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Abstract 

Satellites can help monitor harmful algal blooms in coastal regions. Methods have been developed using different 
satellite missions. However, it is necessary to develop a simple and useful method for discriminating harmful algal 
species that could be applied to multi-source satellite remote sensing reflectance spectra ( Rrs(�)) . In this study, based 
on the bio-optical model, a backscattering indicator, bbp-index (green), was found to be useful for species identifica-
tion (Karenia mikimotoi and Prorocentrum donghaiense) combined with the red tide index (RI) in water blooms in the 
East China Sea (ECS). The MODIS, GOCI, and MERIS data collected between 2004 and 2020 were consistent for bloom 
discrimination, determining that K. mikimotoi exhibited lower bbp-index (green) values than P. donghaiense. The classifi-
cation of the blooms is based on the following criteria: Rrs(555) < 0.014 sr−1 and RI > 2.8 and (1) bbp-index (green) > 1.2 
×10

−3 , classified as P. donghaiense blooms or (2) bbp-index (green) < 1.2 ×10
−3 , classified as K. mikimotoi blooms. The 

inclusion of the RI is necessary to directly detect the bloom area. Local bloom reports have confirmed the effective-
ness of the bloom discrimination method. In addition, the advantages and limitations of the proposed method are 
discussed.
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Introduction
Harmful dinoflagellate blooms have been reported 
near the coast of the East China Sea (ECS) during sum-
mer since the 1990s (Zhou et  al. 2003). Anthropogenic 
eutrophication is thought to be a significant factor in 
the frequent occurrence of harmful algal blooms (Gibert 
et  al. 2005). According to the red tide reports from the 
Marine Environment Quality Bulletin of the State Ocean 
Administration (SOA) and Zhejiang Marine Monitoring 
and Forecasting Center, Prorocentrum donghaiense and 
Karenia mikimotoi are the common species of the dino-
flagellate blooms. P. donghaiense is non-toxic, but affects 

the marine ecosystem through large-scale biomass accu-
mulation (Tang et al. 2006; Zhao et al. 2009). K. mikimo-
toi can secrete toxins and cause serious abalone mortality 
(Chen et  al. 2021). In certain cases, P. donghaiense can 
co-bloom with K. mikimotoi blooms, causing serious 
mortality in marine fish (Zhou and Zhu 2006; Wang and 
2009).

The differing optical properties of phytoplankton 
could help to build algorithms for harmful algal species 
discrimination using satellite data. Optical character-
istics can arise from their absorption and backscatter-
ing properties. Previous studies have determined that P. 
donghaiense and K. mikimotoi contain unique pigments, 
including dinoxanthin and peridinin in P. donghaiense, 
and fucoxanthin, 19-hex-fucoxanthin, and 19-but-fucox-
anthin in K. mikimotoi, with absorption in the range of 
440–470 nm (Zapata et al. 2012; Clementsom and Wojta-
siewicz 2019). The remote sensing reflectance ( Rrs(�) ) 
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from the water bloom was partly shaped by these acces-
sory pigment absorption. However, because colored 
dissolved organic matter (CDOM) and non-algal compo-
nents also produce strong absorption in short bands, the 
Rrs(�) overlaps with algal and non-algal particle signals 
and could be ineffective in phytoplankton discrimination. 
Although there are other absorption peaks at approxi-
mately 570 nm and 640 nm due to the chlorophyll c3 in 
K. mikimotoi, it is difficult to discriminate the two phy-
toplankton species if the hyperspectral Rrs(�) is not used 
(Shen et al., 2019).

