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Variations of chlorophyll‑a and particulate 
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Abstract 

Typhoon events have large impacts on marginal seas’ environmental conditions with implications for biological pro‑
cesses and carbon cycling. However, little is known about the responses of phytoplankton and particulate organic car‑
bon (POC) to typhoon events in the Yellow-Bohai Sea (YBS). In this study, we utilized satellite-derived datasets of chlo‑
rophyll-a (Chl-a) and POC, together with key physical parameters, to analyze their responses to the Typhoon Lekima 
event induced heavy rainfall and strong winds. Overall, there were enhanced upwelling, strengthened currents, and 
increased terrestrial runoff during weakened Typhoon Lekima in the YBS. The basin-scale response of Chl-a showed 
large differences post the Typhoon Lekima event, with a decrease in the Bohai Sea (BS, 0.34 ± 3.0 mg m−3) but an 
increase in Yellow Sea (YS, 0.23 ± 1.7 mg m−3 in the south YS and 0.54 ± 0.8 mg m−3 in the north YS). The increase of 
Chl-a in the YS was attributed to increased nutrients, whereas the reduction of Chl-a in the BS was caused by dilution 
and water exchange with the North Yellow Sea. However, there was an overall increase in POC post-Typhoon Lekima 
in both BS and YS. The increase of POC in the majority of BS resulted largely from enhanced sediment resuspension 
and terrigenous input. The increase of POC in the nearshore waters of YS was attributable to enhanced biological 
production, sediment resuspension, and terrigenous input of POC, whereas the increase of POC in the central YS was 
partly due to transportation of high-POC waters from nearshore to offshore via strengthened current. Our study high‑
lights the complex impacts of typhoon events on the carbon cycle in marginal seas.
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Introduction
Typhoons are one of the most intensive meteorological 
activities on earth and can impose significant impacts 
on the marine environment. Typhoon-induced strong 
wind can cause significant entrainment and upwelling in 
the ocean, which uplifts nutrient-rich subsurface water 
to the surface layer of water column (Liu et al. 2019; Pan 
et  al. 2018). As a result, nutrient concentration in sur-
face water often increases during/after the passage of 
typhoon, which stimulates phytoplankton growth and 

thus enhances primary production (Chen et  al. 2017). 
The extent and strength of biological responses are 
influenced by the intensity of typhoon and the changes 
in environmental conditions (Pan et al. 2017; Zhao et al. 
2013).

There is evidence of high frequency of typhoon pas-
sages in marginal seas, and great impacts of typhoon-
induced strong wind on its biogeochemistry because 
of the marginal seas’ shallow stratification that is easily 
broken (Chen et  al. 2017). In addition to the enhanced 
nutrient supply from subsurface of the ocean, typhoon-
induced heavy rainfall could increase runoff, thus deliv-
ering more nutrients from adjacent lands (Shiah et  al. 
2000). Previous studies reported that marginal seas, 
occupying 7–10% area of the global ocean, contributed 
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~ 30% of global ocean’s primary productivity (Bauer et al. 
2013; Fang et  al. 2018). Thus, studying the impacts of 
typhoons on marginal seas’ biogeochemical processes is 
important to our understanding of the carbon cycle at 
regional-to-global scales.

The response of phytoplankton to the passage of 
typhoons varies largely due to the differences in the char-
acteristics of typhoons and the water column conditions, 
particularly in the marginal seas (Hernandez et al. 2020; 
Huang et al. 2011). On one hand, many studies reported 
phytoplankton bloom during/after the passage of 
typhoons, as indicated by a significant increase in chloro-
phyll-a (Chl-a) concentration (Hernandez et al. 2020; Liu 
et  al. 2019; Ning et  al. 2019). On the other hand, there 
was evidence of decrease (relative to prior-typhoon con-
ditions) in phytoplankton biomass following typhoon 
events due to various mechanisms such as dilution, water 
exchange, and light limitation caused by enhanced resus-
pension (Huang et al. 2011; Hung et al. 2010; Wetz and 
Paerl 2008; Wiegner et al. 2012).

