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Abstract 

The tropical Indian Ocean (TIO) basin-wide warming occurred in 2020, following an extreme positive Indian Ocean 
Dipole (IOD) event instead of an El Niño event, which is the first record since the 1960s. The extreme 2019 IOD 
induced the oceanic downwelling Rossby waves and thermocline warming in the southwest TIO, leading to sea 
surface warming via thermocline-SST feedback during late 2019 to early 2020. The southwest TIO warming triggered 
equatorially antisymmetric SST, precipitation, and surface wind patterns from spring to early summer. Subsequently, 
the cross-equatorial “C-shaped” wind anomaly, with northeasterly–northwesterly wind anomaly north–south of the 
equator, led to basin-wide warming through wind-evaporation-SST feedback in summer. This study reveals the impor-
tant role of air–sea coupling processes associated with the independent and extreme IOD in the TIO basin-warming 
mode, which allows us to rethink the dynamic connections between the Indo-Pacific climate modes.
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Introduction
The Indian Ocean Basin (IOB) mode is the first mode of 
the interannual variability of sea surface temperature in 
the tropical Indian Ocean (TIO), which is characterized 
by basin-warming/cooling (Klein et  al. 1999; Yang et  al. 
2007). The IOB shows a close tie with El Niño-Southern 
Oscillation (ENSO), which develops during the mature 
phase of ENSO, reaches its peak in the following spring 
and persists into summer (Klein et al. 1999; Yu and Lau 
2005; Du et al. 2009). IOB evolution involves active air–
sea interactions over the TIO with important impacts on 
the surrounding climate rather than a passive response to 
ENSO (Yang et  al. 2007; Xie et  al. 2009, 2016; Du et al. 
2011;  Hu et  al. 2011, 2012; Hu and Duan 2015; Huang 
et  al. 2011, 2016; Chowdary et  al. 2019). A “capacitor 
effect” proposed by Yang et al. (2007) and Xie et al. (2009) 
reveals that the TIO basin-warming acts as a capacitor, 

being charged up by El Niño, anchoring atmospheric 
anomalies over the Indo-Pacific Oceans, and exerting 
climate influences like a discharging capacitor (Xie et al. 
2016).

The physical processes, including the air–sea feedbacks 
associated with the atmospheric bridge (Lau and Nath 
1996; Klein et  al. 1999) and the ocean dynamic effect 
(Masumoto and Meyers 1998; Huang and Kinter 2002; 
Xie et  al. 2002) are responsible for the development of 
IOB.

The “atmospheric bridge” mechanism is caused by the 
ENSO-induced Walker Circulation anomalies, which 
affect sea surface temperature (SST) in the TIO via 
cloud-radiation-SST feedback and wind-evaporation-
SST (WES) feedback (Lau and Nath 1996; Klein et  al. 
1999; Reason et  al. 2000; Alexander et  al. 2002). The 
atmospheric circulation and convection weaken over 
the TIO during El Niño, accompanying the reduction 
of cloud cover and winds, leading to an increase in the 
solar radiation absorbed by the ocean and a decrease in 
the heat latent flux loss of the ocean, thereby resulting in 
the SST warming in the TIO. However, the warming in 
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the southwest TIO (SWTIO) cannot be explained by the 
air–sea interface fluxes. Instead, the importance of ocean 
dynamics has been discovered and emphasized in previ-
ous studies (Murtugudde and Busalacchi 1999; Chambers 
et  al. 1999; Murtugudde et  al. 2000; Behera et  al. 2000; 
Huang and Kinter 2002; Xie et al. 2002; Du et al. 2021).