Instead, methods based on backscattering properties 
has been developed for bloom discrimination. Accord-
ing to the bio-optical model, the spectral shape of Rrs(�) 
is not only influenced by absorption but also by back-
scattering (Morel and Prieur 1977; Gordon et  al. 1988). 
Different phytoplankton species exhibit varying mag-
nitudes of backscattering or chlorophyll-specific back-
scattering spectrum, depending on their phytoplankton 
cell structure (Alvain et al. 2005). Sisiwanto et al. (2013) 
found that the remarkably lower reflectance of K. miki-
motoi in the green band indicates its lower Chl a-specific 
backscattering signature compared to that of the diatom 
blooms. Similar results were also found by Cannizzaro 
et al. (2008, 2019) when differentiating K. brevis from dia-
tom blooms. These results indicate that lower backscat-
tering might be a key signature for Karenia spp. when 
compared with diatoms. On the other hand, Shen et  al. 
(2013) reported the experimentally measured backscat-
tering spectra of Skeletonema costatum (diatom) and P. 
donghaiense, which revealed a higher backscattering in 
the case of P. donghaiense than the diatom.

To date, few studies have explored bloom discrimina-
tion between P. donghaiense and K. mikimotoi using satel-
lite images. The purpose of this study was to characterize 
the optical properties of the two algal species and build 
a simple but effective method to separate the two algal 
species using multiple ocean color satellite data, without 
complicated data processing. Furthermore, we discuss 
the benefit and limitation of the proposed method for 
phytoplankton discrimination.

Data and method
Local bloom data
The study area covers most of the northwestern ECS (27° 
N–32° N, 120° E–123° E), including the Yangtze River 
Estuary and the coast of Zhejiang Province (Fig. 1). The 
bloom occurrence data were collected from the SOA 
and the Bulletin of China Marine Disaster by Zhejiang 
Ocean Forecast, which provides information regarding 
the occurrence time, location, area, and phytoplankton 
species of the bloom events, including the events caused 

by P. donghaisense and K. mikimotoi. In this study, bloom 
reports from 2004 to 2020 were selected for the data 
analysis and method validation.

GOCI, MODIS and MERIS data
The Geostationary Ocean Color Imager (GOCI), Mod-
erateResolution Imaging Spectroradiometer (MODIS), 
and Medium Resolution Imaging Spectrometer (MERIS) 
satellite data were selected for the study. The GOCI L1B 
(2010–2020) images were downloaded from the Korea 
Ocean Satellite Center (http://​kosc.​kordi.​re.​kr/) and then 
processed to L2 to obtain the Rrs(�) using the GOCI 
data processing software (GDPs, version2.0), which uses 
the default atmospheric correction algorithm (Ryu et al. 
2012). In addition, the MERIS Reduced Resolution (RR) 
L2 data (2004–2012) and MODIS L2 data (2004–2020) 
were downloaded from the NASA Ocean Color Web 
(https://​ocean​color.​gsfc.​nasa.​gov/) for the geographic 
regions of 27° N–32° N, 120° E–123° E. The satellite 
images with minimal cloud cover were collected with 
the concurrent bloom observations. Pixels with nega-
tive values were excluded from the analysis. The central 
visual bands for GOCI, MERIS, and MODIS are 412 nm, 
443  nm, 490  nm, 555  nm, 660  nm, 680  nm, 745  nm; 
413  nm, 443  nm, 490  nm, 510  nm, 560  nm, 620  nm, 
665  nm, 681  nm, and 709  nm; and 412  nm, 443  nm, 
469  nm, 488  nm, 531  nm, 547  nm, 555  nm, 645  nm, 
667  nm, 678  nm, respectively. The date of each satellite 
image concurrent with bloom occurrence are listed in 
Table 1.

