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Testing the Coulomb stress triggering 
hypothesis for three recent megathrust 
earthquakes
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Abstract 

We test the static Coulomb stress triggering hypothesis for three recent megathrust earthquakes (the 2004 Suma-
tra–Andaman earthquake, the 2010 Maule earthquake, and the 2011 Tohoku-Oki earthquake) using focal mechanism 
solutions for actual earthquakes as receiver faults to calculate Coulomb stress changes. For the 2004 Sumatra–Anda-
man and 2011 Tohoku-Oki earthquakes, the median values of the Coulomb stress changes for 100 consecutive earth-
quakes revealed temporal changes from approximately zero before the megathrust earthquake to significant positive 
values following the mainshock, followed by decay over time. Furthermore, the ratio of the number of positively to 
negatively stressed receiver faults increased after the megathrust. These results support the triggering hypothesis 
that the static stress changes imparted by megathrust earthquakes cause seismicity changes. This is in contrast to 
the results of a previous study that used optimally orientated receiver faults to calculate Coulomb stress changes, 
and this difference indicates the importance of considering the spatial and temporal heterogeneities of receiver fault 
distributions. For the 2010 Maule earthquake, however, the results are strongly dependent on fault-slip models. Since 
most receiver faults are concentrated in the mainshock source region, slip models significantly affect the computed 
Coulomb stress changes and sometimes cause anomalous stress concentrations along the edge of each sub-fault.

Keywords:  Coulomb stress changes, 2004 Sumatra–Andaman earthquake, 2010 Maule earthquake, 2011 Tohoku-Oki 
earthquake, Heterogeneity of receiver fault mechanisms
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Background
Earthquake triggering and seismicity rate changes fol-
lowing large or great earthquakes have been discussed 
in terms of static (and/or dynamic) changes in the Cou-
lomb failure function (ΔCFF) (Harris and Simpson 1992; 
Stein et  al. 1992, 1994; Reasenberg and Simpson 1992; 
Hill et  al. 1993; Anderson et  al. 1994; Toda et  al. 1998; 
Ogata 2007; Chan and Stein 2009; Chan et al. 2016). The 
ΔCFF is defined as ΔCFF = Δτ − μ′Δσ, where Δτ is the 
shear stress change on a given failure plane (assumed to 
be positive in the fault-slip direction), Δσ is the normal 
stress change (assumed to be positive in the compressive 
direction), and μ′ is the apparent coefficient of friction. 

Positive ΔCFF values enhance failures, whereas negative 
values suppress failures.

Three megathrust earthquakes, the 2004 Sumatra–
Andaman earthquake (Mw 9.1; U. S. Geological Sur-
vey), the 2010 Maule earthquake (Mw 8.8), and the 2011 
Tohoku-Oki earthquake (Mw 9.0), provided us a great 
opportunity to investigate the triggering hypothesis that 
co-seismic stress changes transferred from large earth-
quakes cause seismicity changes (Fig. 1). For the Tohoku-
Oki earthquake, Toda et al. (2011) showed that there is a 
mean 47% gain in positively stressed aftershock mecha-
nisms over background (1997–2011 March 10) earth-
quakes. Furthermore, Ishibe et  al. (2015) showed that 
the ΔCFF values following the Tohoku-Oki earthquake 
have a statistically higher ratio of positively stressed 
receiver faults compared to those before the Tohoku-Oki 
earthquake.
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Fig. 1  a Three megathrust earthquakes investigated in the present study (the 2004 Sumatra–Andaman earthquake (Mw 9.1; orange), the 2010 
Maule earthquake (Mw 8.8; dark green), and the 2011 Tohoku-Oki earthquake (Mw 9.0; purple). b–d The fault-slip model for each earthquake as well 
as the distribution of 1-day aftershocks (open circles) according to the U.S. Geological Survey. The focal mechanism solutions for major earthquakes 
are from the Global Centroid Moment Tensor catalog. The plate boundary data from Bird (2003) are modified
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Recently, Miao and Zhu (2012) compared the spatial 
distribution of the ΔCFF imparted by the above three 
megathrust earthquakes with their aftershock distri-
butions by assuming optimally orientated faults to be 
receiver faults, and concluded that there is no clear 
evidence that the Coulomb stress changes enhanced 
the aftershock activity. The ratios of aftershocks that 
occurred in the positively stressed regions following 
the Sumatra–Andaman, Maule, and Tohoku-Oki earth-
quakes were 47.6, 49.8, and 47.0%, respectively. They 
reported that the static triggering hypothesis worked 
well, with more than 85% of aftershocks having positive 
ΔCFF values, for the two large intraplate earthquakes 
(the 1999 Chi–Chi and 2008 Wenchuan earthquakes).

