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Abstract 

Tropical cyclones (TCs) are strong natural hazards that are important for local and global air–sea interactions. This 
manuscript briefly reviews the knowledge about the upper ocean responses to TCs, including the current, surface 
wave, temperature, salinity and biological responses. TCs usually cause upper ocean near-inertial currents, increase 
strong surface waves, cool the surface ocean, warm subsurface ocean, increase sea surface salinity and decrease 
subsurface salinity, causing plankton blooms. The upper ocean response to TCs is controlled by TC-induced mixing, 
advection and surface flux, which usually bias to the right (left) side of the TC track in the Northern (Southern) Hemi‑
sphere. The upper ocean response usually recovers in several days to several weeks. The characteristics of the upper 
ocean response mainly depend on the TC parameters (e.g. TC intensity, translation speed and size) and environmental 
parameters (e.g. ocean stratification and eddies). In recent decades, our knowledge of the upper ocean response to 
TCs has improved because of the development of observation methods and numerical models. More processes of the 
upper ocean response to TCs can be studied by researchers in the future.
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Introduction
Tropical cyclones (TCs) are strong natural hazards that 
are generated and developed in the ocean. TC wind as 
well as the TC-induced currents and waves usually dam-
ages offshore platforms and vessels, erode coastlines, 
threaten coastal areas and causes economic and person-
nel losses (Keim et  al. 2007; Wang and Oey 2008; Han 
et  al. 2012; Sun et  al. 2013; Zhang et  al. 2016b; Li et  al. 
2018). In recent decades, TC track forecasts have stead-
ily improved because of the development of numerical 
models (Krishnamurti et al. 1999; McAdie and Lawrence 
2000; Bender et  al. 2007; Cangialosi and Franklin 2013; 
Ruf et al. 2016; Montgomery and Smith 2017), while the 
forecast skill of TC intensity has improved slightly (Can-
gialosi and Franklin 2013), partly because of inadequate 
observations and modelling of TC inner cores (Ruf et al. 

2016) and TC–ocean interactions (Yano and Emeanuel 
1991; Montgomery and Smith 2014, 2017). Sea surface 
temperature is important for TC intensity. For example, 
a simple coupled model of an axisymmetric hurricane 
model and one-dimensional ocean model can signifi-
cantly improve the intensity predictions if the negative 
feedback of the sea surface temperature to TCs is taken 
into account (Emanuel 1999). Sea surface temperature 
cooling greater than 2.5  °C is considered not condu-
cive to TC strengthening (Emanuel 1999) and may even 
weaken TCs (Schade and Emanuel 1999; Lin et al. 2008). 
The sea surface cooling caused by a pre-existing TC alters 
the track and intensity of a subsequent TC (Baranowski 
et al. 2014; Wu and Li 2018). Note that salinity stratifica-
tion can reduce sea surface cooling  in favour of TC rapid 
intensification, and this effect increases significantly 
as the TC intensification rate increases (Balaguru et  al. 
2020).

TC is also important for the ocean environment, TCs 
import kinetic energy into surface waves, surface cur-
rents and gravitational potential energy, which contrib-
utes to ocean diapycnal diffusivity and ocean circulation 
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(Liu et al. 2008). TCs can also change the local ocean heat 
uptake (Emanuel 2001) and contribute to global ocean 
heat transport (D’Asaro et  al. 2007; Sriver and Huber 
2007; Korty et al. 2008; Pasquero and Emanuel 2008; Hu 
and Meehl 2009; Fedorov et  al. 2010). Some research 
even considers TCs is important to maintain the perma-
nent El Niño in the early Pliocene epoch (Fedorov et al. 
2010). In addition to meridional heat transport, TCs 
can influence west wind bursts (Lian et  al. 2018, 2019), 
enhance eastward-propagating oceanic Kelvin waves in 
the tropical Pacific (Wang et  al. 2019b) and modulate 
the occurrence and development of the El Niño–South-
ern Oscillation. TCs usually cause plankton blooms, 
which contribute to local long-term primary productiv-
ity (Mooers 1975; Foltz et al. 2015). Research shows that 
TCs increase 20–30% of the primary productivity in the 
South China Sea every year on average (Lin et al. 2003b; 
Tang et al. 2004a, b; Sun et al. 2010) also explains 22% of 
the interannual variability in seasonally averaged (June–
November) chlorophyll concentration in the western 
subtropical North Atlantic (Foltz et al. 2015).