For method development, six images were used for K. 
mikimotoi blooms, with two GOCI images, two MERIS 
images and two MODIS images; six images were used 

Fig. 1  Bloom frequency of a Prorocentrum donghaiense and b 
Karenia mikimotoi in East China Sea (ECS) during 2004–2020. Bloom 
occurrence data of P. donghaiense and K. mikimotoi were collected 
from the State Ocean Administration (SOA) and the Bulletin of China 
Marine Disaster from the Zhejiang Ocean Forecast

http://kosc.kordi.re.kr/
https://oceancolor.gsfc.nasa.gov/
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for P. donghaiense blooms, with two GOCI images, two 
MERIS images and two MODIS images. The observa-
tion time for MERIS and MODIS images were around 
01:00(GMT) and 05:00 (GMT), respectively. The GOCI 
provides eight images per day from 00:00 (GMT) to 07:00 
(GMT). Since the phytoplankton would grow rapidly 
under suitable light intensity, and thus make significant 
contribution to the variation of inherent optical proper-
ties. The GOCI images at 04:00 (GMT) around noontime 
was chosen for method development to discriminate 
phytoplankton species, which could also help us to com-
pare the optical variation with other two satellite data 
during daytime on bloom days. To validate the developed 
method, two MODIS images and two GOCI images (at 
noontime) were tested for K. mikimotoi blooms and P. 
donghaiense blooms detection, respectively.

Red tide index (RI)
Bloom pixels should be first detected before the differ-
entiation of phytoplankton species. Indices have been 
developed for red tide detection in East China Sea, such 
as Bloom Index (BI) developed by Shang et  al. (2014), 
Red tide Index (RI) developed by Lou et  al. (2014) and 
Algal bloom Ration ( RAB ) developed by Tao et al. (2015). 
Considering the band setting of the satellite sensors men-
tioned in section "GOCI, MODIS and MERIS data", the 
RI is most suitable for bloom detection in this study. The 
red tide index (RI) was determined using three bands 
from the satellite Rrs(�):

The design of the RI could suppress the effect of resus-
pended sediments by subtracting the Rrs(443) in the 

(1)RI =
Rrs(555)− Rrs(443)

Rrs(490)− Rrs(443)

green to blue band ratio. The index performed well for 
bloom detection in the ECS. A threshold of 2.8 was cho-
sen for the application of RI reported by Lou et al. (2014). 
A higher value implies a higher density of the bloom. 
In the bloom detection procedure for MODIS data, the 
Rrs(�) at 488 nm was used instead of 490 nm.

In addition, considering that harmful dinoflagellate 
blooms in the ECS were often observed near inshore 
regions, it is crucial to separate turbid water from blooms 
at the beginning of the method to eliminate the influ-
ence of non-algal suspended sediments on backscatter-
ing. Previous studies showed that the Rrs(�) of turbid 
water from ECS presented high Rrs(�) from green to near 
red bands and the satellite Rrs(555) has been proved to 
be a good indicator of water turbidity (Yamaguchi et al. 
2012). Pixels with threshold of Rrs(555) > 0.014 sr−1 was 
flagged turbid water in Tao et al. (2015). In this study, an 
additional threshold of Rrs(555) < 0.014 sr−1 was used to 
exclude the influence of turbid water. Finally, the bloom 
water was detected by Rrs(555) < 0.014 sr−1 and RI > 2.8.

Index based on bio‑optical model
A two-band blended reflectance index, bbp_index , based on 
a bio-optical model, was developed by Feng et al. (2020) 
using MODIS data to help indicate the backscatter-
ing characteristics of the phytoplankton. The index was 
built on the bio-optical theory that Rrs(�) is the function 
of the absorption a(λ) and backscattering bb(�) (Gordon 
et  al. 1988). Assumptions for absorption a(λ) and back-
scattering bb(�) were made in the green and red bands to 
derive the bbp_index (details are available in Feng et al. 2020, 
absorption coefficient of the algae species refers to Shen 
et al. 2019). The index was calculated as follows:

where �1 represents the wavelength in the green band, 
and �2 represents the wavelength in the red band. κ refers 
to the absorption coefficient difference between �1 and 
�2 in pure water. Dierssen et al. (2006) has demonstrated 
that there is backscattering difference between phyto-
plankton. For the species in ECS, Shen et al. (2013) has 
revealed the differed inherent optical properties in harm-
ful algal species. However, there is no direct evidence 
of the backscattering properties in K. mikimotoi bloom 
waters, comparing with P. donghaiense blooms. As men-
tioned above, the backscattering characteristics could 
be described by bbp−index based on bio-optical models. 
The index was found to be useful in representing back-
scattering difference between phytoplankton (Feng et al. 
2021), which could help to compare the backscattering 