Assumption of the receiver fault mechanism sometimes 
greatly affects estimation of the ΔCFF. The simplest way 
to assume the specified receiver fault is to fix the strike, 
dip angle, and rake angle, but this method is valid either 
for major source faults with well-known fault geometries 
or a region with a spatially and temporally homogeneous 
stress field. Another way is to assume optimally oriented 
receiver faults, which are determined so as to maximize 
the ΔCFF under the specified local/regional stress field 
(King et al. 1994). This can also produce large errors in a 
complex regional stress field in which earthquakes with 
various focal mechanisms occur, unless the heterogene-
ity of the local/regional stress field is properly considered.

In the present study, we calculate the ΔCFF for nodal 
planes of focal mechanism solutions for actual earth-
quakes. This method has been proven to be effective in 
reducing the uncertainty of receiver faults in heteroge-
neous stress fields (Hardebeck et al. 1998; Imanishi et al. 
2006; Toda 2008; Ishibe et  al. 2011a, b, 2015; Enescu 
et al. 2012; Heidarzadeh et al. 2016). Following the recent 
occurrence of megathrust earthquakes, drastic changes 
in focal mechanism solutions from dominant thrust-type 
to a variety of types have been observed (e.g. Lay et  al. 
2005; Asano et al. 2011; Nettles et al. 2011). We investi-
gate the correlation between the Coulomb stress changes 
transferred from three megathrust earthquakes and seis-
micity changes before and after the megathrust earth-
quakes in the neighboring regions.

Data and methodology
We use variable-slip models obtained from tsunami 
waveforms for the three megathrust earthquakes [the 
2004 Sumatra–Andaman earthquake (Fujii and Satake 
2007), the 2010 Maule earthquake (Fujii and Satake 
2013), and the 2011 Tohoku-Oki earthquake (Satake 
et  al. 2013)] (Fig.  1). In order to examine the sensitiv-
ity of ΔCFF computation to slip models, we also use 
the variable-slip models proposed by Rhie et  al. (2007) 
and Ammon et  al. (2005) for the Sumatra–Andaman 

earthquake, by Delouis et  al. (2010) and Luttrell et  al. 
(2011) for the Maule earthquake, and by Yokota et  al. 
(2011) and Gusman et  al. (2012) for the Tohoku-Oki 
earthquake (Additional file  1: Figure S1). For the case 
of the Sumatra–Andaman earthquake, we include the 
ΔCFF due to the Mw 8.5 Nias earthquake that occurred 
in March 2005 southeast of the 2004 source region using 
the fault-slip model obtained from teleseismic body-wave 
inversion (Konca et al. 2007).

For receiver faults on which stress changes are calcu-
lated, we use the focal mechanism solutions of earth-
quakes between January 1, 1976 and September 31, 2015 
obtained from the Global Centroid Moment Tensor 
(GCMT) catalog (e.g. Ekström et  al. 2012) (Additional 
file 2: Figure S2). For the case of the Tohoku-Oki earth-
quake, we also use the F-net focal mechanisms provided 
by the National Research Institute for Earth Science and 
Disaster Resilience (Fukuyama et  al. 1998). We grouped 
these mechanisms into pre-seismic and post-seismic 
periods, before and after the occurrence of the megath-
rust earthquakes. The number of earthquakes we used 
to compute the ΔCFF values was 1374 for the Sumatra–
Andaman earthquake, 436 for the Maule earthquake, and 
1537 for the Tohoku-Oki earthquake. Even if a majority 
of aftershock nodal planes were positively stressed by 
the mainshock rupture, this would not necessarily prove 
the stress triggering hypothesis because the distribution 
of receiver faults is controlled primarily by predominant 
stress fields. Thus, we evaluate the triggering hypoth-
esis by comparing the calculated Coulomb stress changes 
after the megathrusts to those during pre-seismic periods 
as background.