In brief, understanding the ocean response to a TC 
not only increases the TC forecast skill but also enriches 
our knowledge of local and global variation of ocean 
environment.

Ocean response to a tropical cyclone
Current response
The strong TC wind stress arouses upper ocean current 
response, which usually biases to the right (left) side of 
TC track in Northern (Southern) Hemisphere, because 
of better wind-current resonance (Price 1981, 1983; Price 
et al. 1994; Sun et al. 2015; Zhang et al. 2020b). The wind-
current resonance is controlled by non-dimensional 
TC translation speed which is the ratio of local inertial 
period to the TC residence time (Zhang et  al. 2020b). 
Generally, a TC causes internal wake in its lee when it 
moves faster than the first baroclinic wave speed, and the 
main response is almost centred under the TC and the 
wake is relatively inconspicuous when a TC moves slower 
than the speed of first baroclinic wave (Geisler 1970). The 
current response is a stable Ekman response with surface 
(bottom) cyclonic divergence (convergence) when TC 
is stationary (Lu and Huang 2010), and there was weak 
current response in the lee of the Ekman-like divergence 
when TC moves slowly (Zhang et al. 2020b). Because the 
translation speed of most TCs is greater than the local 
first baroclinic wave speed (e.g. Zhang et  al. 2020b), we 
usually find a near-inertial current response after the 
TC passage (Pollard 1970; Maeda et al. 1996; Firing et al. 
1997; Jarosz et al. 2007; Xu et al. 2019). The upper ocean 
near-inertial current response to a TC can be divided into 
mixed layer current and thermocline current (Price 1981; 

Price et  al. 1994; Zhang et  al. 2016a, 2019). TC wind 
directly drives the mixed layer current, then the diver-
gence and convergence of mixed layer current caused 
hydrostatic pressure anomaly that drives the thermo-
cline current (Price et al. 1994). The phases of the mixed 
layer current and thermocline current are nearly uniform 
within themselves, while there is an angle between mixed 
layer current and thermocline current (Sanford et  al. 
2007, 2011; Prakash and Pant 2016; Zhang et al. 2016a), 
which depends on the ratio of TC translation speed to 
baroclinic wave speed (Geisler 1970). There is a transi-
tion layer between the mixed layer current and thermo-
cline current, with the current phase turning clockwise as 
the depth increases (Price et al. 1986; Sanford et al. 2011; 
Zhang et  al. 2016a). Velocity shear in transition layer is 
considered as the primary mechanism for deepening of 
upper ocean mixed layer during a TC (Glenn et al. 2016; 
Seroka et  al. 2017; Yang et  al. 2019). The TC-induced 
near-inertial current corresponds to upwelling and 
downwelling, with the transition of the upwelling (down-
welling) branch to the downwelling (upwelling) branch 
being slow and moderate (quick and intense) (Greatbatch 
1983, 1984, 1985). If the inertial period signal is removed, 
there is net mixed layer divergence and upwelling in the 
right rear quadrant of the TC, as well as net downwelling 
around the net upwelling zone (Zhang et  al. 2018a, b). 
Relative to open ocean, the current response to a TC in 
the marginal sea is more complicated because of the sec-
ondary local circulation due to the shallow ocean bottom 
and coastal wall (Halliwell et al. 2011; Glenn et al. 2016; 
Seroka et  al. 2016). TCs also have  import positive vor-
ticity into ocean, which intensifies ocean cyclonic eddies 
(Walker et  al. 2005) and alters the three-dimensional 
structure of eddies (Sun et  al. 2014; Lu et  al. 2016) or 
even generates new cyclonic eddies (Chen and Tang 
2012; Sun et al. 2014). On the other hand, the circulation 
of eddies also modulates the TC-induced convection and 
vertical advection in upper ocean (Jaimes and Shay 2015; 
Liu et al. 2017).

