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Abstract 

Seasonal forecasts at lead times of 1–12 months for sea surface temperature (SST) anomalies (SSTAs) in the offshore 
area of China are a considerable challenge for climate prediction in China. Previous research suggests that a model-
based analog forecasting (MAF) method based on the simulations of coupled global climate models provide skillful 
climate forecasts of tropical Indo-Pacific SSTAs. This MAF method selects the model-simulated cases close to the 
observed initial state as a model-analog ensemble, and then uses the subsequent evolution of the SSTA to gener-
ate the forecasts. In this study, the MAF method is applied to the offshore area of China (0°–45°N, 105°–135°E) based 
on the simulations of 23 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) for the period 
1981–2010. By optimizing the key factors in the MAF method, we suggest that the optimal initial field for the analog 
criteria should be concentrated in the western North Pacific. The multi-model ensemble of the optimized MAF 
prediction using these 23 CMIP6 models shows anomaly correlation coefficients exceeding 0.6 at the 3-month lead 
time, which is much improved relative to previous SST-initialized hindcasts and appears practical for operational 
forecasting.
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Introduction
The offshore area of China (0°–45°N, 105°–135°E), includ-
ing the Yellow Sea (33°–39°N, 120°–128°E) and Bohai Sea 
(37°–41°N, 117°–122°E) (YBS), East China Sea (ECS; 23°–
34°N, 117°–131°E) and South China Sea (SCS; 2°–22°N, 
105°–120°E), stretches from the tropics to the subtropics 
with a large temperature span (Cai et al. 2011). As one of 
the largest areas of ocean–land convergence, the offshore 
area of China has a unique marine environment with a 
wide range of sea areas, a long coastline, and numerous 
coastal harbors and estuaries, with a fundamental impact 
on marine ecology (Cai et al. 2006, 2011; Tan et al. 2016). 
Besides, the oceanic environment in the offshore area of 

China is closely interrelated with the East Asian–west-
ern North Pacific climate (Lin et  al. 2005). Therefore, 
an accurate short-term climate forecast for the oceanic 
environment, such as the sea surface temperature (SST), 
in the offshore area of China is of great importance (Liu 
et al. 2018; Qi and Cai 2019; Song et al. 2016; Wang et al. 
2020b; Wei et al. 2020).

At present, the seasonal forecasting of SST mainly 
depends on the initialization prediction of dynamic 
models. For instance, researchers utilize the hindcasts 
and real-time predictions from multi-model ensem-
ble system, initialization parameter ensemble, and cou-
pled general circulation models (Barnston et  al. 2019; 
Keenlyside et al. 2016; Merryfield et al. 2013). However, 
dynamic models often have inevitable defects that limit 
their prediction skill in some areas. In particular, the skill 
of SST seasonal forecasts in the offshore area of China 
produced by dynamic models is quite low, possibly due 
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to the complex ocean–land boundary around this region 
(Li et al. 2005; Ren et al. 2015; Wang et al. 2004). How-
ever, the most common climate models cannot be easily 
adjusted for a particular area. Thus, there is a great chal-
lenge to improve the prediction skill for SST in the off-
shore area of China.

The analog forecasting method which based on obser-
vation data has a long history in weather forecasting 
(Toth 1987; Van den Dool 1989). Recently, a model-based 
analog forecasting (MAF) method has been developed, 
researchers apply dynamic model analogue correction 
scheme to improve the short-term and long-term pre-
cipitation forecasting (Gong et al. 2016; Singh and Kumar 
2020) and applied the MAF in the prediction of tropi-
cal SST (Ding et al. 2018, 2019; Wang et al. 2020a). The 
MAF method utilizes long-term control runs of climate 
models as library datasets, and further selects cases from 
the library datasets to generate predictions. The selected 
cases are analogous to the initial values determined by 
some metrics. Because MAF can use the model simula-
tions executed beforehand, this method can greatly save 
on prediction costs compared with initialized dynamic 
prediction. Ding et  al. (2018) showed that the MAF 
method can achieve similar skill to the initialized pre-
diction of the North American Multimodel Ensemble 
for the Indo-Pacific SST anomaly (SSTA). Wang et  al. 
(2020a) further optimized the algorithm and variables 
in the analog criterion for case selection, and obtained 
a much-improved prediction skill for the Indo-Pacific 
SSTA, which was even better than the initialized dynamic 
prediction by the same model. These results imply a 
high capacity of the MAF method in short-term SSTA 
prediction.

