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uncertainty in tropical low cloud feedback 
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Abstract 

Equilibrium climate sensitivity (ECS) to doubling of atmospheric CO2 concentration is a key index for understand-
ing the Earth’s climate history and prediction of future climate changes. Tropical low cloud feedback, the predomi-
nant factor for uncertainty in modeled ECS, diverges both in sign and magnitude among climate models. Despite 
its importance, the uncertainty in ECS and low cloud feedback remains a challenge. Recently, researches based on 
observations and climate models have demonstrated a possibility that the tropical low cloud feedback in a perturbed 
climate can be constrained by the observed relationship between cloud, sea surface temperature and atmospheric 
dynamic and thermodynamic structures. The observational constraint on the tropical low cloud feedback suggests 
a higher ECS range than raw range obtained from climate model simulations. In addition, newly devised modeling 
frameworks that address both spreads among different model structures and parameter settings have contributed 
to evaluate possible ranges of the uncertainty in ECS and low cloud feedback. Further observational and modeling 
approaches and their combinations may help to advance toward dispelling the clouds of uncertainty.
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Introduction
Physical predictions of the Earth’s climate variability 
and changes are ongoing challenges for the geoscience 
community. Uncertainty in equilibrium climate sen-
sitivity (ECS), determined by global mean surface air 
temperature (SAT) increase at a state of climatic equi-
librium according to doubling of atmospheric CO2, is an 
unresolved issue in the climate science (e.g., Knutti and 
Hegerl 2008). While climate scientists are devoted to 
the development of realistic and reliable climate models, 
the uncertainty range of the modeled ECS has not been 
reduced efficiently since the Charney report (Charney 
et al. 1979) published in 1979 (Maslin and Austin 2012). 
The state-of-the-art estimates of ECS and transient cli-
mate response (TCR; a response of global-mean SAT to 
a gradually increasing atmospheric CO2 concentration) 

from historical observations also have substantial uncer-
tainty (e.g., Flato et  al. 2014) due to difficulty in accu-
rate estimations of ocean heat uptake and forcing (e.g., 
Yoshimori et  al. 2016). Inter-model spread in feedback 
between the cloud and the top of the atmosphere (TOA) 
radiation, particularly shortwave reflectance due to cloud 
in the tropics, has been suggested to be the major factor 
for the uncertainty in ECS (e.g., Cess et al. 1990; Dufresne 
and Bony 2008; Boucher et al. 2014; Caldwell et al. 2016). 
In contrast to a less uncertain cloud feedback over land 
(Kamae et al. 2016a), large uncertainty in cloud feedback 
over the ocean contributes predominantly to the total 
spread of modeled ECS (e.g., Bony and Dufresne 2005; 
Webb et al. 2006; Vial et al. 2013).

Recent enormous challenges for quantifying and 
reducing the uncertainty in cloud feedback have been 
led by an international research framework called Cloud 
Feedback Model Intercomparison Project (CFMIP; e.g., 
Bony et al. 2015; Webb et al. 2016). In the CFMIP frame-
work together with related research projects, a variety of 
approaches have been conducted: multi-model ensemble 
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using climate models developed by different modeling 
centers independently (e.g., Andrews et al. 2012a; Zelinka 
et al. 2013; Vial et al. 2013), perturbed physics ensemble 
(PPE; detailed in a later section) focusing on the sensi-
tivity of model physics (e.g., cumulus convection, cloud 
microphysics, and turbulence) on parameter settings 
(e.g., Collins et  al. 2011; Klocke et  al. 2011; Shiogama 
et al. 2012), climate models which have physics schemes 
swapped (Gettelman et al. 2012; Watanabe et al. 2012b) 
or turned off (Webb et  al. 2015), simplified aqua planet 
simulations (e.g., Wang et  al. 2012; Stevens and Bony 
2013; Medeiros et al. 2014), single column models simu-
lating one-dimensional atmospheric column (e.g., Zhang 
et al. 2013; Dal Gesso et al. 2015), high-resolution mod-
els resolving the cloud-convection system (Wyant et  al. 
2009; Sato et  al. 2014; Bretherton 2015), or large eddy 
simulations (LES; e.g., Blossey et  al. 2013; Bretherton 
et al. 2013; Bretherton and Blossey 2014). Satellite obser-
vations have been applied to assess the performance of 
climate model simulations and evaluate cloud feedback 
in a warming climate by using satellite simulators imple-
mented in climate models (e.g., Klein and Jakob 1999; 
Webb et al. 2001; Bodas-Salcedo et al. 2011; Pincus et al. 
2012).