A thermocline dome in the SWTIO is maintained by 
the upwelling induced by negative wind curl between the 
weak equatorial westerlies and the southeasterly trades 
(Hermes and Reason 2008; Yokoi et al. 2008), which pro-
vides a favorable condition for subsurface temperature 
variability to affect SST (e.g., Neelin et al. 1998; Xie et al. 
2002). An anticyclonic atmospheric circulation appears 
over the  southern TIO during an El Niño event, which 
forces westward-propagating downwelling Rossby waves 
(Masumoto and Meyers 1998; Yu et al. 2005; Tozuka et al. 
2010). The westward-propagating downwelling Rossby 
waves deepen the thermocline depth and cause the ther-
mocline warming in the thermocline dome region, result-
ing in SST warming, which is called thermocline-SST 
feedback (Xie and Philander 1994). Thus, the SST warm-
ing in the SWTIO can sustain through the summer even 
as El Niño dissipates (Xie et  al. 2002; Annamalai et  al. 
2005), which induces an increase in atmospheric convec-
tion and precipitation over the southern TIO (Wu et al. 
2008; Wu and Yeh, 2010). A cross-equatorial “C-shaped” 
wind anomaly, with northeasterly–northwesterly wind 
anomaly north–south of the equator, results from the 
SWTIO warming-induced SST gradient between the 
north and south and the reverse of the Coriolis force 
across the equator (Kawamura et al. 2001; Wu et al. 2008; 

Wu and Yeh 2010; Chakravorty et al. 2013). In the early 
spring, the northeasterly wind anomaly enhances the 
winter monsoon over the north Indian Ocean, which 
cools down the SST through negative WES feedback. 
The northeasterly anomaly persists into the summer due 
to the long-lasting SWTIO warming and weakens the 
summer southwesterly monsoon, thus leading to a sec-
ond SST warming north of the equator due to reduction 
of latent heat flux (Du et  al. 2009, 2013). The equatori-
ally asymmetric SST and wind anomalies are critical to 
maintaining basin-wide warming in the TIO until sum-
mer (Du et al. 2009; Guo et al. 2018).

The basin-wide warming in the TIO is found to be 
stronger during co-occurrence of El Niño and Indian 
Ocean Dipole (IOD) than that during El Niño only 
(Chowdary and Gnanaseelan 2007; Hong et  al. 2010). 
The air–sea feedbacks associated with ENSO-induced 
atmospheric bridges play an important role in the persis-
tence of basin-wide warming in the TIO during the pure 
El Niño years. During El Niño and IOD co-occurrence 
years, air–sea feedbacks and ocean dynamics are of great 
importance for the TIO basin warming. However, such 
basin-wide warming is not seen during pure IOD years 
due to the absence of ENSO-induced subsidence over the 
eastern TIO (Chowdary and Gnanaseelan 2007; Chakra-
vorty et al. 2014).

Basin-wide warming occurred in the TIO in 2020, 
which followed an extreme positive IOD instead of an 
El Niño event (Fig. 1a). This is the first record since the 
1960s. The 2020 IOB warming caused devastating flood-
ing in Japan and central China associated with the heavy 

Fig. 1  a Time series of the Indian Ocean dipole mode index (DMI) and IOB mode index during Jan 2019–Dec 2020. b Scatter plot between DMI 
and Niño3.4 index, superimposed with following-year IOB events (red and blue dots). Small, medium and large red (blue) dots represent IOB index 
exceed (-) 1, 1.5, and 2 std of IOB index, respectively
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Meiyu–Baiu precipitation (Zhou et al. 2021; Takaya et al. 
2020). However, it is not fully understood the dynamic 
processes of IOB in 2020 that followed an IOD rather 
than an El Niño event, which is the goal of this study.

Data
In this study, the NOAA Optimum Interpolation (OI) 
Sea Surface Temperature (SST) version 2 monthly fields 
(Reynolds et  al. 2007) are used to display the develop-
ment of IOB, which are derived by linear interpolation 
of the weekly OI version 2 fields to daily fields then aver-
aging the daily values over a month. The SST fields are 
available on 1° spatial resolution from December 1981 
to the present. The monthly gridded temperature fields 
from Roemmich-Gilson Argo Climatology (RG Argo; 
Roemmich and Gilson 2009), with a regular 1° horizontal 
resolution and 58 vertical levels in the upper 2000 m, are 
available from January 2004 to the present. The altimeter 
satellite grided sea surface height (SSH) data is obtained 
from Copernicus Marine Environment Monitoring Ser-
vice (CMEMS), which has a spatial grid resolution of 
0.25° and a temporal resolution of 1  day from January 
1993 to the present.