Although the anomaly correlation coefficient (ACC) 
of the improved MAF method at a 3-month lead time in 
Wang et al. (2020a) was also improved over the offshore 
area of China relative to the previous SST-initialized 
hindcast, the ACC value of nearly 0.35 at this lead time 
is not practical for operational forecasting. However, 
all the parameters of the MAF method in Wang et  al. 
(2020a) were optimized for predicting the Indo-Pacific 
SSTA, and thus some key parameters should be further 
optimized for new applications. Moreover, the Coupled 
Model Intercomparison Project (CMIP) has released a 
vast amount of datasets, including pre-industrial control 
(piControl) simulations longer than 500  years (Eyring 
et al. 2016). These datasets provide a wealth of resources 
for applying the MAF method in short-term SSTA 
prediction.

In this paper, we apply the MAF method to short-term 
SSTA prediction in the offshore area of China based on 
the piControl runs of 23 models participating in phase 6 
of CMIP (CMIP6). Some optimizing factors, including 

the area of the initial field and predictor, are investigated 
to improve the prediction skill.

Methods and datasets
Model‑based analog
The MAF method first defines a metric to measure the 
distance/similarity between the observation cases and 
model library. Here, the root-mean-square (RMS) is used 
as the metric to measure the distance between the obser-
vation state x(t) and model library state y(t′) at each ini-
tialization time, t and t′ are the initialization time of the 
observation state and the initialization time of the library 
state, respectively. The distance metric can be expressed 
as Ding et al. (2018):

where i and j are the predictor variables and gridpoint 
index, I and J  represent the number of predictor varia-
bles and grid points, and σ i

X and σ i
Y  are the area-averaged 

standard deviation of the initial field for the analog crite-
ria with respect to each predictor variable. Then, the dis-
tances are sorted in ascending order, and the top N states 
closest to the observation state are selected into the 
analog ensemble, while the optimal range of the analog 
ensemble members N is 50–60 (Wang et  al. 2020a). In 
this study, N = 60 is used as the number of analog ensem-
ble members. For each model, the subsequent τ months’ 
evolution of the analog ensemble mean represents the 
ensemble forecast at the lead time of τ months of the 
MAF. The multi-model ensemble mean (MME) forecast 
is the average of the forecast ensemble of all models. Fol-
lowing previous research (Ding et  al. 2018, 2019; Wang 
et  al. 2020a), we use the SSTA and sea surface height 
anomaly (SSHA) as the primary predictor variables.

Data
The piControl runs of 23 CMIP6 models are used as the 
library datasets in the MAF method. In the piControl 
run, the CO2 concentration is maintained at the level 
before the industrial revolution (Eyring et  al. 2016). For 
each CMIP6 model, the piControl simulation is used 
as its library data. The library lengths of the models are 
shown in Table  1. Due to the lack or incompleteness of 
sea-ice data in some models, only 19 CMIP6 models are 
selected when Arctic sea-ice anomaly (ASIA) is used as 
the predictor variable. The observation data for the initial 
states in the MAF method are obtained from the SST and 
Arctic sea ice from Met Office Hadley Centre’s sea ice 
and sea surface temperature dataset (HadISST) (Rayner 
et  al. 2003), and the sea surface height (SSH) form the 
Simple Ocean Data Assimilation (SODA) (Carton and 
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Giese 2008; Carton et  al. 2000), for the period 1981–
2010. All model and observational datasets are interpo-
lated into a 1° latitude–longitude grid and then processed 
into monthly anomalies by subtracting the long-term 
mean.

Skill metrics
The ACC, calculated as the spatial correlation coefficient 
between the MAF forecast and the observations in the 
offshore area of China (0°–45°N, 105°–135°E) for each 
target month, are used as the deterministic prediction 
skill measures. We estimate the prediction skill of the 
MAF from 1- to 12-month lead times for the 23 CMIP6 
models and their MME.

Results
In Wang et  al. (2020a), the tropical Indo-Pacific was 
determined as the initial field of analog criteria. First, 
we check the prediction skill for the offshore-area-of-
China SSTAs using the tropical Indo-Pacific (30°S–30°N, 
30°E–80°W) as the initial field of analog criteria (Fig. 1a–
c), and then compare the skill of using a reduced range 
to the western North Pacific (0°–40°N, 90°–150°E) as the 

