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Abstract 

Accidental oil spills cause serious pollution to the ocean and are difficult to control in short time. It is an important 
guarantee for emergency disposal to effectively monitor oil spills. Remote sensing is the main means to monitor oil 
spills. High false alarm rate has been an important bottleneck of this technology. In this paper, a multi-time-domain 
shipborne radar images discrimination mechanism was proposed. Based on the improved Sobel operator, Otsu 
and linear interpolation, the co-frequency interference noises were detected and suppressed. Gray intensity correc-
tion model (GICM) and dual-threshold method were used to eliminate highlighted continuous pixels. Oil films were 
extracted by using an active contour model (ACM). Finally, a multi-time-domain discrimination mechanism based on 
variation range tolerance of identified oil films centroids was designed to reduce the false alarm rate. It can provide 
technical support for decision-making and emergency response.
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Introduction
Oil activities grow rapidly with the development of mas-
sive offshore infrastructures for exploration, drilling, 
transportation, storage, processing and delivery (Maamar 
et al. 2020; Yuan et al. 2020). Oil spillages caused by many 
critical steps can damage the marine environment and 
disrupt the health and economy of coastal communi-
ties seriously. Much of oil spills resided at the surface of 
the ocean (Novelli et  al. 2020), having a very long-term 
harmfulness (Soares et  al. 2020; Magris and Giarrizzo 
2020; Villalonga et al. 2020; Colvin et al. 2020; Yim et al. 
2017). In 2010, the Macondo deep-sea well blowout, 
commonly known as the Deepwater Horizon disaster, 
caused an estimated 507 million liters of crude oil spill 
into the Gulf of Mexico (U.S. District Court for the East-
ern District of Louisiana 2010). The Deepwater Horizon 
event was widely reported for several months, beginning 

with coverage of the burning oil rig, the death and injury 
of the workers, and later the hard work of cleanup and 
the destruction of ecosystem (Vickner 2020).

Oil spill prevention and response operations cover 
multiple stages, including spill occurrence, spill moni-
toring, decision-making and emergency response (Ye 
et al. 2020). Among them, rapid and effective oil spill 
monitoring is an auxiliary means to make decision and 
prevent the further spread of pollution (Li et al. 2020). 
Oil spill detection ability based on remote sensing 
images is important in marine environmental moni-
toring. The development of spaceborne oil spill moni-
toring technology is relatively mature (Zhou et  al. 
2020; Zeng and Wang 2020; Zhang et  al. 2020; Chen 
et al. 2010; Eronat 2020). It is difficult for spaceborne 
sensors to quickly and repeatedly collect information 
in specified position. It is hard to judge the exact oil 
spills from a single data in an acquisition cycle. With 
the emergence of unmanned aerial vehicle (UAV), 
airborne oil spill monitoring technology developed 
rapidly (Liu et al. 2019a, b; Chen and Lu 2017). UAV, 
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which can carry a variety of equipments hovering for 
continuous observation, is an important platform of 
oil spill monitoring in the future. Anti-wind, anti-
rain and anti-snow performances are the important 
bottlenecks of UAV to break through. Shipborne sen-
sors can overcome the severe weather and obtain the 
images quickly and repeatedly at the accident scene. 
Shipborne radar has ability of large-range detection in 
real-time with a wide application prospect in the field 
of oil spill monitoring. Its ability of detecting oil spills 
from the echo images have been demonstrated since 
1988 (Tennyson 1988; Atanassov et al. 1991), but pro-
gress slowly. In recent years, the related achievements 
have gradually increased (Zhu et  al. 2015; Xu et  al. 
2019a, b; Liu et al. 2019a, b).

False oil films often appear in shipborne radar moni-
toring, which will lead to error alarm and waste various 
emergency resources. In this paper, based on multi-time-
domain continuous acquisition of shipborne radar 
images, a comprehensive discrimination mechanism was 
proposed for the correct judgment of oil spills to reduce 
the false alarm rate. In our case analysis, an improved 
Local Binary Fitting (LBF) model (Xu et al. 2019a, b) was 
used to extract oil films from shipborne radar images. 
The remainder of this paper is composed as follows: 
“Materials and methods” section presents experimen-
tal images and theoretical methods. The experimental 
results are shown in “Results” section. The discussion and 
comparisons are expounded in “Discussion” section. The 
last part is the conclusion.

Materials and methods
Dataset
According to our requirements, a set of shipborne radar 
images (Fig. 1) collected continuously are deployed here. 