Extreme weather events can have large impacts on 
the dynamics of organic carbon in shallow waters. An 
analysis based on 20-year data collected in Neuse River 
Estuary (N Carolina, US) showed that total organic car-
bon often increased following hurricane events, which 
was due to enhanced primary production and also ter-
restrial input (Paerl et  al. 2020). There was evidence of 
elevated particulate organic carbon (POC) in association 
with typhoon-induced phytoplankton blooms in reser-
voir (Gao et  al. 2021) and shallow seawater (Chen and 
Tang 2011). Some studies also showed increased POC 
in coastal waters, which was associated with typhoon-
induced enhancements of various physical processes, 
including terrestrial runoff (Liu et  al. 2007), sediment 
resuspension, and coastal upwelling (Shiah et al. 2000).

Mid-latitude marginal seas are experiencing increas-
ing numbers of intensive typhoon events in recent years 
(Wang and Toumi 2021). However, there have been a 
handful of studies addressing the impacts of typhoon 
events particularly on biogeochemistry and carbon 
cycling in mid-latitude marginal seas (Son et  al. 2006; 
Tsuchiya et  al. 2017). The Yellow-Bohai Sea (YBS), a 
semi-enclosed shallow marginal sea, is largely influ-
enced by terrestrial runoff and wind-stirring induced 
resuspension of sediments. There has been an increas-
ing number of typhoon events over the past, with about 
two typhoon events each year during the recent dec-
ade in the YBS (http://​agora.​ex.​nii.​ac.​jp/​digit​al-​typho​
on/). The Typhoon Lekima passed through the western 
YBS and adjacent lands in August 2019, having large 
impacts on the environmental conditions (Lu et  al. 
2020), with implications for biogeochemical processes 

and the carbon cycle. Here, we analyze satellite-derived 
Chl-a, POC and other relevant data to investigate the 
impacts of the Typhoon Lekima event on key physical 
and biogeochemical fields in different sections of the 
YBS. The objectives of this study are: (1) to evaluate 
the responses of biogeochemical processes and carbon 
cycle to typhoon-induced changes in environmental 
conditions, and (2) to explore the potential mechanism 
regulating the variation of POC in the YBS. This work 
aims to better understand the responses of carbon cycle 
to environmental changes in marginal seas.

Materials and methods
Descriptions of study area and Typhoon Lekima 2019
The YBS, with an area of ~ 4.6 × 105  km2, consists of 
three parts: Bohai Sea (BS), North Yellow Sea (NYS), 
and South Yellow Sea (SYS). Water depth in the YBS 
increases from north to south, with an average of about 
18  m in BS, 38  m in NYS, and 46  m in SYS (Fig.  1).
There is ~ 7000 km-long coastline with eight large riv-
ers (defined as annual runoff > 5 × 109  m3) flowing into 
the YBS, transporting about 1.04 × 109  t terrestrial 
materials into the YBS every year (according to Bulletin 
of China’s River Sediment, http://​www.​mwr.​gov.​cn/​sj/​
tjgb/​zghln​sgb/). The Yellow River deliveries 3.89 × 105 t 
POC into the BS annually (Wang et al. 2012).

There is pronounced seasonality in the hydrologi-
cal environment of the YBS. The main current system 
includes the northward Yellow Sea Warm Current 
(YSWC) and southward Yellow Sea Coastal Current 
(YSCC), which are strongest in winter and weakest in 
summer (Teague and Jacobs 2000). A bottom water 
mass, the Yellow Sea Cold Water Mass (YSCWM) in 
the centers of NYS and SYS, retains its winter char-
acteristics in all seasons, causing remarkable verti-
cal stratification in summer (Chen 2009; Xiu et  al. 
2009; Yang et al. 2014), which can be partly broken by 
stronger winds during typhoon events.

Typhoon Lekima generated on 4th August 2019, made 
landfall again in Zhejiang Province on 10th August, 
moved into the SYS on 11th August, and made landfall 
in Shandong Province on the same day. It then crossed 
Shandong Peninsula and moved into the BS at ~ 5:00 on 
12th August, and hovered over the BS, gradually dis-
sipated until ~ 14:00 on 13th August (Fig.  1). Accord-
ing to the Saffir–Simpson scale (Wang and Wang 2021), 
Typhoon Lekima was a Category 4 typhoon, but the 
intensity was depressed during the passage in the YBS, 
with the diameter of the typhon-induced gale ranging 
from 660 to 1400  km (http://​agora.​ex.​nii.​ac.​jp/​digit​al-​
typho​on/).