(2)bbp−index(�1) =
Rrs(�1)Rrs(�2)

Rrs(�1)− Rrs(�2)
∗ κ

Table 1  Satellites images concurrent with the bloom 
occurrence time of GOCI, MODIS and MERIS

The images in the table were selected for method development

Species Satellite images Observation date

Karenia mikimotoi GOCI June 5th, 2012
June 30th, 2017

MERIS June 4th, 2005
June 20th, 2005

MODIS Sept.8th, 2014
Aug. 15th, 2016

Prorocentrum donghaiense GOCI May 12th, 2016
May 23th, 2014

MERIS May 16th, 2010
July 9th, 2010

MODIS May 24th, 2019
Apr. 24th, 2020
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properties between K. mikimotoi and P. donghaiense 
bloom waters through satellite data.

For the GOCI data, �1 = 550 nm, �2 = 660 nm, and κ 
= 0.35. For the MERIS data, �1 = 560 nm, �2 = 665 nm, 

and κ = 0.37. For the MODIS data, �1 = 555  nm, 
�2 = 645  nm, and κ = 0.37. In the following parts, 
bbp−index(green) was used instead of bbp−index(�1) to 

Fig. 2  Satellite imagery derived bbp_index (green) of Karenia mikimotoi blooms water during 2004–2020. a, b bbp_index (green) map derived by GOCI 
images. c, d bbp_index (green) map derived by MERIS images. e, f bbp_index (green) map derived by MODIS images. The highlighted regions (red 
rectangles) indicate occurrences of K. mikimotoi blooms that were recorded by State Ocean Administration (SOA) and the Bulletin of China Marine 
Disaster by Zhejiang Ocean Forecast. The color bar represents the variation of bbp_index (green) . The black pixels indicate area of non-bloom area

Fig. 3  Satellite imagery derived bbp_index (green) of Prorocentrum donghaiense blooms water from 2004 to 2020. a, b bbp_index (green) map derived by 
GOCI images. c, d bbp_index (green) map derived by MERIS images. e, f bbp_index (green) map derived by MODIS images. The highlighted regions (red 
circles) indicate occurrences of Prorocentrum donghaiense blooms that were recorded by the SOA and the Bulletin of China Marine Disaster from the 
Zhejiang Ocean Forecast. The color bar represents the variation of bbp_index (green) . The black pixels indicate area of non-bloom area
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refer the backscattering properties around green bands 
of bloom waters.

Results
Backscattering properties of water blooms derived using 
multiple satellite imagery
Figures  2 and 3 present the derived bbp−index(green) 
from the GOCI, MERIS, and MODIS data captured 
during the bloom periods of 2004–2020. The bloom 
regions with RI > 2.8 are colored according to the 
bbp−index

(

green
)

 variation. The areas highlighted with 
red rectangles and circles coincide with the observed 
local bloom reports. The bbp−index

(

green
)

 estimated 
using Eq.  (2) demonstrates that when the value is 
lower, an algal bloom with K. mikimotoi is more likely 
to occur. Otherwise, the probability of P. donghaiense 
bloom occurrence is higher. The occurrence of K. 
mikimotoi and P. donghaisense were also concurrently 
verified by China Ocean Bulletins and the results pub-
lished in Tao et al. (2015) and Shang et al. (2014). The 
statistics of the bbp−index

(

green
)

 from the two algal spe-
cies are listed in Table 2. Even though there were band 
adjustments for the bbp−index

(

green
)

 derivation when 
using multiple satellite data, P. donghaisense exhib-
ited a bbp−index