The shipborne radar images were acquired during the 
oil spill monitoring cruise of the teaching-practice ship 
Yukun of Dalian Maritime University on July 21, 2010. 
Data collection location was the adjacent sea region of 
Dalian Port. The shipborne radar operated at X-band 
horizontal polarization. The detection range of the 
images was 0.75 nautical mile (NM). Radar data acquisi-
tion cycle was 2 s. The size of the images was 1024 × 1024 
pixels.

Methods of data preprocessing
The data preprocessing flow is shown in Fig. 2. Firstly, 
the original images were transformed from polar 
coordinate system to Cartesian coordinate system. 
Then, the co-frequency interference noises were seg-
mented by using improved Sobel operator convolution 
and Otsu threshold. The co-frequency interference 
noises were suppressed by linear interpolation. Next, 
the GICM was applied to adjust the ocean wave pixels. 
Because the oil film has relatively dark image char-
acteristic, the highlight targets, especially in the oil 
film area, may hinder the result of image recognition. 
Therefore, the highlighted targets should be removed 
in the preprocessing. The dual-threshold method was 
utilized to extract the highlighted targets. Finally, the 
linear interpolation was employed to smooth these 
pixels to get the preprocessed image.

Improved Sobel operator
The Sobel operator consists of horizontal Gx and ver-
tical Gy:

(1)
Gx = f (x + 1, y− 1)+ 2f (x + 1, y)+ f (x + 1, y+ 1)

− f (x − 1, y− 1)− 2f (x − 1, y)− f (x − 1, y+ 1),

Fig. 1  Oil spill positions observed by the teaching-training ship Yukun on July 21, 2010
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The Gy was improved here to highlight the co-
frequency interferences and weaken other pixels as 
follows:

where x and y are the abscissa and ordinate of the image, 
respectively.

Linear interpolation
Distance-weighted linear interpolation method was 
used to remove co-frequency interferences and high-
light pixels as:

where m and n are the number of noise points on the left 
and right sides of the horizontal direction, respectively.

(2)

Gy = f (x − 1, y− 1)+ 2f (x, y− 1)+ f (x + 1, y− 1)

− f (x − 1, y+ 1)− 2f (x, y+ 1)− f (x + 1, y+ 1).

(3)

Gy = 2f (x, y+ 1)+ 4f (x, y)+ 2f (x, y− 1)− f (x − 1, y− 1)

− 2f (x, y− 1)− f (x + 1, y− 1)− f (x − 1, y+ 1)

− 2f (x, y+ 1)− f (x + 1, y+ 1),

(4)f (x, y) =
nf (x −m, y)+mf (x + n, y)

m+ n
,

GICM
The GICM was used to adjust the gray distribution of the 
shipborne radar images as given in Fig. 3.

Gray and area thresholds
Continuous pixels whose gray and area met the thresh-
olds were identified as the highlight targets H here:

where Tgray and Tarea are gray and area thresholds, 
respectively.

LBF model
Li et  al. (2008) proposed a region-based active contour 
model (ACM) with a variable level set formulation that is 
applicable to inhomogeneous gray images. A gray image 
I(x): Ω → R is divided into two regions of the target Rin 
and background Rout, starting with a preset contour C. 
The LBF energy function is defined as:

(5)H =

{

f (x, y) > Tgray

Count(Pixels) < Tarea
,

Fig. 2  Data preprocessing procedures

Fig. 3  Generation method of GICM
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where λ1 and λ2 are previously defined. Cin and Cout are 
constants that approximate image intensity of Rin and 
Rout, respectively. f1(x) and f2(x) are spatially varying fit-
ting functions. Furthermore, I(x) is the pixels in a window 
around y, while K is a kernel function with the localiza-
tion property of K(u) decreases and approaches zero as 
|u| increases. A Gaussian kernel is chosen as K(x) with a 
standard deviation of σ into the ACM:

Due to the localization property of K(u), the contri-
bution of I(x) to the LBF energy decreases to zero as 
y moves away from the center point x. This property 
helps handle inhomogeneous gray images.

Xu et al. (2019a, b) proposed an improved LBF model 
with area threshold parameters for suitable target seg-
mentation in shipborne radar images as follows:

where A is the area of continuous pixels, Tin and Tout 
are the area thresholds of Rin and Rout, respectively. This 
improved LBF model can segment oil film contour accu-
rately for generating centroid. It was used here to extract 
suspected oil spills.

(6)

εLBF(C , f1(x), f2 (x)) = �1

∫

Rin

K (x − y)|I(x)− Cin|
2
dx

+ �2

∫

Rout

K (x − y)|I(x)− Cout|
2
dx,

(7)Kσ (x) =
1

(2π)n/2σ n
e−|x|2/2σ 2

.