One of the recent remarkable progresses is quantitative 
decomposition and physical understanding of the differ-
ent roles of surface temperature-mediated changes and 
adjustment of the climate system to the imposed exter-
nal forcing (Gregory and Webb 2008; Kamae and Wata-
nabe 2013; Andrews and Ringer 2014; Ogura et al. 2014). 
Decomposition of the temperature-mediated cloud 
change (cloud feedback) and rapid cloud adjustment 
to increasing CO2 contribute to accurate evaluations 
of cloud feedback (Watanabe et  al. 2012a; Webb et  al. 
2013; Vial et  al. 2013; Zelinka et  al. 2013). Comprehen-
sive reviews on the rapid cloud adjustment can be found 
in Andrews et  al. (2012b), Sherwood et  al. (2015), and 
Kamae et al. (2015).

Cloud feedback contributing to the uncertainty in 
ECS has been evaluated by being separated into dif-
ferent cloud properties (fractional coverage, cloud top 
height, and optical depth; Zelinka et  al. 2013; Boucher 
et  al. 2014). In addition to the tropical low cloud feed-
back, feedbacks due to tropical high clouds (Hartmann 
and Larson 2002; Zelinka and Hartmann 2010; Maurit-
sen and Stevens 2015) and middle latitude mixed-phase 
clouds (Zelinka et al. 2012b; Ceppi and Hartmann 2015; 
Ceppi et  al. 2016; Tan et  al. 2016) have also attracted 
much attention because of its importance for the total 
uncertainty in cloud feedback and resultant ECS uncer-
tainty. In this paper, we review the recent progress and 
remaining issues on understanding of the tropical low 
cloud feedback. Recently, observational constraints of 

the low cloud feedback and evaluation of possible uncer-
tainty ranges including sensitivity of physics schemes 
have much advanced. We mainly introduce two papers 
(Sherwood et al. 2014; Qu et al. 2015b) as examples of the 
recent works on the observational constraint of the low 
cloud feedback. In addition, we pick up and introduce a 
series of modeling approaches evaluating parametric and 
structural uncertainty in cloud feedback and ECS. Ste-
phens (2005); Boucher et al. (2014); Fasullo et al. (2015); 
Klein and Hall (2015); and Bretherton (2015) also pro-
vided comprehensive reviews on the uncertainty in cloud 
feedback and ECS.