(

green
)

 that was almost ten times higher 
than that of the K. mikimotoi blooms, regardless of the 
difference in overpassing time between sensors. Spe-
cifically, the bbp−index

(

green
)

 values of the K. mikimotoi 
blooms were within 6 ×10−4

± 3 ×10−4 , while that of 
the P. donghaiense blooms was 2.5 ×10−3

± 2.5 ×10−3.
In addition, the bbp_index (green) by hourly GOCI 

images (eight images per day) from K. mikimotoi bloom 
patches on June 30, 2017 and P. donghaiense bloom 
patches on May 12, 2016 were derived (see Fig.  4). 
Among the duration of bloom, the mean bbp_index (green) 
is weakly varied during the daytime from 8:00 to 15:00. 
Specifically, the mean bbp_index (green) values of K. miki-
motoi varied around 0.0008, with maximum up to 

0.0009. For bbp_index (green) of P. donghaiense bloom, the 
averaged value was between 0.002 and 0.0023, with 
average 0.0021. The hourly variations demonstrate 
that the backscattering properties of bloom waters was 
stable despite the environment variations, which help 
us to apply the bloom discrimination method using 
multiple sensors without considering the sensing time.

Discrimination of algal bloom using satellite data
Combining the bbp−index

(

green
)

 results and local bloom 
reports, a criterion is proposed using linear Support Vec-
tor Machines (SVM) method, for differentiating K. miki-
motoi and P. donghaiense blooms using satellite imagery:

when Rrs(555) <  0.014 sr−1 and RI > 2.8, if 
bbp−index

(

green
)

< 1.2 ×10−3 , it suggests a K. mikimotoi 
bloom, and if bbp−index

(

green
)

 > 1.2 ×10−3 , it suggests a P. 
donghaiense bloom.

The proposed method was validated using independ-
ent MODIS and GOCI images when the bloom events 

Table 2  Statistics of bbp−index(green) values for GOCI, MERIS, and MODIS in Figs. 2 and 3

N in the table refer to the pixle numbers in each bloom region

Satellite images Karenia mikimotoi Prorocentrum donghaiense

N Mean Standard deviation N Mean Standard 
deviation

GOCI 420 0.0007 0.0003 420 0.0025 0.0011

116 0.0008 0.0003 96 0.0023 0.0009

MODIS 179 0.0004 0.0004 30 0.0031 0.0004

36 0.0007 0.0002 275 0.0027 0.001

MERIS 139 0.0006 0.0001 125 0.0017 0.0004

137 0.0006 0.0002 91 0.0024 0.0006

Average 0.0006 0.0003 0.0025 0.001

Fig. 4  Hourly variation of bbp−index(green) on the bloom days of P. 
donghaiense on May 12, 2016 and K. mikimotoi on June 30, 2017. The 
black represents the bbp−index(green) from P. donghaiense blooms, the 
black dotted line represents bbp−index(green) from the K. mikimotoi 
blooms
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were included in local reports (Fig. 5). In May 2008, high 
satellite-derived Chl a area was found near the coast of 
Zhejiang. In those patches, pixels with bbp−index

(

green
)

 
values < 1.2 ×10−3 were found, indicating the occurrence 
of K. mikimotoi blooms. In May 2020, the high satellite-
derived Chl a map indicated blooming patches near the 
Zhejiang coast, while the bbp−index

(

green
)

 > 1.2 ×10−3 
suggested a bloom of P. donghaiense. Although there were 
no satellite data in the bloom region, as demonstrated in 
Fig.  4a, the bloom reports in early May 2008 recorded 
near the Zhejiang coast can help to confirm the occur-
rence of K. mikimotoi blooms. In general, these results 
were consistent with the local observations reported by 
the SOA and the Bulletin of China Marine Disaster from 
the Zhejiang Ocean Forecast.