http://agora.ex.nii.ac.jp/digital-typhoon/
http://agora.ex.nii.ac.jp/digital-typhoon/
http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/
http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/
http://agora.ex.nii.ac.jp/digital-typhoon/
http://agora.ex.nii.ac.jp/digital-typhoon/
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Data source and processing
Wind field at 10 m above sea level was derived from the 
Cross-Calibrated Multi-Platform (CCMP) product (daily, 
0.25° × 0.25°). Rainfall data were the Global Satellite Map-
ping of Precipitation (GSMaP) product (daily, 0.1° × 0.1°). 
High-resolution current field and salinity data (3-h mean, 
0.08° × 0.08°) were obtained from output of the Hybrid 
Coordinate Ocean Model (HYCOM). Sea surface tem-
perature (SST) data were obtained from Optimum Inter-
polation Sea Surface Temperature (OISST) products 
(daily, 0.25° × 0.25°). Chl-a and POC data were derived 
from Level 3 Standard Mapped Image products (daily, 
4 km × 4 km) from Moderate Resolution Imaging Spec-
troradiometer (MODIS) onboard Aqua, in which atmos-
pheric correction using near-infrared bands was applied. 
These data have been widely used in relevant studies and 

showed acceptable accuracy (Cui et  al. 2014; Fan et  al. 
2018; Fu et al. 2016a, b; Ning et al. 2017; Zhao et al. 2019).

There may be abnormal values in Chl-a and POC data 
(i.e., overestimation during retrieval), since the coastal 
waters in YBS are a typical case II water, in which opti-
cal properties are influenced by both phytoplankton and 
exogenous materials. According to previous field meas-
urements, we set 45  mg  m−3 and 1400  mg  m−3 as the 
thresholds for Chl-a and POC, respectively (Fan et  al. 
2018; Mao et al. 2017; Sun et al. 2019; Wang et al. 2018). 
Values greater than the thresholds were replaced with the 
average value of surrounding points, which accounted 
~ 0.07% and ~ 0.33% of total data points for Chl-a and 
POC, respectively. Because reflectance of seabed could 
also affect optical properties of coastal water, we only 
used data in regions with bathymetry > 5 m in our analy-
ses. Due to low coverage of the ocean color data during 
the typhoon events, we selected multi-day composited 
data over three periods: prior to (1–8th August for the 
BS and NYS, and 30th July–6th August for the SYS), 
during (11–13th August), and post (14–21st August) 
Typhoon Lekima. We used different time frames for the 
prior-typhoon period (i.e., 2 days earlier for the SYS) to 
reflect the difference in timing of typhoon. Mean filter 
was applied to reduce abrupt changes caused by mosaic 
operation. In this study, data processing, calculation, 
and statistical analyses were conducted using MATLAB 
2018a and ArcMap 10.5.

Results
Changes of environmental conditions
The Typhoon Lekima event caused strong winds and 
heavy rainfall over most parts of the YBS. The wind was 
weak (< 6 m  s−1) in the YBS prior to the typhoon event 
(1–8th August) (Fig. 2d). Due to passage of the typhoon, 
strong winds prevailed, with wind speed > 9  m  s−1 dur-
ing the typhoon event (11–13th August) in most sec-
tions of YBS (Fig.  2e). Similarly, relatively light rainfall 
(< 0.5 mm h−1) generally occurred in the YBS prior to the 
typhoon event (1–8th August) (Fig.  3d). However, rain-
fall increased in majority of the YBS during the passage 
of Typhoon Lekima (11–13th August), with intensive 
rainfall (> 0.75 mm h−1) in the central SYS, northern YBS, 
and adjacent lands (Fig. 3e).

Strong wind during Typhoon Lekima (11–13th 
August) enhanced current (> 0.2  m  s−1) and upwelling 
(0.4–3 × 10–5 m s−1) in most sections of the YBS, which 
were much stronger than the current (< 0.15 m s−1) and 
upwelling (< 1.5 × 10–6 m s−1) during non-typhoon peri-
ods (Additional file  1: Figs. S1, S2). Heavy rainfall dur-
ing the typhoon event (11–13th August) led to intensive 
flooding and runoff around the YBS, with ~ 70 intensely 
flooded rivers, in which the Yellow River’s runoff reached 