initial field for analog criteria (Fig. 1d–f). The ACC at a 
3-month lead is close to 0.6 in the SCS when the reduced 
range is used (Fig.  1e), which is much greater than the 
prediction skill using the tropical Indo-Pacific. Although 
many observational studies have suggested that the west-
ern North Pacific SSTA can be influenced by the Indo-
Pacific SSTAs (Cao et al. 2013; He et al. 2015; Li and Li 
2017; Liu et al. 2014; Tan and Cai 2012), this result shows 
when the range of the initial field is much larger than the 
target region the extended regions could induce some 
disturbances in the MAF prediction method to decrease 
the prediction skill. Wang et  al. (2020a) suggested that 
SSHAs can provide some information in the subsurface 
ocean, which is helpful for SSTA prediction in the tropi-
cal Indo-Pacific. Here, we compare the prediction skill 
with and without SSHAs as the predictors (Fig.  1d–i). 
The results show that SSHAs can improve the prediction 
skill in the SCS and ECS but decrease the skill in the YBS, 
which implies that the SSTAs in the SCS and ECS could 
be connected more closely than those of the YBS to the 
large-scale ocean dynamics.

In Fig. 1, high prediction skills are mainly located south 
of 20°N, which may imply a high predictability for the off-
shore-area-of-China SSTA from the tropical part of the 
western North Pacific. We further test a smaller region 
bounded by (24°–32°N, 122°–128°E), mainly covering the 
ECS, to evaluate the influence of the initial field on the 
prediction skill for higher latitude SSTAs in the offshore 
area of China. As shown in Fig. 2, the ACCs at 1-, 3- and 
6-month leads are enhanced over the ECS and YBS rela-
tive to those in Fig.  1, but significantly diminished over 
the other regions. This result suggests that a relatively 
large range to the initial field cannot only provide more 
information for the prediction but also bring in more 
noise, which may improve the total prediction skill for 
the whole region but worsen the prediction skill in some 
specific regions. Therefore, more optimization should 
be performed to find a practical prediction for a specific 
region. Based on such optimization, in this study, the 
initial field for prediction over the SCS region (2°–22°N, 
105°–120°E) is bounded by (0°–40°N, 90°–150°E), and 
that over the ECS region is bounded by (24°–32°N, 122°–
128°E). Moreover, the prediction skill with only SSTA as 
the predictor (Fig.  2d–f) is apparently higher than that 
with SSTA and SSHA as the predictors (Fig. 2a–c), which 
is consistent with the results related to the ECS and YBS 
in Fig. 1.

Figure  3a, b shows the SSTA prediction skill over the 
SCS region from a 1- to 12-month lead time based on 
23 CMIP6 models with and without SSHA as the pre-
dictor, respectively. The prediction skill shows a large 
spread among the models, but the MME prediction 
shows apparently higher skill than any single model. 

Table 1  Names and library lengths of 23 CMIP6 models

Models marked with an asterisk (*) do not have an output of Arctic sea ice

Model name Library 
length 
(years)

BCC-CSM2-MR 600

BCC-ESM1 451

CAMS-CSM1-0* 500

CanESM5 1000

CESM2-WACCM 400

CESM2 1101

CNRM-CM6-1-h 300

CNRM-CM6-1* 500

CNRM-ESM2-1 500

E3SM-1–0 500

EC-Earth3-Veg 500

EC-Earth3 501

FGOALS-f3-L* 500

GFDL-CM4 500

GISS-E2-1-H 801

HadGEM3-GC31-LL 500

IPSL-CM6A-LR* 1200

MIROC-ES2L 500

MIROC6 800

MPI-ESM1-2-h 500

NESM3 500

NorCPM1 500

SAM0-UNICON 700
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The MME result is consistent with previous MAF pre-
dictions and dynamic model predictions in which it was 
found that an MME prediction can eliminate some noise 

in individual models and, therefore, enhance the predic-
tion skill (DelSole et al. 2014; Ding et al. 2019; Kirtman 
et al. 2014). From a 1- to 8-month lead time, the skill of 

Fig. 1  Prediction skill over the offshore China region measured by the ACC in the MME of the 23 CMIP6 models at 1- (left), 3- (center) and 6-month 
(right) lead times. a–c show the initial field of the analog criteria bounded by (30°S–30°N, 30°E–80°W), and d–i by (0°–40°N, 90°–150°E). The 
prediction variables are SSTA and SSHA in (a–f), and SSTA only in (g–i)
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the MME prediction (bold black line in Fig. 3a) is signifi-
cant at the 95% confidence level and exceeds 0.5 at the 
3-month lead. Comparing Fig. 3a and b, we can see that 
the prediction skill with SSTA and SSHA included in the 
predictors (Fig. 3a) is higher than that with only SSTA as 
the predictor (Fig. 3b) in all leading months, especially at 
a 6- to 12-month lead time.