Discussion
Although there has been no in  situ measurement for 
backscattering properties, previous studies have pro-
vided some reasons for the bbp−index

(

green
)

 variations. 
For example, Cannizzaro et  al. (2008) found that the K. 
brevis demonstrated a lower backscattering signal when 
blooms occurred with biomass > 105 cells/ml. Ahmed 
et  al. (2016) and Siswanto et  al. 2013) also showed the 
lower Rrs(555) signal in the K. brevis- and K. mikimotoi-
dominated bloom waters. Amin et al. (2009) determined 
that the K. brevis exhibited a stronger fluorescence sig-
nal at approximately 667  nm when biomass > 104 cells/

ml when compared with non-K. brevis blooms. Kurekin 
et al. (2013) found that the radiance at 667 nm was larger 
for K. mikimotoi blooms. The normalized Rrs(�) of water 
blooms modeled by Shen et  al. (2019) demonstrated a 
significant fluorescence signal at approximately 670  nm 
for K. mikimotoi blooms. In this study, we also found that 
the satellite Rrs(�) of the K. mikimotoi bloom regions pre-
sented lower values than that of P. donghaiense bloom, 
with apparent fluorescence emission in the red bands 
(Fig.  6). Thus, with the lower radiance signal at green 
band and high fluorescence signal at red band, K. miki-
motoi exhibited a lower bbp−index

(

green
)

 value than that 
of P. donghaiense.

From a bio-optical perspective, the effective 
bbp−index(green) method could be related with the dif-
ference in backscattering properties, which result from 
the cell size, cell shape, and cell structure between K. 
mikimotoi and P. donghaiense (Vaillancourt et  al. 2004). 
Although the cell size of K. mikimotoi ((16–30) × (20–30) 
μm in width × length) is larger than that of P. donghaiense 
((10–13) × (19–22) μm in width × length) (Lü et al., 2019; 
Lu et al. 2001), there is no cell walls in K. mikimotoi cells, 
which might weaken the scattering coefficient of the 
accumulated phytoplankton. In addition to the difference 
in cell features, the environmental conditions during 
bloom formation might also be responsible for the back-
scattering difference. Dang et al. (2015) found a scarcity 
of submicron particles in the K. mikimotoi water blooms 

Fig. 5  Satellite imagery derived Chl a maps and bbp_index (green) maps (a, b) K. mikimotoi blooms from MODIS images and (c, d) P. donghaiense 
blooms from GOCI images, respectively. The highlighted regions (red rectangles and circles) indicate occurrences of K. mikimotoi and P. donghaiense 
bloom regions that were recorded by the State Ocean Administration (SOA) and the Bulletin of China Marine Disaster from the Zhejiang Ocean 
Forecast. The color bar represents the variation of satellite derived Chl a and bbp_index (green) , respectively. The black pixels indicate area of 
non-bloom area
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due to the reduced grazing pressure caused by cellular 
toxicity. In addition, P. donghaiense was found to possess 
a relatively wide salinity tolerance, while K. mikimotoi 
is sensitive to high salinity due to the lack of a cell wall 
(Zhou et al. 2003; Aoki et al. 2017). In most cases, the K. 
mikimotoi blooms aggregate in low-turbidity and low-
salinity conditions (Robin et al. 2013; Barnes et al. 2015; 
Aoki et al. 2017), while P. donghaiense blooms could sur-
vive in more turbid water because of its high competi-
tion coefficient under low light intensity (Xu et al. 2010). 
Thus, the non-algal particles in the P. donghaiense blooms 
could also be attributed to its higher backscatter signal in 
bloom conditions.

Moreover, since the bbp−index(green) was calcu-
lated using the satellite Rrs(�) directly, while the Rrs(�) 
is functional to the reciprocal between bbp and a(�) 
(Gordon et  al. 1988). Therefore, the differences of 
bbp−index(green) value are also likely related to the 
absorption a(�) variations of K. mikimotoi and P. dong-
haiense. According to the absorption spectrum meas-
ured by Shen et al. (2019), K. mikimotoi exhibits much 
higher values in the visible bands than P. donghaiense. 