Fig. 1  Bathymetry and current system in the Yellow-Bohai Sea, the 
main inflow rivers, and the track of Typhoon Lekima (during 4–13th 
August, 2019). The white lines with arrows denote the Yellow Sea 
Warm Current (YSWC) and Yellow Sea Coastal Current (YSCC), and 
blue oval circles the Yellow Sea Cold Water Mass (YSCWM). The track 
and maximum sustained wind speeds during the Typhoon Lekima 
event were obtained from China Meteorological Administration 
(http://​www.​typho​on.​org.​cn). Red circles denote typhoon centers at 
a specific time (Beijing local time, UTC + 8). The bathymetry data are 
from ETOPO1 Global Relief Model (Amante and Eakins 2009). Current 
system is modified from Yu et al. (2021). River routing system is from 
Resource and Environment Science and Data Center of Chinese 
Academic of Science (http://​www.​resdc.​cn/​data.​aspx?​DATAID=​221)

http://www.typhoon.org.cn
http://www.resdc.cn/data.aspx?DATAID=221
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3990 m3 s−1, which was much greater than those (1500–
2500 m3 s−1) in non-typhoon years (according to Annual 
Report of Chinese Hydroregime, http://​www.​mwr.​gov.​
cn/​sj/​tjgb/​sqnb).

Responses of Chl‑a and POC
In non-typhoon years, Chl-a increased markedly from 
1–8th to 14–21st August in most sections of the YBS, but 
decreased slightly in some parts of western SYS (Fig. 4c). 
On average, the increase of Chl-a was 0.12 mg m−3 (6%), 
0.68  mg  m−3 (39%), and 0.92  mg  m−3 (20%) over this 
period in the SYS, NYS, and BS, respectively (Table 1). In 
2019, Chl-a level was higher in almost the entire YS post 
the Typhoon Lekima event (14–21st August) relative to 
prior-typhoon conditions (1–8th August), except in the 
northern coastal waters of the SYS where modest decline 
(by < 1  mg  m−3) appeared (Fig.  4f ). For the BS, Chl-a 
showed a significant increase (by 0.5–4  mg  m−3) in the 
western part and a modest decrease (by > 1 mg  m−3) in 

the middle section. There was a larger increase of Chl-a 
post the typhoon event (14–21st August) in the NYS (by 
0.54  mg  m−3 or 46%) than in the SYS (0.23  mg  m−3 or 
16%), but a decrease in the BS (by 0.34  mg  m−3 or 7%) 
(Table 1).

Overall, POC increased from 1–8th to 14–21st August 
in non-typhoon years in most parts of the YBS, except 
in some sections in the western SYS (Fig.  5c). On aver-
age, increase of POC was 9  mg  m−3, 36  mg  m−3, and 
45  mg  m−3 in the SYS, NYS, and BS, respectively 
(Table 1). Compared with those prior to Typhoon Lekima 
(1–8th August), POC increased after the Typhoon 
Lekima event in majority of the YBS, with a small 
decrease in northwest coastal SYS and the central BS 
near the Bohai Strait (Fig. 5f ). On average, the increase of 
POC was greatest in the NYS (by 79 mg m−3 or 46%) and 
smallest in SYS (by 41 mg m−3 or 22%), and in between in 
the BS (by 78 mg m−3 or 24%) (Table 1).

Fig. 2  Wind speed during 1–8th August (a, d), 11–13th August (b, e) and 14–21st August (c, f) for non-typhoon years over 2003–2018 (excluding 
typhoon years: 2005, 2007, 2009, 2011, 2012, 2014, 2015, 2018) (top panel) and 2019 (lower panel) in the Yellow-Bohai Sea

http://www.mwr.gov.cn/sj/tjgb/sqnb
http://www.mwr.gov.cn/sj/tjgb/sqnb
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Variations of POC:Chl‑a ratio
The POC:Chl-a ratio is often used to indicate the contri-
bution of phytoplankton carbon to total POC in seawa-
ters (Hung et al. 2010; Yu et al. 2019). Clearly, POC:Chl-a 
ratio was lower in nearshore waters (~ 50–100) than in 
offshore waters (> 150) in both non-typhoon years and 
2019 (Fig. 6). A field study also reported a high-POC:Chl-
a ratio (> 140) in summer in the offshore waters of YS 
(Wang et  al. 2018). The spatial variation of POC:Chl-a 
ratio was large in non-typhoon years, showing relatively 
large areas of both low ratio (< 100) and high ratio (> 200) 
waters (Fig. 6a, b). There was an overall decrease in the 
POC:Chl-a ratio from 1–8th to 14–21st August except 
in some nearshore waters during non-typhoon years 
(Fig. 6c), with the largest decrease in the NYS (by 23 ± 33) 
followed by in the SYS (10 ± 22) and in the BS (4 ± 12) 
(Table 1). However, POC:Chl-a ratio showed an increase 
(by ~ 10–100) post the Typhoon Lekima event (14–21st 
August) in most sections of the YBS, but a small decrease 

(by < 45) in some coastal sections, e.g., in the eastern YS 
and southwestern BS (Fig. 6f ). On average, the increase 
in POC:Chl-a ratio was 18 ± 38 in the SYS, 8 ± 28 in NYS 
and 22 ± 23 in the BS (Table 1).