After TC passage, the current response decays through 
dispersion and propagation of near-inertial waves (Gill 
1984; Park et al. 2009) with an e-folding time from days to 
weeks (Chen et al. 2013; Yang and Hou 2014). The decay 
of current is not monotonous  because different orders 
of near-inertial baroclinic waves occasionally resonate 
again and re-intensify the mixed layer current (Gill 1984). 
Note that the current velocity to the right side of the TC 
track decays faster than that to the left side in the North-
ern Hemisphere (Zhang et  al. 2016a; Wu et  al. 2020a). 
The dispersion of waves also results in the tilting of iso-
phasal lines of near-inertial current (Gill 1984; Zhang 
et  al. 2016a). In general, the near-inertial waves propa-
gate in the ocean with a vertical scale of approximately 
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100–300  m (Kundu 1976; Yang and Hou 2014; Alford 
et al. 2016) and contribute to turbulent mixing (Qi et al. 
1995; Zhai et  al. 2009; Jochum et  al. 2013). The TC-
induced current response can reach the ocean bottom, 
which may be a major driver of sediment dynamics of 
continental shelves worldwide (Larcombe and Carter 
2004; Galewsky et  al. 2006; Dail et  al. 2007; Liu et  al. 
2012), impacting benthic and pelagic habitats by chang-
ing water column turbidity or modifying seabed physical 
characteristics (Hearn and Holloway 1990; Drost et  al. 
2017). The near-inertial current caused by TCs usually 
has a blueshift of 1–20% relative to the local inertial fre-
quency, along with slow downward propagation of energy 
and upward propagation of phase (Pollard 1980; Smith 
1989; Yang and Hou 2014). In addition to near-inertial 
waves, TCs cause inertial waves at a frequency that is two 
times and three times the local inertial frequency, result-
ing in energy cascade and dissipation (Niwa and Hibiya 
1997; Meroni et  al. 2017). Mesoscale ocean processes 
alter local relative vorticity, which changes the effective 
planetary vorticity; then, TC-induced near-inertial waves 
propagate downward more easily in an anticyclonic 
eddy (Zhai et al. 2005; Guan et al. 2014) and tend to  be 
trapped in a region with more negative vorticity than its 
surroundings (Oey et  al. 2008; Jaimes and Shay 2010) 
(Fig. 1).

Surface wave response
TC wind also arouses strong surface waves. Sea surface 
wave height is a function of radial distance from the TC 
centre by empirical relationships (Young 1988; Wang 
et al. 2005; Young and Vinoth 2013) and can reach more 
than 10 m (Zhang et al. 2016a; Drost et al. 2017; Zhang 
et al. 2018a, b). Surface wave propagation is complicated, 
and multiple-wave systems are frequently observed. 
Previous studies typically assumed that TCs impact a 
region more than 10 times the radius of the maximum 
wind (Young 2006; Beeden et  al. 2015; Esquivel-Trava 
et al. 2015). TC-induced wave spectra rapidly evolve and 
vary spatially by radius away from the centre and quad-
rant of the TC (Moon et al. 2003; Young 2003; Fan et al. 
2009; Collins et al. 2018). The TC-induced wave spectra 
are often bimodal, sometimes trimodal, directional wave 
spectra (Wright et al. 2001), the waves are asymmetrical, 
and the directional spectra possess unique characteris-
tics in each quadrant (Hu and Chen 2011; Esquivel-Trava 
et al. 2015). In reference to the TC heading, single-wave 
systems propagating towards the left and left-front are 
usually observed in the front half of the TC coverage area, 
and multiple-wave systems are generally observed in the 
back and right quarters outside the radius of maximum 
wind, while the directional differences and locations of 

multisystem spectra are Gaussian distributions (Hwang 
and Walsh 2018).

