Arctic than 
the Antarctic. The AER-induced cooling in both polar 
regions also works through the lapse rate and albedo 
feedbacks, and mitigates largely the warming induced by 
GHG.

Although the OD forcing induces strong cooling in 
the lower stratosphere over the Antarctic region, its 

impact on the local surface temperature is rather small. 
A further analysis finds that the lapse rate feedback and 
atmospheric heat transport cause significant warming 
in the Antarctic, which, however, is cancelled out by the 
cooling effect from the OD radiative forcing and cloud 
radiative feedback. The warming effect from the lapse 
rate feedback and atmospheric heat transport is related 
to the strong stratosphere cooling, which inhibits the 
outgoing longwave radiation and results in a negative 
lapse rate feedback. On the other hand, the decrease in 
the TOA heat flux due to the reduced outgoing long-
wave radiation is balanced by atmospheric heat trans-
port from lower latitudes to the Antarctic, leading to 
a strong atmospheric heat convergence there. Moreo-
ver, the stratospheric cooling is also responsible for the 
strong negative cloud feedback, and causes instability 
in the upper troposphere and promotes the amount 
of high cloud, resulting in a surface cooling in the 
Antarctic.

The results in this study are mainly based on single 
model large ensembles. To validate the robustness of our 
results, we further analyze the large ensemble of second 
Generation Canadian Earth System Model (CanESM-
LENS) experiments, which consists of 50 realizations 
spanning over 1950–2020. Overall, the results from 
CanESM-LENS are in good agreement with those from 
CESM-LENS. For example, CanESM-LENS can also 
capture the symmetric warming between the two polar 
regions during the second half of the twentieth century 
(Additional file  1: Fig. S2). The OD forcing can hardly 
excite any surface temperature changes over the Antarc-
tic region (Additional file 1: Fig. S3). Therefore, this above 
agreement between the two large ensemble experiments 
suggests that the major conclusions of our study are not 
model-dependent.

It should be noted that the complex cloud feedback is 
estimated as a residual in this analysis, and thus errors 
and uncertainties associated with other feedbacks and 
nonlinear processes are all included in the cloud feed-
back. In addition, the simulations of the fixed ozone are 
performed with only 8 members, and thus influence from 
internal variability may still exist to some extent. How-
ever, the current results can successfully capture the 
strong cooling in the lower stratosphere and the pole-
ward shift of the westerly jets that have been revealed 
by many previous studies, giving us confidence that the 
results discussed in this study are reliable.
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