(8)D(x) =

{

A(Rout) < Tout

A(Rin) < Tin
,

Data fusion of shipborne radar image and electronic chart
The location and frequency of suspected oil spill cen-
troids were used to discriminate the result. Xu et  al. 
(2020a, b) proposed a target fusion method of shipborne 
radar and Electronic Navigation Chart (ENC). According 
to this method, we mapped the suspected oil spills into 
the ENC and extracted their centroids.

From the image matrix coordinates (XPic, YPic) of the 
target, radar detection distance D, image radius R and 
plane coordinates of the ship (Xos, Yos), the plane coordi-
nates (Xp, Yp) of the target contour boundary points can 
be obtained as:

Based on GIS technology, target contour boundary 
points are converted back orderly to the geographic coor-
dinates of the WGS_1984 coordinate system. The target 
polygons and their centroids can be generated on ENC.

Oil spill discrimination mechanism
Oil spill discrimination mechanism (Fig. 4) was designed 
as follows:

a.	 Taking the suspected oil spill centroid detected for 
the first time as the center, new suspected oil film 
centroids are retrieved in the following images with 
the distance threshold Tdis in the time threshold Ttime 
for statistical quantity (including suspected oil film 
centroids as the center and new suspected oil film 
centroids retrieved).

(9)
{

Xp = Xos + (XPic/R)D

Yp = Yos + (YPic/R)D
.

Fig. 4  Oil spill discrimination mechanism
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b.	 When the number of centroids retrieved reaches 
the frequency threshold Tn, it is judged that oil spills 
exist, and the alarm is given. Otherwise, the sus-
pected oil film centroid detected for the next time 
will be taken as the center for re-judgement.

The Ttime is related to the motion state of the ship. 
The ideal setting of the Ttime is the total time of 5 
image acquisition cycles before the ship leaves the 
region of the suspected oil film detected. If the ship-
borne radar is installed on the shore or the ship is 
berthing at the anchorage, the Ttime can be completely 
set as 5 shipborne radar image acquisition cycles. The 
Tdis is set to 1/12 of the radar image detection range by 
default. For example, for a shipborne radar image with 
a detection range of ‘3’ NM, the Tdis is set to ‘0.25’ NM. 
The recommended value of the Tn is 4/5 of the number 
of image acquisition cycles of the Ttime. If the Ttime is 
set to the total time of 5 image acquisition cycles, then 
the Tn is recommended as ‘4’.

Results
Data preprocessing
The image, in which suspected oil films appeared at 
the first time (image collected at 23:18:56), was used 
for describing the data preprocessing, as shown in 
Fig. 5a. The shipborne radar image in Cartesian coor-
dinate system retains useful vertical image features. 
For example, as the distance becomes longer, the gray 
value of the sea wave pixels decreases. This image fea-
ture is more obvious in Cartesian coordinate system. 
The co-frequency interferences only show as vertical 
linear noises in Cartesian coordinate system. There-
fore, the image was firstly transformed from polar 
coordinate system to Cartesian coordinate system as 
in Fig.  5b. After the improved Sobel operator con-
volution and Otsu threshold segmentation, the co-
frequency interferences and highlighted independent 
pixels were extracted, as shown in Fig.  5c. The white 
pixels in Fig.  5c were suppressed by linear interpola-
tion as Fig. 5d.

The GICM model of Fig. 5d was generated as Fig. 6a. 
The subtraction of Fig.  5d and its GICM model was 
applied to adjust the image gray distribution as in 
Fig.  6b. After that, gray and area thresholds were 
used to get the highlighted targets as in Fig.  6c. Lin-
ear interpolation was employed to smooth them as in 
Fig. 6d. Finally, the preprocessed image was converted 
to polar coordinate system as Fig. 6e, f.

Suspected oil slick extraction
An improved LBF model was used to extract suspected 
oil films in shipborne radar images here. The window 
size of Gauss kernel was 13 × 13, σ = 3, λ1 = 1, λ2 = 2, 
i (iterations) = 40, Tin = 20, and Tout = 10. Because 
the results of the improved LBF model needed to be 
integrated into the north-up ENC to generate the cen-
troids of suspected oil films, it was necessary to rotate 
the extracted suspected oil films by the azimuth as 
Fig. 7. The heading azimuth of the image was ‘70.1°’.

Extraction of suspected oil film centroids
A target fusion method of shipborne radar image and 
ENC was used to integrate the suspected oil films into 
ENC based on ArcGIS Engine. The centroid (Fig. 8) of 
the suspected oil films and its WGS-1984 geographi-
cal coordinates were extracted by using the Centroid 
attribute of the IArea interface. After that, geographic 
coordinates were transformed to Beijing-1954 coordi-
nates by projection transformation as Table 1. Simul-
taneously, the area detected of oil films in the images 
could be obtained by using the Area attribute of the 
IArea interface.