There is misalignment of wind and surface waves dur-
ing a TC (Fan et  al. 2009; Wang et  al. 2019a). Swells 
dominate the surface waves at the front of and outside 
the central typhoon region (Xu et  al. 2017b), and the 
wave field is more asymmetric than the corresponding 
TC wind field, mainly due to the ‘‘extended fetch’’, which 
exists to the right of a translating TC in the Northern 
Hemisphere (Young 2003). TC-induced surface cur-
rents can reduce the fetch and inhibit the growth of 
surface waves (Wu et al. 2020b). Nonlinear wave–wave 
interactions efficiently transfer wave energy from high 
frequencies to low frequencies and prevent double-
peak structures occurring in the frequency-based spec-
trum (Xu et al. 2017b).

Fig. 1  Typical temperature and current response in upper ocean 
caused by a tropical cyclone. The red dot is the tropical cyclone 
centre and the two black circles surrounding it are the radii showing 
1 to 3 times of the radius of the maximum wind speed, respectively. 
Black line refers the tropical cyclone track. Red (blue) shadings refer 
warm (cold) anomalies or negative (positive) salinity anomalies. The 
primary cold anomalies in the third and fourth layers also correspond 
to the position of upwelling. Vectors refer current. Waves on the first 
layer refer surface waves



Page 4 of 12Zhang et al. Geosci. Lett.             (2021) 8:1 

TC-induced surface waves modulate the air–sea surface 
conditions and fluxes. TC-induced surface waves increase 
sea surface roughness (Donelan 2004; Makin 2005; Solo-
viev et al. 2014; Li et al. 2016; Tian et al. 2020) and reduce 
wind speeds (Olabarrieta et  al. 2012). The wind-wave 
coupling deepens inflow layer, enhances boundary inflow 
outside the radius of maximum wind and increases the 
TC intensity (Lee and Chen 2012). Surface wave breaking 
during TCs also causes a large number of sea spray drop-
lets (Zhang et al. 2011, 2012) in whitecaps and whipping 
spumes from the tips of waves, which is believed to sig-
nificantly influence momentum transfer and contributes 
to the drag coefficient levelling off (or decreasing) at high 
wind speeds during a TC (Powell et  al. 2003; Donelan 
2004; Soloviev et  al. 2014; Zhang and Song, 2018). Sea 
spray also influences the air–sea heat flux (Andreas and 
Mahrt 2016; He et  al. 2018; Sun et  al. 2019). The latent 
and sensible heat transfer coefficients are constant at low 
wind speeds and increase sharply when wind speed at the 
height of 10 m is greater than 35 m/s (Komori et al. 2018). 
The air–sea gas transfer also increased significantly due 
to the surface wave breaking (Iwano et al. 2013; Krall and 
Jähne 2014; Liang et al. 2020).

TC-induced breaking and unbreaking surface waves 
also contribute to turbulence in the upper ocean and 
deepening of the mixed layer (He and Chen, 2011; Tof-
foli et al. 2012; Aijaz et al. 2017; Stoney et al. 2017; Zhang 
et al. 2018a, b). The wave-breaking-induced acceleration 
transfers momentum from surface waves to surface cur-
rents and also contributes to sediment transport (Prakash 
and Pant; 2020). Non-breaking surface wave-induced 
mixing in numerical model improves the simulations of 
sea surface temperature and TC track (Guan and Zhao 
2014; Li et al. 2014; Aijaz et al. 2017; Stoney et al. 2017). 
The Craik-Leibovich vortex force, which is the interac-
tion between Stokes drift of surface waves and Eulerian 
current vorticity, causes Langmuir turbulence (Craik and 
Leibovich 1976), enhances turbulence entrainment and 
deepens mixed layer during a TC (Sullivan et  al. 2012; 
Rabe et al. 2015; Reichl et al. 2016a,b; Zhang et al. 2018b; 
Wang et  al. 2018, 2019). The Langmuir cell is roughly 
aligned with wind and Langmuir turbulence intensity 
is reduced by wind-wave misalignments during a TC 
(Wang et  al. 2019a, b). Recent researches indicate that 
parameterization of Langmuir turbulence can improve 
the simulation of upper ocean temperature and current 
response during a TC (e.g. Sullivan et  al. 2012; Reichl 
et  al. 2016a,b; Blair et  al. 2017). The Coriolis–Stokes 
force also increases the cold upwelling in a slow mov-
ing TC and modulates the horizontal advection of upper 
ocean cold wake (Reichl et al. 2016a; Zhang et al. 2018b). 
Langmuir circulation generates high-frequency internal 
waves, induces near-inertial currents at the mixed layer 