Discussion
Impacts of typhoons on environmental conditions 
of marginal seas
Typhoon events usually cause stronger wind and thus 
upwelling, which brings cold water into the surface 
layer, resulting in a decrease in SST (Liu et  al. 2019; 
Zheng and Tang 2007). Our results showed a decrease 
in SST associated with enhanced upwelling (Additional 
file  1: Fig. S3), particularly in the western YBS near 
to the tracks of Typhoon Lekima, which was consist-
ent with other studies that reported surface cooling 
under strengthened upwelling (Liu et  al. 2019, 2020a). 
Apart from the impact of upwelling, there was also 
evidence of further SST decrease due to input of extra 

Fig. 3  Rainfall during 1–8th August (a, d), 11–13th August (b, e), and 14–21st August (c, f) for non-typhoon years (top panel) and 2019 (lower 
panel) in the Yellow-Bohai Sea
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freshwater (with lower temperature) from heavy rain-
fall and enhanced runoff (Fu et  al. 2016a, b). On the 
other hand, the freshwater input could also enhance 
ocean stratification and suppress vertical mixing due 
to decreased sea surface salinity, which could reduce 

the decline of SST (Liu et al. 2020b). Our analysis also 
showed a decrease of salinity in most nearshore waters 
(Additional file 1: Fig. S4), reflecting the dilution effect 
caused by heavy rainfall and enhanced freshwater 
inputs from coastline runoff.

Fig. 4  Chlorophyll-a (Chl-a) during 1–8th August (a, d) and 14–21st August (b, e), and the difference (c, f) between the two periods for 
non-typhoon years (top panel) and 2019 (lower panel) in the Yellow-Bohai Sea

Table 1  Means (standard deviations) of Chl-a (mg m−3) and POC (mg m−3) and their changes (percentages) from 1–8th to 14–21st in 
August of 2019 and non-typhoon years over 2003–2018

Bohai Sea North Yellow Sea South Yellow Sea

2003–2018 2019 2003–2018 2019 2003–2018 2019

Chl-a

 1–8th August 4.67 (1.7) 4.63 (2.7) 1.73 (1.6) 1.18 (1.0) 1.83 (1.9) 1.50 (1.7)

 14–21st August 5.58 (1.6) 4.29 (1.4) 2.41 (2.2) 1.72 (1.5) 1.95 (1.8) 1.74 (2.1)

 Change (percentage) 0.92 (20%) − 0.34 (− 7%) 0.68 (39%) 0.54 (46%) 0.12 (6%) 0.23 (16%)

POC

 1–8th August 376 (67) 329 (84) 220 (102) 170 (73) 201 (100) 183 (1.6)

 14–21st August 421 (58) 407 (61) 255 (120) 249 (117) 210 (96) 224 (110)

 Change (percentage) 45 (12%) 78 (24%) 36 (16%) 79 (46%) 9 (4%) 41 (22%)

POC:Chl-a

 1–8th August 92 (16) 78 (18) 174 (49) 170 (35) 169 (59) 163 (48)

 14–21st August 88 (11) 100 (17) 151 (41) 178 (44) 159 (52) 182 (59)
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Previous studies have reported significant increases 
in nutrients following typhoon events (Hung et al. 2013; 
Jiang et al. 2020), which often results from strengthened 
upwelling that brings more nutrients from bottom waters 
into surface layer (Liu et al. 2019; Zheng and Tang 2007). 
In addition, enhanced runoff could also deliver more 
nutrients into coastal waters (Fu et al. 2016a, b). Indeed, 
a recent field study showed that total inorganic nitrogen 
concentrations increased by > 90% in coastal waters of 
the NYS post the Typhoon Lekima 2019 (Lu et al. 2020), 
implying that there would be consequently biological 
responses.