Disrimination of oil spill
Set Ttime = 10  s, Tdis = (0.75 NM × 1852  M/
NM) ÷ 12 = 115.75  M, Tn = 4. Calculate the distances 
between Centroid 1 and the other Centroids as Table 2 
in succession. Count the number when the distances 
between Centroid 1 and other centroids are less than 
Tdis. When the number reached Tn, end calculation 
and determine the suspected oil films of Centroid 1 as 
true. If the number did not reach Tn, they would be 
judged as false oil films.

Discussion
Limitations of proposed multi‑time‑domain shipborne 
radar oil spill discrimination
Limitations of proposed multi-time-domain ship-
borne radar oil spill discrimination includes:

a.	 Shipborne radar oil spill monitoring information 
comes from the echo images of ocean surface. If 
the wave echoes became weak, it would be diffi-
cult to detect the oil films.

b.	 For the same oil films, the monitoring results 
might be various in different shipborne radar 
images because the whole oil films did not com-
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Fig. 5  The suppression of the co-frequency interferences and independent highlight pixels. a Suspected oil spills appeared at the first time; b 
Cartesian coordinate system transformation; c improved Sobel operator convolution and Otsu threshold segmentation, d linear interpolation 
suppression
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Fig. 6  Data preprocessing results. a GICM model of Fig. 5d; b subtraction of Fig. 5d and a. c Highlighted targets segmentation by using gray 
threshold (160) and area threshold (100); d linear interpolation suppression; e, f are the preprocessed results of images collected at 23:18:56 and 
23:19:07, respectively



Page 8 of 13Xu et al. Geosci. Lett.             (2021) 8:7 

pletely enter the monitoring region due to the ship 
motion. For example, the monitoring regions of 
the same oil films in centroids 1 and 2 of Table 1 
were different. Therefore, it was more appropriate 
to describe as “monitored oil films”.

c.	 In the process of extracting suspected oil films, in 
order to get the profiles of oil films, an improved 
LBF model was used here for result segmentation 
which needed to set the initial contour. The pre-
set contour increased the system consumption of 
image analysis. In the future, the rapid and auto-
matic oil spill identification method should be 
developed to improve the efficiency. Meanwhile, 
improving the speed of image acquisition can also 
contribute to quick warning.

Fig. 7  Suspected oil films extraction by an improved LBF

Fig. 8  Centroid extraction of suspected oil films

Table 1  Centroids Beijing-1954 coordinates of  suspected oil 
films

ID X (M) Y (M) Area (M2)

1 391,021.49 4,311,618.38 9218.12

2 391,017.67 4,311,562.87 6373.57

3 391,010.76 4,311,587.78 9424.19

4 391,007.59 4,311,585.22 9100.36

5 391,010.67 4,311,553.12 7348.74

6 391,005.40 4,311,561.83 8117.83

Table 2  Distances between Centroid 1 and the other centroids

Centroid ID Distance (M)

1–2 55.64

1–3 32.43

1–4 35.96

1–5 66.15

1–6 58.79
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Discrimination of false oil films
Ttime and Tdis are the filters of our discrimination mecha-
nism. Tn is the key. For 6 consecutive images, 4 images with 
the same oil films were the basis to determine the existence 
of oil films. Figure  9 contains two consecutive shipborne 
radar images. The suspected oil films appeared at the first 
time in Fig. 9a, but the second image (Fig. 9b) non-existed 
the same suspected oil films. This situation was judged as 
non-oil-spill, and no alarm was given. The regular wave 

near the ship showed suspected oil films features occasion-
ally, but not the real oil spills, as shown in Fig. 10. If this 
happened in the daytime, the possibility of oil spills could 
be judged by visual observation or visible light images as 
in Fig. 11a. Data of infrared or laser fluorescence could be 
applied to help identification during the night. Our experi-
mental images were collected at night, and the thermal 
infrared image (Fig.  11b) was obtained at the same time. 
Oil films have somewhat lower gray values than water in 

Fig. 9  Discrimination of unreal oil spills. a, b Were collected at 14:07:50 and 14:08:19 on August 12, 2015, respectively. a Suspected oil films 
appeared at the first time; b suspected oil films disappeared in the next image

Fig. 10  Regular wave texture images with suspected oil film features. a–c Were collected at 14:51:19, 14:51:50 and 14:52:19 on August 12, 2015, 
respectively
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thermal infrared images (Fingas and Brown 2014). The 
thermal infrared image also shows suspected oil films fea-
ture, which proved the reliability of shipborne radar oil spill 
detection.