bottom (the transition layer) and transports more near-
inertial energy into deeper layers (e.g. Polton et al. 2008)

Temperature and salinity response
TC deepens the upper ocean mixed layer, cools the sea 
surface and warms the subsurface (Price 1981, 1983, 
1994; Jacob et al. 2000; Zedler et al. 2009; Sanford et al. 
2011; Yang et al. 2015; Chen et al., 2020), which is called 
the “heat pump” effect (Sriver and Huber 2007; Zhang 
et  al. 2016a). Sea surface also lose heat through air–sea 
heat flux, but it is not as important as the mixing effect 
for the sea surface cooling (Price 1981; Zhang et  al. 
2016a). Sea surface cooling usually biased to the right 
(left) side of the TC track in the Northern (Southern) 
Hemisphere, and the amplitude of sea surface cooling is 
usually 1–6  °C (Price 1981; Zedler et al. 2002; Lin et al. 
2003a; Black et al. 2007; D’Asaro et al. 2007), sometimes 
even reaching ~ 11 °C, resulting in reverse of air–sea sur-
face sensible and latent heat flux (Glenn et al. 2016). The 
upwelling branch of the near-inertial pumping weakens 
the subsurface warm anomaly or even turns it to cold 
anomaly, while downwelling branch intensifies the sub-
surface warm anomaly. Subsurface warm anomaly caused 
by mixing can reach as much as ~ 4  °C, and usually be 
modulated by the TC-induced near-inertial pumping 
(Zhang et al. 2016a, 2019). After removing inertial period 
signal, TC caused a net upwelling with a net cooling in 
the right rear quadrant of TC, and net downwelling with 
net warming around the net cooling zone (Zhang et  al. 
2018a, 2019), which is called “cold suction” effect. During 
the TC relaxation stage, the air–sea heat flux dominates 
the upper ocean thermal response, which mainly recov-
ers the sea surface cold anomaly through solar radiation 
(Price et al. 1986). Research shows that sea surface tem-
perature usually recovers back to its original value in sev-
eral days to several weeks (Hazelworth 1968; Price et al. 
1986, 2008; Emanuel 2001; Hart et al. 2007; Wang et al. 
2016), with an e-folding time of approximately one week 
(Jansen et al. 2010; Dare and McBride 2011), occasionally 
cooling again during recovery (Price et al. 2008). Subsur-
face ocean has no contact with air, so it usually recovers 
slower than the sea surface (Emanuel 2001; Wang et  al. 
2016).