An observation-based merged analysis of precipita-
tion is provided by the Global Precipitation Climatol-
ogy Project (GPCP) monthly product, which covers the 
period from January 1979 through the present (Huffman 
et  al. 1997, 2009; Adler et  al. 2003). The Levels 3.0 and 
3.5 Cross‐Calibrated Multi-Platform (CCMP) version 2.0 
gridded surface vector winds are produced using satellite, 
moored buoy, and model wind data since 1988, which 
are available from Remote Sensing Systems (RSS; Atlas 
et al. 2011; Wentz et al. 2015). The surface heat fluxes are 
provided by the fifth generation ECMWF atmospheric 
reanalysis (ERA5) of the global climate, covering  from 
January 1979 through the present.

The indices of Niño3.4, IOD, and IOB modes were cal-
culated using ERSSTv5 from January 1960 to February 
2021. The seasonal cycle and linear trends are removed 
from the anomalies.

Results
Over the past 60  years, five warming and one cooling 
events occurred during the co-occurrence of IOD and 
ENSO, five (three) warming and four (one) cooling events 
during the pure (weak) ENSO, and only one warm-
ing event occurred during the pure IOD (Fig.  1b). That 
is 2019 extreme IOD, which forced a TIO basin-wide 
warming to occur in the following year.

In 2019, the positive IOD developed independently 
without an El Niño event, which was the strongest event 
since the 1960s (Doi et  al. 2020; Du et  al. 2020; Lu and 
Ren 2020). The 2019 extreme IOD is classified as the 

“prolonged IOD”, which features a longer period of devel-
opment and decay (Du et al. 2020). It developed during 
MAM, peaked at SON, and decayed in the following sea-
son (Fig. 1a; Du et al. 2020). In SON 2019, a strong SST 
cooling in the southeast and warming in the west and 
southwest, with strong equatorial easterly anomalies and 
anticyclonic wind stress curl anomalies on both sides of 
the equator, appeared during the mature phase of posi-
tive IOD (Fig. 2a, b). A similar dipole pattern of precipi-
tation anomalies was caused by this extreme IOD, with 
floods along the western coast of TIO and severe drought 
and bushfires in Indonesia and Australia (Fig. 2a; Bureau 
of Meteorology, Australian Government 2019; Munthe 
et  al. 2019; OCHA 2019). Meanwhile, the thermocline 
deepened and SSH rose in the west, while the thermo-
cline shallowed and SSH dropped in the east through the 
modulation of oceanic planetary waves and zonal heat 
transport, which were triggered by the equatorial easterly 
anomalies and anticyclonic wind stress curl anomalies 
(Fig. 2b; Feng et al. 2001; Vinayachandran et al. 2002; Rao 
et al. 2002; Nagura and McPhaden 2010).

After the extreme IOD disappeared, the TIO experi-
enced a basin-wide warming from the following spring 
to summer, with two peaks in March and June, respec-
tively (Figs. 1a, 2c). Correspondingly, an increase in pre-
cipitation took place over the TIO in this period (Fig. 2c; 
Annamalai et al. 2005; Li et al. 2008). Similarly, the ther-
mocline in the TIO displayed a basin-wide deepening in 
summer, replacing the dipole structure in the 2019 fall 
(Fig. 2d). The sea surface and thermocline warming in the 
SWTIO showed more pronounced, with a “C-shaped” 
surface wind anomaly anchored, indicating the important 
role of the SWTIO active air–sea coupling processes in 
the TIO basin-warming (Fig. 2c, d).