We calculate the ΔCFF values for two nodal planes of 
each focal mechanism solution. We assume an elastic 
half-space with a shear modulus of 40 GPa and a Poisson’s 
ratio of 0.25. For the apparent friction coefficient (μ′), we 
adopt an empirically introduced value, μ′ =  0.4, but we 
also repeat our analyses for two other values (= 0.1 and 
0.8). Laboratory rock experiments on frictional slip indi-
cate higher values, e.g., 0.5 ≤ μ′ ≤ 0.8 (e.g., Byerlee and 
Brace 1968), whereas fluid injection decreases the appar-
ent friction coefficient when the pore–fluid pressure 
increases (Skempton 1954).

We calculate the median ΔCFF value for receiver faults 
for 100 consecutive earthquakes by moving the time win-
dow for 50 earthquakes. The ΔCFF values for the two 
nodal planes differ because the unclamping stresses are 
not the same, but we do not know which of these is the 
actual receiver fault. In order to consider the arbitrariness 
of nodal plane selection, we conduct a Monte Carlo sim-
ulation in which either the first or the second nodal plane 
of each focal mechanism solution is randomly selected 
as a receiver fault. In each time-window, we create 1000 
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datasets and calculate the average and standard deviation 
of the median ΔCFF values. We also calculate the ratios 
of three cases in which (1) both nodal planes are posi-
tively stressed; (2) one nodal plane is positively stressed, 
while the other is negatively stressed; and (3) both nodal 
planes are negatively stressed. We then evaluate the Cou-
lomb index, which is the ratio of the number of receiver 
faults with stress increases for at least one nodal plane 
(e.g., Hardebeck et al. 1998) during both the pre-seismic 
and post-seismic periods.

Results and discussion
Figure 2 shows the distribution of the ΔCFF values and 
the focal mechanism solutions during the pre-seismic 
and post-seismic periods. One of the characteristics of 
the focal mechanism distribution during the post-seismic 
period is activation of normal-faulting earthquakes in 
the shallow crustal region of the overriding plate and the 
outer-rise region. For the case of the Tohoku-Oki earth-
quake, shallow normal-faulting earthquakes abruptly 
began to occur in the Ibaraki/Fukushima prefectural 
boundary area (coastal region around 37  °N) (e.g., Kato 
et  al. 2011) and the outer-rise region along the Japan 
Trench. Similar normal-faulting earthquake sequences 
were also reported for the other two megathrust earth-
quakes: the Pichilemu region (around 34.5  °S) along the 
Chilean coast after the Maule earthquake (e.g., Farías 
et  al. 2011) and East offshore of the Nicobar Islands 
(around 8  °N) after the Sumatra–Andaman earthquake 
(e.g., Lay et  al. 2005; Dewey et  al. 2007). Most of these 
normal-faulting earthquakes were positively stressed due 
to the occurrence of the megathrust earthquakes.

The temporal changes in the median ΔCFF values for 
the three megathrust earthquakes are shown in Fig.  3. 
Here, we focused on the temporal changes since 2000, 
because the temporal changes during the pre-seismic 
periods are negligibly small. (See Additional file  3: Fig-
ure S3, Additional file 4: Figure S4 for temporal changes 
in the median Coulomb stress change after January 
1976.) The median values of ΔCFF are several bars dur-
ing post-seismic periods, whereas they are approximately 
zero during pre-seismic periods for the Sumatra–Anda-
man and Tohoku-Oki earthquakes (Fig.  3). The rapidly 
increased median ΔCFF values gradually decayed to 
background levels for the Sumatra–Andaman earth-
quake. However, these were still elevated 4  years after 
the Tohoku-Oki earthquake. The decay rate became 
smaller approximately 3 years after the mainshock, sug-
gesting that factors other than Coulomb stress changes, 
which will be discussed later, also contributed to keep the 
median ΔCFF elevated (e.g., Toda and Stein 2013).

The Coulomb index during the post-seismic period 
was greater than 50%, with the exception of one of the 

27 cases (Table  1). These results are inconsistent with 
those of a previous study, in which the seismicity was 
determined to be less than 50% in the positively stressed 
region by assuming an optimally oriented receiver fault. 
For 19 cases out of 27 cases, the Coulomb index was 
higher during the post-seismic period than that dur-
ing the pre-seismic period. For example, using the fault 
model of Yokota et  al. (2011) with an apparent coeffi-
cient friction of 0.4, 79.3% of receiver faults were posi-
tively stressed for at least one nodal plane following the 
Tohoku-Oki earthquake, whereas 64.2% of receiver faults 
were positive during the pre-seismic period. This is con-
sistent with the findings of previous studies (e.g., Toda 
et al. 2011; Ishibe et al. 2015).