The characteristics of the upper ocean temperature 
response to a TC are affected by the TC intensity, size 
and translation speed (Anthes and Chang 1978; Ema-
nuel et al. 2004; Zhu and Zhang 2006; Samson et al. 2009; 
Wang et al. 2016; Lin et al. 2017). For example, a stronger 
TC produces more cooling up to Category 2, but TCs 
in Categories 3–5 produce less or approximately equal 
cooling (Lloyd and Vecchi 2011). Argo float observations 
show that the subsurface warm anomaly is compara-
ble to the near-surface cold anomaly during strong TCs 
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(≥ Category 4), while subsurface warming is not detect-
able and near-surface cooling is still significant during 
weak TCs (≤ Category 3), indicating that air–sea heat 
exchange and upwelling seem to play a somewhat greater 
role during weak TCs (Park et al. 2011). The sea surface 
cooling is quasi-symmetric for slow-moving (< 6  m/s) 
TCs and becomes asymmetric for fast-moving TCs (Sam-
son et  al. 2009). The background ocean condition also 
contributes to the upper ocean temperature response 
during a TC. For example, there is cold upwelling (warm 
downwelling) in the core of an anticyclonic (cyclonic) 
eddy, which intensifies (weakens) sea surface cooling 
(Jaimes and Shay 2009; Liu et al. 2017; Wu and Li 2018; 
Ning et al. 2019).

Similar to temperature response, TCs usually increase 
sea surface salinity and decrease subsurface salinity both 
within 1 psu, which bias to the right (left) side of TC track 
in Northern (Southern) Hemisphere (Bond et  al. 2011; 
Girishkumar et  al. 2014; Domingues et  al. 2015; Zhang 
et  al. 2016a; Abernathey and Haller 2018); the posi-
tive sea surface salinity sometimes even reaches 1.5–3 
psu (Chaudhuri et  al. 2019). However, TC precipitation 
usually weakens positive sea surface salinity anomaly 
(Girishkumar et al. 2014; Liu et al. 2020) and causes neg-
ative sea surface salinity anomaly to the left (right) side of 
TC track in the Northern (Southern) Hemisphere (Grod-
sky et al. 2012; Liu et al. 2014). The freshness of the sea 
surface by precipitation increases the upper ocean strati-
fication and weakens the TC-induced mixing (Jourdain 
et al. 2013; Vissa et al. 2013; Liu et al. 2015, 2020), which 
restricts the sea surface cooling and the negative TC–
ocean feedback (Balaguru et al. 2016). There is a barrier 
layer if the upper ocean isosaline layer is shallower than 

the isothermal layer, which also prohibits the deepening 
of the upper ocean mixed layer caused by a TC (Balag-
uru et al. 2012; Liu et al. 2015; Yan et al. 2017). Research 
shows that the upper ocean salinity response can persists 
about 10–12  days (Girishkumar et  al. 2014). The back-
ground ocean condition (e.g. eddies) also contributes 
to the upper ocean salinity response during a TC. For 
example, the upwelling (downwelling) due to anticyclonic 
(cyclonic) eddies increases (decreases) upper ocean salin-
ity (Jaimes and Shay 2009; Liu et al. 2017) (Fig. 2).

Biological response
TCs induce phytoplankton blooms and primary produc-
tion increase, which is mainly attributed to the increased 
nutrient supply in the euphotic zone induced by verti-
cal mixing (or entrainment) and upwelling during a TC 
(Mooers 1975; Morimoto et al. 2009; Siswanto et al. 2009; 
Zheng et al. 2010; Chiang et al. 2011; Shibano et al. 2011; 
Hung et  al. 2013; Huang and Oey 2015) and ocean res-
tratification after the TC (Huang and Oey 2015; Lin and 
Oey 2016). The chlorophyll increases after a TC usually 
ranges from 5 to 91% (Babin et al. 2004; Zhao et al. 2017; 
Xu et al. 2017a), while a lingered slow-moving TC (Kai-
Tak in year 2000) can even triggered 30-fold of surface 
chlorophyll-a concentration (Lin et al. 2003b). In North-
ern (Southern) Hemisphere, the chlorophyll increases 
usually biases to the right (left) side of the TC track (Lin 
et al. 2003b; Babin et al. 2004; Yin et al. 2007; Hanshaw 
et  al. 2008; Shang et  al. 2008; Zhao et  al. 2008; Zheng 
et al. 2010; Shibano et al. 2011), although the rightward 
(leftward) bias is not obvious or may even occur towards 
the left (right) side of the TC track (Zheng et  al. 2010; 
Shibano et al. 2011). The amplitude and scope of surface 