Significant westward-propagating oceanic downwelling 
Rossby waves were found in the south TIO, accompanied 
by copropagating thermocline and SST warming from 
the development phase to the decay phase of the 2019 
extreme IOD (Fig. 3). The downwelling Rossby waves and 
corresponding SST warming during 2019–2020 were the 
strongest on record, forced by sustained anticyclone wind 
curls associated with the extreme IOD in 2019 (Zhou 
et al. 2021; Zhang Y et al. 2021). In boreal spring (MAM) 
of 2019, a positive wind stress curl anomaly occurred in 
the east, triggering the westward-propagating down-
welling Rossby waves via Ekman pumping and conver-
gence (Fig. 3b). The downwelling Rossby waves deepened 
the thermocline, leading to thermocline warming in the 
south TIO. Meanwhile, the mixed layer is deepened by 
the Ekman pumping. During the mature phase (SON) 
of IOD, the positive wind stress curl anomaly became 
stronger and covered a larger area over the south TIO, 
forcing and strengthening the westward-propagating 
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downwelling Rossby waves (Fig.  3b). Thus, the thermo-
cline became deeper, and the resultant warming of the 
thermocline became more significant. Subsequently, the 
downwelling Rossby wave propagated westward to the 
thermocline dome in the SWTIO, which deepened the 
thermocline and caused the SST warming in the SWTIO 
(Fig. 3c; Chowdary et al. 2009). In DJF, the downwelling 
Rossby waves and associated thermocline fluctuation 
reached their peak (Fig.  3d). The SST warming in the 
SWTIO was maintained by the slow-propagating down-
welling Rossby waves and local wind forcing until the 
2020 summer (Fig. 3e). This breaks through our previous 
understanding that SWTIO SST warming cannot persist 
until the following summer during the pure IOD events.

The SST warming in the SWTIO-induced heavy pre-
cipitation by strengthening local deep convection dur-
ing spring to summer (Fig.  4). Therefore, equatorially 
antisymmetric SST and convection patterns appeared in 
the TIO (Fig. 4). Consistently, the surface wind anoma-
lies feature an antisymmetric circulation structure over 
the TIO (Fig. 4a; Kawamura et al. 2001; Wu et al. 2008; 
Wu and Yeh 2010). A cross-equatorial “C-shaped” wind 
anomaly over the TIO, with northeasterlies north and 
northwesterlies south of the equator, was forced by the 
north–south temperature gradient and Coriolis effect. 
In turn, the cross-equatorial “C-shaped” wind anomaly 
also favored the north–south SST gradient, because 

surface wind caused less latent heat flux loss over the 
southern TIO. Thus, in spring, positive WES feedback 
works in the southern TIO, supporting the mainte-
nance of the antisymmetric mode (Wu et al. 2008; Wu 
and Yeh 2010). In summer, the anomalous northeaster-
lies weakened the climatological monsoon southwest-
erlies over the northern TIO, leading to an increase 
in SST due to the positive WES feedback mechanism 
(Fig.  4; Xie and Philander 1994; Du et  al. 2009; Chen 
et  al. 2019). Meanwhile, the enhanced precipitation 
extended to the northern TIO, with the development of 
SST warming and summer monsoon in the TIO (Fig. 4; 
Annamalai et al. 2005; Izumo et al. 2008).

In addition, the westward-propagating downwelling 
Rossby waves in the south TIO transformed into the 
equatorward-propagating coastal-trapped waves after 
reaching the western boundary and then reflected as the 
equatorial Kelvin waves that propagate eastward along 
the equator (Le Blanc and Boulanger 2001; McPhaden 
and Nagura 2014; Wang et  al. 2016; Chen et  al. 2019). 
Thus, the downwelling Rossby waves and reflected-equa-
torial Kelvin waves sustained the warming of the west-
ern TIO and west–east temperature gradient from 2019 
winter to the following spring (Fig. 5a, b; Jury and Huang 
2004). In early spring, the west–east temperature gradi-
ent forced the equatorial easterly wind anomaly (Figs. 4a, 
5b; Du et  al. 2020), which favored the generation of 

Fig. 2  a SSTa (shading, ℃) and precipitation anomaly (contours, mm/day) in 2019 SON. b SSHa (shading, m) and wind anomalies (vectors, m/s) in 
2019 SON. c, d same with (a, b), but in 2020 AMJ
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downwelling Rossby waves and westward heat advection, 
further maintaining the warming in the western TIO.

In the eastern TIO, the SST warming was affected by 
the air–sea interface exchanges associated with cloud-
radiation-SST feedback and WES feedback, resulting 
from the weakening of anomalous subsidence of Walker 
Circulation over the east TIO. During the boreal winter 
of 2019, a reduction of cloud cover, induced by the cool-
ing pole of IOD off the Sumatran southwest, favored an 
increase in the shortwave radiation (Figure not shown; 
Cai and Qiu 2013; Liu et al. 2014). In addition, the strong 
southeasterly wind anomaly weakened during the decay 
phase of IOD, resulting in the SST warming due to a 
decrease in the heat latent flux loss of the ocean (Figs. 4b, 
5c; Tokinaga and Tanimoto 2004). In later spring, the 
reflected-equatorial Kelvin reached the Sumatra-Java 
coasts, sustaining SST warming in the eastern TIO 
(Fig. 5a, b). An increase in precipitation followed the SST 
warming in the eastern TIO (Figs. 2c, 5a).