Biological responses to typhoon‑induced environment 
changes
There was evidence of increased Chl-a following 
typhoon events, which was attributed to enhanced 
nutrient supply associated with typhoon-enhanced 
terrestrial runoff and upwelling (Shiah et  al. 2000). 
Although our study showed lower Chl-a levels dur-
ing 14–21 August in 2019 (post the Typhoon Lekima 
event) than in non-typhoon years, the relative increase 
of Chl-a (from 1–8th to 14–21st August) was greater in 
2019 (16–46%) than in non-typhoon years (6–39%) in 

the YS (Table 1), indicating that phytoplankton growth 
increased in association with the passage of Typhoon 
Lekima. In addition, the increase of Chl-a post-typhoon 
events could be partly due to upwelling of phytoplank-
ton from subsurface into surface in the sections with 
subsurface Chl-a maximum (Chen et al. 2017; Liu et al. 
2019), suggesting that the increase of Chl-a in the sur-
face of SYS might be partly attributable to the upwelling 
of high-Chl-a water from subsurface (Fu et  al. 2018). 
There was also evidence of changes in community 
structure post-typhoon events, i.e., more abundance in 
large size of phytoplankton that often has a higher Chl-
a:carbon ratio (Frenette et al. 1996; Ma et al. 2021; Sun 
et al. 2002; Wei et al. 2017).

Earlier studies reported a large increase of Chl-a (usu-
ally by ~ 50–100%) after typhoon events in shallow waters 
of the Northwest Pacific, e.g., in the northern South 
China Sea due to enhanced nutrient supply. However, we 
found that the increase of Chl-a was much smaller (16–
46%) in the YS following the passage of Typhoon Lekima 
that lasted for only ~ 9  h. In addition, the intensity of 
Typhoon Lekima was weak in the YS, causing much 
weaker Ekman upwelling (0.5–3.5 × 10–5  m  s−1), rela-
tive to those (1.0–480 × 10–5 m  s−1) with other typhoon 

Fig. 5  Particulate organic carbon (POC) during 1–8th August (a, d), 14–21st August (b, e), and the difference (c, f) between the two periods for 
non-typhoon years (top panel) and 2019 (lower panel) in the Yellow-Bohai Sea
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events (Pan et al. 2017; Sun et al. 2010; Zhao et al. 2008), 
which was largely responsible for the small increase in 
Chl-a. The obvious difference in the relative increase of 
Chl-a was also attributed to the difference in Chl-a base-
line, i.e., much higher in the YS (> 0.8 mg m−3) but lower 
in those oligotrophic seawaters (< 0.25 mg m−3) (Liu et al. 
2019; Zhao et al. 2008).

Our results also revealed the decreases of Chl-a in the 
middle BS and northwestern coastal SYS shortly after 
the passage of Typhoon Lekima, where strong upwelling 
prevailed during the Typhoon Lekima event. Previous 
studies reported decreased Chl-a post-typhoon events, 
which was partly due to perturbation caused by bottom 
water entrainment (Shih et  al. 2020), or attributed to 
dilution and flushing induced by elevated freshwater dis-
charge (Huang et  al. 2011; Wiegner et  al. 2012). Appar-
ently, the heavy rainfall brought by the Typhoon Lekima 
event would have dilution effects on Chl-a, particularly 
in the BS (Fig. 3e). In addition, enhanced surface current 
associated with the Typhoon Lekima transported low 
Chl-a seawater from the NYS to the central BS (Addi-
tional file 1: Fig. S1e), as indicated by the co-occurrence 

of a significant decrease in Chl-a (Fig.  4f ) and increase 
in salinity (Additional file  1: Fig. S4d). Moreover, water 
column was not stable due to increased current veloc-
ity (Additional file  1: Fig. S1e), which could affect phy-
toplankton growth and depress the pre-existing bloom 
(Long et  al. 2011; Mitrovic et  al. 2003). The decline of 
Chl-a in the SYS was also partly caused by dilution and 
flushing due to massive freshwater discharge. In addi-
tion, there was evidence that enhanced terrestrial run-
off caused further phosphorus limitation in the SYS due 
to the low-phosphorus concentration in runoff from 
adjacent lands (Guo et al. 2020; Lian et al. 2020), which 
could lead to lower Chl-a. While phytoplankton growth 
could be restrained by light limitation due to sediments 
resuspension caused by typhoon events (Ding et al. 2012; 
Hung et  al. 2010), our analyses did not show light limi-
tation in most typhoon-affected sections, as indicated by 
deepened euphotic depth (Additional file 1: Fig. S5).