Fig. 2  Sketch of the vertical temperature profiles during a tropical cyclone that caused by before (dashed lines) and after (solid lines) a only mixing, 
b composition of mixing and upwelling and (c) composition of mixing and downwelling. The dotted lines in (b) and (c) indicate the temperature 
profiles caused by only mixing. Red and blue shadings refer to warm and cold anomaly, respectively. There can be no subsurface warm anomaly in 
(b) if upwelling is strong enough. Salinity anomalies are similar to temperature anomalies



Page 6 of 12Zhang et al. Geosci. Lett.             (2021) 8:1 

plankton blooms depend not only on the TC character-
istics but also on the ocean background conditions (Lin 
et al. 2003b; Zhao et al. 2008; Chen and Tang 2012; Shang 
et al. 2015; Xu et al. 2017a). For example, weak and slow-
moving TCs induce phytoplankton blooms with higher 
chlorophyll-a concentrations, while strong and fast-
moving TCs induce blooms over a larger area (Zhao et al. 
2008). A pre-existing cold core eddy plays an important 
role in the increase in chlorophyll-a concentration by 
TCs (Chen and Tang 2012; Shang et  al. 2015; Xu et  al. 
2017a; Jin et al. 2020), and the concentration of pre-exist-
ing chlorophyll-a in cold core eddies is approximately 
25–45% (8–25%) of that of the post-existing chlorophyll-
a in cold core eddies for relatively high (low) TC transi-
tion speeds (Shang et al. 2015). The biological response in 
coastal regions is more complicated than that in the open 
ocean (Pan et  al. 2017). TC-induced mixing, enhanced 
terrestrial runoff and resuspension are considered three 
major processes that contribute to the increased nutrient 
concentrations and subsequent primary production in 
the euphotic layer (Chen et  al. 2003). The chlorophyll-a 
reaches its peak three days after nitrate peak after a TC 
(Pan et al. 2017), and TC-induced phytoplankton blooms 
usually last for two to three weeks (Babin et  al. 2004; 
Chen and Tang 2012; Foltz et al. 2015; Wang 2020).

Discussion and conclusions
This work reviews the upper ocean response to tropical 
cyclones, including the current, surface wave, tempera-
ture, salinity and biological responses. TC usually causes 

upper ocean near-inertial currents, increases strong sur-
face waves, cools (warms) the surface (subsurface) ocean 
and increases (decreases) surface (subsurface) salinity, 
also causing plankton blooms. The upper ocean response 
is controlled by mixing, advection and air–sea flux (i.e. 
heat flux and fresh water flux). The upper ocean response 
usually biases to the right (left) side of the TC track 
because the wind-current resonance is stronger (weaker) 
and the corresponding mixing is stronger (weaker) on the 
right (left) side in the Northern (Southern) Hemisphere. 
The characteristics of the upper ocean response mainly 
depend on the TC parameters (e.g. TC intensity, transla-
tion speed and size) and environmental parameters (e.g. 
ocean stratification and eddies) (Fig. 3).

In recent decades, the understanding of upper ocean 
response to a tropical cyclone has improved because of 
the development of observations and modelling. Tradi-
tional observation methods such as buoys and moorings 
(Black and Dickey 2008; Zhang et  al. 2016a, 2019; Yang 
et al. 2019), air-deployed drifters and floats (Black et al. 
2007; D’Asaro et al. 2007; Pun et al. 2011; Sanford et al. 
2011), Argo floats (Park et al. 2011; Vissa et al. 2012; Wu 
and Chen 2012; Fu et al. 2014; Liu et al. 2014; Lin et al., 
2017; Chen et al., 2020) and satellite remote sensing (Li 
et al. 2018; Yue et al. 2018; Ning et al. 2019; Zhang et al. 
2019), as well as new observation technology and meth-
ods such as gliders (Domingues et  al. 2015; Miles et  al. 
2015; Hsu and Ho 2018) and wave gliders (Mitarai and 
McWilliams 2016), are now applied to TC–ocean obser-
vations. Regarding numerical model simulations, early 