Summary and discussion
The TIO experienced a basin-wide warming in 2020, fol-
lowing an extreme and prolonged positive IOD event 
instead of an El Niño event. This is the first record since 
the 1960s. Persistent warming occurred in the SWTIO 
from late 2019 to early 2020, sustained by oceanic down-
welling Rossby waves associated with the extreme 2019 
IOD via thermocline-SST feedback. During 2020 spring 
to early summer, the SWTIO warming triggered the 
equatorially antisymmetric SST, precipitation and sur-
face wind patterns over the TIO. The cross-equatorial 
“C-shaped” wind anomaly, with northeasterly–north-
westerly wind anomaly north–south of the equator, 
weakened the climatological surface winds then led to 
basin-wide warming via reducing surface evaporation. 
Moreover, the westward-propagating Rossby waves 
reflected as the eastward-propagating equatorial Kelvin 
waves, which favored the persistence of warming in the 
western TIO in 2020 spring. In the eastern TIO, air–sea 
interface exchanges play an important role in SST warm-
ing. The importance of air–sea coupling processes associ-
ated with the independent and extreme IOD in the TIO 
basin-warming mode has been clarified in this study, 

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

Fig. 3  Hovmöller diagrams of (a) SSTa (shading, ℃) and precipitation anomalies (contours, mm/day), and b SSHa (shading, m) and wind stress curl 
anomalies (contours, 10–8 N/m3) averaged in 8–12°S. Green arrows denote the westward-propagating Rossby waves. c–e Vertical distribution of 
potential temperature anomalies (shading, ℃), MLD (black dashed lines), and D20 (solid black lines) averaged between 8 and 12°S in 2019 SON, 
2019 D(2020)JF, 2020 MAM, respectively. Gray lines in c–e are climatological means for the period 2004–2020
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which allows us to rethink the relationship between the 
Indo-Pacific climate modes.

In addition to the local forcing of the TIO, the remote 
forcing from the Pacific might also impact the develop-
ment of IOB warming in 2020. A weak El Niño Modoki 
developed in the tropical Pacific during 2019. Zhou 
et  al. (2021) suggested that the warming in the cen-
tral-western tropical Pacific during the weak El Niño 
Modoki contributed to the sustained anticyclone wind 
curls over the south TIO in early 2020 according to the 
results of the atmospheric model experiments. Zhang 
L et al. (2021) further indicated that the warming of the 
tropical Pacific contributes to the tropical Indian Ocean 

wind anomalies, regardless of whether the warming is 
in the western or eastern tropical Pacific. The tropical 
Pacific warming causes the Pacific convection center to 
shift eastward, and then triggers atmospheric Rossby 
waves over the Indian Ocean, resulting in a pair of low-
level anomalous anticyclones occurring on both sides of 
the equator. Nevertheless, our results in this study chal-
lenge the perception that only ENSO triggers the IOB. 
The relationship between ENSO and IOB would change 
with ocean mean state and ENSO activity on long time-
scales (Xie et al. 2010; Zheng et al. 2011, 2016; Hu et al. 
2013; Tao et al. 2015; Liu et al. 2021). In a warming cli-
mate, both extreme positive IOD events and El Niño 
events are projected to become more frequent (Cai 

(a)

(b)

Fig. 4  a SSTa (shading, ℃) and wind anomalies (vectors, m/s) zonally averaged between 40° and 100°E. b latent heat flux anomalies (shading, W/
m2) and precipitation anomalies (contours, mm/day) zonally averaged between 40° and 100°E
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et  al. 2014; Freund et  al. 2020). Thus, it is worth pay-
ing attention to changes in the relationship between the 
Indo-Pacific climate modes, and their relative contribu-
tions to climate variability in the Indo-Pacific.
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