Impacts of typhoon on organic carbon in marginal seas
Previous studies reported significant increases of POC 
(> 60%) post-typhoon events in marginal seas in the 

Fig. 6  POC:Chl-a ratio during 1–8th August (a, d), 14–21st August (b, e), and the difference (c, f) between the two periods for non-typhoon years 
(top panel) and 2019 (lower panel) in the Yellow-Bohai Sea
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Northwest Pacific, e.g., the south East China Sea, which 
were largely caused by typhoon-induced phytoplankton 
blooms (Hung et al. 2010; Shiah et al. 2000). Our analy-
ses showed a modest increase of POC (22–46%) in the 
YBS post the Typhoon Lekima event, which might be 
attributable to the small increase of phytoplankton bio-
mass [indicated by the small increase of Chl-a (16–46%)], 
due to the short duration and weak intensity of Typhoon 
Lekima in the YBS and its less extent of impacts.

The increase of POC from 1–8th to 14–21st August was 
much greater in 2019 (41–79 mg m−3, or 22–46%) than in 
non-typhoon years (9–45 mg m−3, or 4–16%) in the YBS 
(Table 1). The BS revealed increased POC with decreased 
Chl-a post the Typhoon Lekima event (Table  1), and a 

larger intercept (83 vs. 20) in the correlation between the 
change of POC and the change of Chl-a (ΔPOC–ΔChl-a) 
in 2019 than in non-typhoon years (Fig.  7), indicating 
that there were other sources rather than marine ecosys-
tem responsible for the increase of POC associated with 
the Typhoon Lekima event. A recent study also reported 
that typhoon-induced changes in physical processes had 
effects on POC level in the coastal Japan Sea (Tsuchiya 
et al. 2017). Strong wind in association with the Typhoon 
Lekima event could increase injection of sedimentary 
POC to the surface layer via enhanced resuspension and 
wind driven upwelling in the BS, and similar findings 
were reported in other marginal seas (Dickey et al. 1998; 
Shiah et al. 2000). In addition, enhanced runoff associated 

Fig. 7  Correlation analyses for the changes of POC (ΔPOC) and chlorophyll-a (ΔChl-a) from 1–8th to 14–21st August for non-typhoon years and 
2019 in the Bohai Sea (BS), north Yellow Sea (NYS), south Yellow Sea (SYS), and Yellow-Bohai Sea (YBS)
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with heavy rainfall (as indicated by the decrease of salin-
ity, see Additional file 1: Fig. S4d) could also bring more 
terrigenous POC into the coastal waters of BS, as dis-
cussed in a previous study (Yu et al. 2018). On the other 
hand, the reduction of POC in the central BS near the 
Bohai Strait was attributed to enhanced water exchange 
with the low-POC water from the NYS (Additional file 1: 
Fig. S1e).

There were considerable differences in the response 
to the Typhoon Lekima event between POC and Chl-a 
in the YS (Figs.  4f, 5f ). We evaluated the variation of 
POC:Chl-a ratio (an index used to assess the sources of 
POC in the oceans), in which a small POC:Chl-a ratio 
(< 200) indicates a large contribution of phytoplankton 
to POC (Hung et al. 2010; Yu et al. 2019). Our analyses 
showed that there was a decrease in POC:Chl-a ratio 
(by 10–23) in the YS from 1–8th to 14–21st August in 
non-typhoon years, indicating that biological production 
was the main driver responsible for the increase of POC 
in summer (Yu et  al. 2019). However, POC:Chl-a ratio 
revealed an increase post-Typhoon Lekima in the YS 
except in the coastal waters of the NYS. There was evi-
dence that large-size phytoplankton bloom post-typhoon 
events could result in lower POC:Chl-a ratio, particularly 
in nearshore waters (Lee et al. 2020).

Our further analyses demonstrated that there was a 
significantly positive correlation between the increase of 
POC and the increase of Chl-a from 1–8th to 14–21st 
August; the slope of ΔPOC–ΔChl-a correlation (as 
shown in Fig. 7) was much greater in 2019 (63–81) than 
in non-typhoon years (32–41) in the YS, suggesting 
that there were other processes in addition to biological 
production contributing elevated POC. Previous stud-
ies reported that apart from biological contribution, 
the dynamics of POC in the YBS was largely regulated 
by terrestrial inputs, sediment resuspension, and water 
exchange (Fan et  al. 2018; Yu et  al. 2018). For example, 
sedimentary resuspension is one of the major processes 
causing high level of the POC in the YBS (Fan et al. 2018). 
There was also evidence of significant sedimentary POC 
supply during typhoon events in other marginal seas, 
owing to stronger upwelling and enhanced resuspension 
resulting from strong winds (Dickey et  al. 1998; Shiah 
et al. 2000).