For the Maule earthquake, however, temporal changes 
in the median ΔCFF exhibit various patterns depending 
on the slip model: an abrupt increase in median ΔCFF 
value for the slip model of Delouis et al. (2010), an abrupt 
decrease for that of Fujii and Satake (2013), and almost 
no change for that of Luttrell et  al. (2011). Most of the 
receiver faults used to compute the ΔCFF for the 2010 
Maule earthquake were interplate aftershocks with a 
thrust mechanism and were concentrated in the main-
shock source region (see Additional file  5: Figure S5). 
The evaluated ΔCFF for these receiver faults may include 
large uncertainties because slip models using rectangu-
lar sub-faults artificially cause anomalous stress concen-
trations along the edge of each sub-fault (e.g., Woessner 
et al. 2012), and hence the computed median values are 
strongly affected by these anomalous values near the 
source. Another possible reason is the smaller number 
of available receiver faults compared with the other two 
megathrust earthquakes.

In order to examine the sensitivity of the ΔCFF cal-
culation to the slip model and the assumed value of the 
apparent friction coefficient, we repeated our analyses for 
other slip models (see Additional files 6, 7, 8, 9, 10, 11, 12: 
Figures S6 through S12) and two other apparent friction 
coefficients (μ′ = 0.1 and 0.8). The computed ΔCFF value 
is insensitive to the slip model for the Tohoku-Oki and 
Sumatra–Andaman earthquakes. The temporal change 
in the ΔCFF is similar for different values of the friction 
coefficient, i.e., the abrupt increase in the median value 
following the occurrence of a megathrust earthquake and 
the gradual decay toward the background level.

The catalog dependency of our results was also 
tested for the case of the Tohoku-Oki earthquake by 
using F-net focal mechanisms as receiver faults. Fig-
ure  4 shows the distribution of the receiver faults 
with the calculated ΔCFF and the temporal changes 
in the median ΔCFF value using the fault-slip model 
of Yokota et  al. (2011) with μ′ =  0.4. (see Additional 
file  13: Figure S13, Additional file  14: Figure S14 for 
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different apparent coefficients of friction). The median 
ΔCFF exhibited similar temporal changes associated 
with the Tohoku-Oki earthquake: a sudden increase 
followed by a gradual decrease toward the background 
level. The median ΔCFF fluctuates more for the F-net 
catalog than for the GCMT catalog. This may reflect 
the characteristics of earthquake clustering, because 
the F-net data include a much larger number of focal 
mechanism solutions than the GCMT catalog.

Concluding remarks and future developments
We investigated the correlation between static Coulomb 
stress changes imparted by three megathrust earthquakes 
and changes in focal mechanism solutions by means 
of abundant focal mechanism solutions of earthquake 
catalogs as receiver faults. The median Coulomb stress 
was approximately zero during the pre-seismic period 
before the megathrust earthquake, abruptly increased as 
a result of the earthquake, and then gradually decreased, 
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at least for the Sumatra–Andaman and Tohoku-Oki 
earthquakes. The ratio of positively to negatively stressed 
receiver faults increased following these megathrust 
earthquakes for almost all slip models and apparent fric-
tion coefficient values. Changes in the focal mechanism 
distribution that can be correlated with static Coulomb 
stress changes due to megathrust earthquakes support 
the static stress triggering hypothesis. The conclusion 
of the present study is opposite that of a previous study 
using optimally orientated receiver faults, and this differ-
ence indicates the importance of considering the spatial 
and temporal heterogeneities of receiver faults.

In the present study, we considered only the static 
stress changes transferred from co-seismic fault slips of 
the mainshocks. However, other possible factors for trig-
gering seismicity changes, such as dynamic stress change 
due to the passage of seismic waves (e.g., Hill et al. 1993; 
Miyazawa 2011), a decrease in failure strength due to an 
increase in pore–fluid pressure (e.g., Hubbert and Rubey 
1959), post-seismic slip, static stress change from indi-
rectly triggered earthquakes by numerous aftershocks, 
acceleration of relative plate motion (e.g., Heki and Mitsui 
2013; Uchida et  al. 2016), and/or viscoelastic relaxation 
(e.g., Pollitz and Sacks 1995), have been suggested by vari-
ous studies. These might disturb or mask the correlation 
between Coulomb stress changes co-seismically trans-
ferred from the mainshocks and changes in seismicity fol-
lowing the occurrence of mainshocks.
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