Such differences could arise from the different cellular 
pigment contents of each species (Zapata, et  al., 2012; 
Huang et  al., 2021). The main accessory pigments are 
peridinin in P. donghaiense (peridinin/chl a ~ 0.824), 
and fucoxanthin (fucoxanthin/chl a 0.33–1.75) in K. 
mikimotoi. Other pigments such as dinoxanthin (in P. 
donghaisense) and Chl c3 (K. mikimotoi) also contribute 
to the absorption coefficient. Therefore, it is likely that 
the lower Rrs(�) of K. mikimotoi bloom water is partly 
due to its higher proportion of accessory pigments. 
The difference in pigments absorption contained in K. 
mikimotoi and P. donghaiense thus leading to a distinc-
tive bbp−index(green) values for the two algal species.
Note that non-algal particles could also make contribu-
tion to the backscattering variation. In this study, the 
extremely turbid water was excluded in the first steps 
of bloom detection by threshold Rrs(555) < 0.014 sr−1, 
more work was done by subtracting the Rrs(443) in the 
calculation of RI to minimize the influence of non-algal 
particles. Besides, we assumed that the inherent opti-
cal properties of bloom waters were result from phy-
toplankton particles in the retrieval of bbp−index(green) . 

Fig. 6  Satellite Rrs(�) extracted from the bloom regions by a GOCI, b MODIS, and c MERIS images in Figs. 2 and 3. The K1-GOCI, K2-GOCI, K1-MODIS, 
K2-MODIS, K1-MERIS and K2-MERIS represent the averaged satellite Rrs(�) of K. mikimotoi bloom regions from GOCI, MODIS and MERIS images in 
Fig. 2. The P1-GOCI, P2-GOCI, P1-MODIS, P2-MODIS, P1-MERIS and P2-MERIS represent the averaged satellite Rrs(�) of P. donghaiense bloom regions 
from GOCI, MODIS and MERIS images in Fig. 3
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Therefore, the backscattering contributed by minor 
non-algal particles were omitted in this study. On the 
other hand, it was found that most of the pixels with 
Rrs(555) > 0.014 sr−1 showed bbp−index(green) value 
around 10–2, while the results of bloom waters showed 
the bbp−index

(

green
)

 value around 10–3. Regardless of 
the absorption assumption in bbp−index(green) retrieval, 
the index might also be used to separate turbid water 
from bloom waters.

This method might be applied in other regions for 
bloom discrimination. However, band adjustment is 
needed when considering the absorption assumption in 
the visible bands. Blue bands are not recommended for 
the index retrieval, because there could be shape varia-
tion with the increasing Chl a in nanophytoplankton 
(Jiang 2014). The shape in longer wavelength is more 
stable and could help to discriminate the target the algae 
species. More work is still need to be done when there 
are two or three species mixed in the bloom regions, 
other supplementary is necessary for phytoplankton 
differentiation.

Conclusions
In summary, we used an index, bbp−index

(green) , to com-
pare the backscattering properties of K. mikimotoi and 
P. donghaiense using multiple satellite images. By the 
bbp−index

(green) , a significant difference in backscattering 
was found between the K. mikimotoi and P. donghaiense 
water blooms. This method was found to be useful in 
bloom discrimination using the GOCI, MODIS, and 
MERIS data. This proof-of-concept study demonstrates 
that there is likely a backscattering difference between 
the two species. Such optical characteristics of backscat-
tering could arise not only from the cellular structures of 
the species but also from the environmental conditions 
during phytoplankton accumulation. This method could 
be applied to other regions for algal species discrimina-
tion when the Rrs(�) signal or a(�) signal is not easily 
distinguishable using the current published methods. 
Further investigations into the inherent optical char-
acteristics of other algal species in complicated coastal 
regions is necessary, and the index bbp−index

(green) should 
be calibrated with in situ data to reduce the influence of 
non-algal suspended particles in turbid waters.
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