Comparison of detection operators for co‑frequency 
interference
The Laplace operator and an improved Prewitt opera-
tor were used to detect co-frequency interferences in the 
shipborne radar images (Xu et al. 2018; Xu et al. 2019a, 
b). The Laplace operator is:

The improved Prewitt operator is:

(10)
∇

2f1(x, y) = 4f (x, y)− f (x + 1, y)− f (x − 1, y)

− f (x, y+ 1)− f (x, y− 1).

(11)

G′
(

i, j
)

= 2f
(

i − 1, j
)

+ 2f
(

i + 1, j
)

+ 2f
(

i, j
)

− f
(

i − 1, j − 1
)

− f
(

i, j − 1
)

− f
(

i + 1, j − 1
)

− f
(

i − 1, j + 1
)

− f
(

i, j + 1
)

− f
(

i + 1, j + 1
)

.

Fig. 11  Oil spill auxiliary identification methods of shipborne radar. a The oil films during the daytime was photographed on July 19, 2010. b 
Infrared image of sea surface at night of 716 oil spill accident

Fig. 12  Noise reduction results of co-frequency interferences. a, b Were the (100:200, 320:470) and (320:410, 880:1070) of Fig. 5b. b, f Were the 
results of the Laplace operator. c, g Were the results of an improved Prewitt operator. d, h Were the results of our improved Sobel operator

Table 3  Evaluation results of  three operators for  detecting 
co-frequency interferences

Operator SNR PSNR SSIM

Laplace 6.4648 20.8660 0.6836

Improved Prewitt 5.6144 20.8473 0.6943

Improved Sobel 5.0662 20.5543 0.6598
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The two operators were used to compare with our 
improved Sobel operator for detecting co-frequency 
interferences of Fig. 5b as Fig. 12. The results show that 
the Laplace operator had the worst noise detection abil-
ity, the improved Prewitt operator performed better, and 
our improved Sobel operator had the best effect. The 
signal-to-noise ratio (SNR), peak signal-to-noise ratio 
(PSNR) and structural similarity (SSIM) were used as 
evaluation indicators after Otsu segmentation and linear 
interpolation as Table  3. From the three indicators, the 
Laplace operator and the improved Prewitt operator had 
higher values, and our improved Sobel operator had a 
lower value, which proved that the improved Sobel oper-
ator can detect more co-frequency interference noises 
and effectively suppress them. To sum up, our improved 
Sobel operator was more suitable for the detection of co-
frequency interference in the shipborne radar original 
images.

Comparison with existing methods of shipborne radar oil 
spill detection
Manual threshold method (Zhu et  al. 2015), dual-
threshold method (Xu et  al. 2018) and adaptive 
threshold method (Xu et  al. 2019a, b) were used to 
segment suspected oil spills for comparison. The 
above three methods were used in our shipborne 
radar image as Fig. 13. According to our pretreatment 
method, the results of manual threshold method and 
dual-threshold method missed some suspected oil 
films. The adaptive threshold method result appeared 
more false suspected oil films. Compared with the 
above three methods, the improved LBF model used 
here can segment the suspected oil films more accu-
rately in the light of results of Figs.  7 and 13. Dual-
threshold method and adaptive threshold method 
needed to determine the effective monitoring range of 
oil spills by the gray distribution matrix (Fig. 14). This 
matrix needed many tests to find the appropriate gray 
threshold under different sea conditions. In terms 
of calculation time, manual threshold method, dual-
threshold method and adaptive threshold method 
took 1.76  s, 3.04  s and 3.69  s, respectively. After 20 
iterations, the improved LBF model took 9.25  s. The 
disadvantage of LBF model used here is how to auto-
matically select appropriate preset contour for oil 
films segmentation. Quick and automatic acquisition 
method of accurate suspected oil films is the most 
important breakthrough in our future work.Fig. 13  Segmentation results of suspected oil films of other three 

methods. a Manual threshold method; b dual-threshold method; c 
adaptive threshold method
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Conclusions
Oil spill monitoring technology has become a hot spot 
in remote sensing. The application of shipborne radar in 
this field is still in its infancy, but has broad application 
value and promotion prospects. At first, we proposed a 
new image preprocessing scheme for shipborne radar oil 
spill detection. This paper focuses on an oil film discrimi-
nation mechanism based on multi-time-domain images 
to reduce the false alarm rate, so as to ensure the effective 
response to oil spill emergency disposal.
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