Fig. 3  Sketch of the upper ocean processes during a tropical cyclone
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works use the slab ocean model to reproduce the ocean 
current response (Geisler 1970; Pollard and Millard 
1970; Gill 1984), followed by several numerical mod-
els such as the three-dimensional Price–Weller–Pinkel 
model (3DPWP) (Price et  al. 1994; Sanford et  al. 2007; 
Guan et  al. 2014; Zhang et  al. 2016a), the regional oce-
anic modelling system (ROMS) (Yue et al. 2018) and the 
Massachusetts Institute of Technology Ocean General 
Circulation Model (MIT OGCM) (Zedler et  al. 2009) 
to reproduce the three-dimensional current, tempera-
ture and salinity responses. Wave models such as the 
Simulating WAves Nearshore (SWAN) (Liu et  al. 2007; 
Huang et  al. 2013) and WAVEWATCH-III (Moon et  al. 
2003; Xu et al. 2017b; Qiao et al. 2019) models are used 
to reproduce the sea surface wave response to a TC. 
Recently, atmosphere–ocean-wave models such as the 
Coupled Ocean–Atmosphere-Wave-Sediment Trans-
port (COAWST) modelling system (Prakash and Pant 
2016; Wu et  al. 2018) have been gradually applied to 
simulate the ocean response to TCs. Note that the ocean 
ecological model seems to have not been widely used 
for the simulation of ocean biological response to a TC 
yet. What is more, new technology such as big data and 
machine learning provide a new way to study TC–ocean 
interaction (e.g. Wei et al. 2017, 2018; Jiang et al. 2018).

Although our understanding of the upper ocean 
response to a TC has increased in recent decades, some 
fields merit further study, such as: 1. the characteristics 
of the air–sea interface as well as the surface flux dur-
ing TCs; 2. the effect of varied TCs on the upper ocean 
response, e.g. the upper ocean response during curved 
TC track, during intensifying (weakening) TCs or accel-
erating (decelerating) TCs; 3. the interaction between 
TCs and mesoscale or submesoscale eddies; 4. the upper 
ocean response to sequential TCs; 5. the effects of TCs on 
large ocean circulation, e.g. modulation of global ocean 
circulation by the kinetic energy and heat uptake caused 
by TCs; 6. the processes that control the recovery of the 
upper ocean response after TCs; and 7. the propagation 
of TC-induced anomalies into the ocean interior and 
deep ocean.

Some existing issues in observation, numerical model 
and technology restrict the study of upper ocean response 
to TCs. In situ observation of air–sea interface (i.e. air–
sea flux, surface waves) and deep ocean is in shortage, 
which restricts our understanding of the air–sea inter-
action and how upper ocean anomalies propagate into 
ocean interior. The coupling of atmospheric and oceanic 
model as well as the parameterization of the processes in 
air–sea interface merits further study for better simula-
tion of TC–ocean interaction. What is more, it is a com-
mon problem that surface currents simulated by model 
seems stronger and persists longer as well as less vertical 

propagation of current signals than observation (Huang 
et al. 2009; Sanford et al. 2011; Zedler et al. 2009; Zhang 
et al. 2016a, b). In general, accurate prediction of tropical 
cyclone and oceanic conditions requires proper initiali-
zation of both atmospheric and oceanic components of 
the modelling system, as well as accurate measurements 
of the ocean ahead of the TC, and skillful assimilation of 
the ocean data into the ocean model. Besides, the practi-
cability of the usage of big data and machine learning for 
the study of the upper ocean response to a TC still needs 
further exploration. We hope the development of science 
and technology in the future will uncover more processes 
and mechanisms of TC–ocean interactions, help improve 
TC forecasts and enhance our understanding of local and 
global air–sea interactions.
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