There was evidence that terrigenous POC could be 
transported via large rivers and coastline runoff into 
nearshore waters of marginal seas (Qiao et  al. 2020; 
Trefry et al. 1994; Wang et al. 2012). Our study showed 
an increase in POC:Chl-a ratio in the coastal waters of 
SYS (Fig. 6f ), indicating that there might be other sources 
of POC during the Typhoon Lekima event. The typhoon-
induced heavy rainfall could enhance runoff along the 
coastline, which would inject extra terrigenous POC into 

the nearshore waters. In addition, the further northward 
extension of Yangtze River Diluted Water during typhoon 
events (Oh et  al. 2014) could also transport more terri-
genous POC into the SYS. On the other hand, elevated 
POC:Chl-a ratio (due to greater increase in POC) in the 
central sections of YS might reflect strengthened current 
resulting from Typhoon Lekima, which could transport 
high-POC waters from nearshore to offshore.

Previous studies reported lower levels of Chl-a and 
POC in summer than in spring and autumn in the 
YBS due to poor nutrient supply and weak sediment 
resuspension via restrained vertical mixing caused by 
stronger stratification (Fan et al. 2018; Zhao et al. 2019). 
The increases of Chl-a and POC in the YBS caused by 
Typhoon Lekima were lower than the seasonal increases 
(from summer to autumn), indicating that the influ-
ences of Typhoon Lekima on the biogeochemical pro-
cesses were insignificant. The YBS had been impacted by 
various typhoon events over the recent decades, which 
occurred in > 50% of the summer seasons with 1–4 pas-
sages in each season. There was another typhoon event 
(Typhoon Danas) prior to Typhoon Lekima, which 
could cause changes in environmental conditions, thus 
alter the responses of biological and chemical processes. 
Apparently, the interactive responses of physical and 
biological processes to typhoon events were complex, 
which would have significant impacts on the nutrients 
and carbon cycle in the YBS. Future studies with in situ 
measurements of critical carbon cycle parameters and 
process-orientated modeling studies warrant better 
understanding the impacts of typhoons on the carbon 
cycle in marginal seas.

Conclusions
We analyzed the responses of key physical and bio-
logical parameters in the YBS to the Typhoon Lekima 
event, which included wind speed, rainfall, current, 
upwelling, Chl-a, and POC. The passage of Typhoon 
Lekima caused stronger wind and heavier rainfall, which 
generated stronger upwelling and current in large area 
of the YBS and enhanced runoff from adjacent lands. 
Chl-a and POC showed considerable differences in the 
responses to typhoon-induced environmental changes, 
with the largest difference found in BS (i.e., an overall 
decrease in Chl-a but an increase in POC). The decrease 
(0.34 ± 3.0 mg m−3) of Chl-a in the BS was mainly caused 
by dilution due to freshwater inputs from heavy rain-
fall and water exchange with NYS, whereas the increase 
(0.23–0.54 mg m−3) of Chl-a in the YS was largely attrib-
utable to the increase of nutrients caused by enhanced 
upwelling and terrestrial inputs. There was a basin-scale 
increase in POC post the typhoon event in the YBS, i.e., 
78 mg m−3 or 24% in the BS, 79 mg m−3 or 46% in NYS, 
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and 41  mg  m−3 or 22% in the SYS, which were much 
greater than the increases of 9–45  mg  m−3 or 4–16% 
over the same period in non-typhoon years. The increase 
of POC in the most parts of BS was largely attributable 
to sediment resuspension and terrigenous, whereas the 
reduction of POC in the central BS was caused by inflow 
of low-POC water from the NYS. Our analysis suggested 
that in the YS, probably more than half of POC increase 
post the Typhoon Lekima event resulted from non-bio-
logical sources. The supply of sedimentary POC mainly 
concentrated in the NYS and northwestern SYS, and the 
riverine inputs played an important role in increasing 
POC level in the SYS. In addition, transportation of POC 
from nearshore to offshore might be responsible for the 
increase of POC in the central YS. More studies involv-
ing modeling and in situ water column and seafloor sam-
pling from coastal to offshore before, during, and after an 
impact of a typhoon are needed to better understand the 
impact of tropical cyclones on the carbon cycle in mar-
ginal seas.
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