Figure  4 shows the prediction skill of the ECS SSTAs 
in the MME after optimization of the range of the ini-
tial values. The ACC of the MME prediction (bold black 
line in Fig. 4a) exceeds 0.4 at a 3-month lead. Although 
this prediction skill of the ECS SSTAs is lower than that 

of the SCS SSTAs, this skill is much higher than previ-
ous dynamic model predictions. In contrast to the SCS 
SSTAs, the prediction skill with only SSTA as the predic-
tor (Fig.  4b) in the ECS SSTAs is higher than that with 
both SSTA and SSHA as the predictors.

In addition, previous studies have suggested that the 
SSTA tendency (δ SSTA) and ASIA could be potential 
predictors in the seasonal forecasting of SST over the off-
shore China region (Deser et al. 2010; Mooley and Munot 
1997; Wang et  al. 2015a; Wu and Kirtman 2007; Zheng 
et al. 2014). We further add these factors as predictor var-
iables and choose different combinations of all predictor 

Fig. 2  As in Fig. 1 but for the initial field of the analog criteria bounded by (24°–32°N, 122°–128°E). The prediction variables are SSTA and SSHA in 
a–c, and SSTA only in d–f 
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Fig. 3  Prediction skill in the SCS from a 1- to 12-month lead time based on the 23 CMIP6 models (colored dashed lines) and MME (bold black line) 
with the initial field of the analog criteria bounded by (0°–40°N, 90°–150°E). In a, the predictors are SSTA and SSHA, and in b SSTA only. The black 
dashed line indicates the 95% significance level

Fig. 4  As in Fig. 3 but for the ECS with the initial field of the analog criteria bounded by 24°–32°N, 122°–128°E
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variables (SSTA, SSHA, δ SSTA and ASIA) to improve 
the prediction skill of the MAF method over the offshore 
area of China. When the predictors consist of the SSTA 
and δ SSTA, the spatial pattern of the ACC (not shown) 
is very close to that in Fig. 1. In the prediction with the 
predictors consisting of the SSTA and ASIA (only 19 of 
23 CMIP6 models support the output of this variable), 
the total prediction skill can even decrease by more than 
0.1 over both the SCS and ECS regions, as compared with 
the prediction based only on the SSTA.

Conclusions and discussion
In this paper, we apply the MAF method to predict 
the SSTA over the offshore area of China based on the 
piControl simulations of 23 CMIP6 models. We evalu-
ated the impact of initial field on the prediction of spe-
cific regions from a 1- to 12-month lead time. The MAF 
method can capture the SSTA evolution over the offshore 
area of China, with the ACC at the 3-month lead exceed-
ing 0.6 over the SCS region and 0.4 over the ECS region, 
respectively. The prediction skill of the 23 CMIP6 models 
shows large intermodel spread. The MME of all models 
can greatly improve the prediction skill relative to any 
single model prediction.

The optimal initial field of the analog criteria should 
be decided by the target region. For the prediction of the 
tropical oceans, it is reasonable to choose a tropical area 
as the initial field (Chen et al. 2020; Ding et al. 2018, 2019; 
Wang et al. 2020a). Therefore, the choice of the western 
North Pacific region as the initial field in this study can 
greatly improve the prediction skill of the SSTA over the 
offshore area of China from 0.35 to 0.6. Meanwhile, the 
sensitivity of the prediction skill to the choice of initial 
field is also tested. The result suggests that a larger area 
(0°–40°N, 90°–150°E) over the western North Pacific is 
more suitable for the SCS region, and a smaller core area 
(24°–32°N, 122°–128°E) for the ECS region. The predic-
tion skill of the predictors, SSTA and SSHA, are tested 
for different subregions of the offshore China region. The 
SSHA can apparently improve the prediction skill for the 
SCS SSTAs but not for the ECS SSTAs.

We also test some other potential predictors for the 
prediction of the offshore China SSTAs, such as the SSTA 
tendency and ASIA. Although some previous observa-
tional studies have suggested that these factors could 
influence the SSTAs in the offshore China region, we find 
no apparent improvement in the prediction skill when 
these factors are added as predictors in the MAF method, 
possibly due to the weaknesses of the CMIP6 models in 
simulating the impact of these factors on the offshore 
China SSTAs. Moreover, due to the limitation of the 
spatial resolutions of the CMIP6 models in the YBS, the 
MAF method cannot provide a competitive prediction 

for the YBS SSTAs, although the ACC of the prediction 
skill for the YBS is somewhat improved relative to pre-
vious dynamic model predictions (Ma and Wang 2014; 
Wang et al. 2013; Wang 2015b; Zhang et al. 2018).
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