Observed and modeled variations in tropical low 
cloud
For physical predictions of change in shortwave reflec-
tance due to tropical low cloud cover (LCC) in a warm-
ing climate, regional and temporal correspondences 
between LCC and large-scale conditions were examined 
by observations and models (Table  1). In this paper, we 
mainly discuss LCC change over the subtropical ocean 
where stratocumulus and cumulus clouds dominate. 
Subtropical boundary layer (BL) cloud typically exists 
over the regions characterized by low sea surface tem-
perature (SST), strong capping inversion, middle tropo-
spheric subsidence, and cold air advection at the surface 
(Klein et  al. 1995). Clement et  al. (2009) found that the 
northeast Pacific LCC, lower tropospheric inversion, 
and vertical velocity at 500 hPa are positively correlated 
over interannual and decadal time scales. The respec-
tive contribution of each large-scale property to the LCC 
change was examined by seasonal, interannual, and dec-
adal correspondences between the two (e.g., Myers and 
Norris 2013, 2015). Here, we should note that a stronger 
regional anomaly compared with the tropical mean (e.g., 
stronger subsidence) does not necessarily correspond to 
an increase in LCC (detailed below; Myers and Norris 
2013). Increasing SST, frequently used as a surrogate of 
climate change (Cess et al. 1990; Ringer et al. 2014), gen-
erally results in a reduced LCC through changes in sur-
face latent heat flux and moisture contrast between the 
BL and free troposphere (FT). Increased surface latent 
heat flux enhances mixing of the dry FT air and moist BL, 
leading to a deeper BL and a less LCC (Chung and Teix-
eira 2012; Rieck et al. 2012). Moister BL under a higher 
SST condition (via increased surface moisture supply) 
results in an enhanced BL–FT moisture contrast. The 
enhanced contrast leads to a stronger drying effect of the 
mixing of the FT air at the capping inversion, resulting 
in a reduced LCC (Brient and Bony 2013) and a deeper 
BL (van der Dussen et  al. 2015). In addition, uncer-
tainty in regional SST warming pattern is tightly associ-
ated with cloud feedback through changing large-scale 
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atmospheric circulations (Andrews et al. 2015; Long et al. 
2016; Ying and Huang 2016).

The strength of inversion that caps the planetary BL 
controls the amount of BL cloud (Table 1). The stronger 
inversion suppresses the mixing of moist BL air with 
warmer and drier FT air, resulting in a shallower, moister, 
and cloudier BL (Klein and Hartmann 1993; Wood and 
Bretherton 2006). Strengthened subsidence in FT alone 
reduces the LCC, although subtropical low cloud exists 
over the regions where the subsidence dominates (Myers 
and Norris 2013). This paradoxical relationship can be 
explained by differences in relative contributions of the 
inversion strength and subsidence to LCC (stronger 
inversion causes an increase in the LCC and stronger 
subsidence reduces it a little). The relationship between 
FT relative humidity and LCC cannot be simply evalu-
ated (Table 1). While high and middle cloud covers cor-
respond well with the FT humidity (Albrecht et al. 1995), 
both decrease (Klein et al. 1995) and increase (Lacagnina 
and Selten 2013) in LCC associated with increased FT 
relative humidity were reported. Myers and Norris (2015) 
pointed out that increase in lower tropospheric (700 hPa) 
humidity corresponds to decrease in cloud cover in 
700–850  hPa layer and increase just below and above 
that layer, resulting in the diverse conclusions. Variation 
in surface wind speed shows a high correlation with the 
LCC (a higher wind speed corresponds to a larger LCC; 
Klein et al. 1995). Enhanced cold air advection near the 
surface is concurrent with stronger convective mixing in 
the BL and increased LCC (Klein et al. 1995; Mansbach 
and Norris 2007; Myers and Norris 2015). These obser-
vations and modeling-based relationships between the 
LCC and the large-scale conditions can be applied to 

longer-term cloud changes including cloud feedback in a 
warming climate (see next section).

Constraining the uncertainty in low cloud feedback
There are attempts to reduce the large inter-model spread 
of ECS using observation-based performance metrics 
called emergent constraints (Sherwood et al. 2014; Klein 
and Hall 2015; Fasullo et al. 2015). Recent studies applied 
the observed relationship between the LCC variation and 
the large-scale atmospheric and SST conditions (Table 1) 
for reducing the uncertainty in the low cloud feedback in 
a changing climate (e.g., Dessler 2013; Zhai et  al. 2015; 
Qu et al. 2015b; Myers and Norris 2016; Brient and Sch-
neider 2016). Most of the observation-based approaches 
rely on an assumption that long-term change in the 
low cloud is largely controlled by changes in large-scale 
atmospheric condition and SST, so that the low cloud 
sensitivities are similar between the long-term change 
and seasonal, interannual, and decadal variabilities. Zhou 
et  al. (2015) pointed out that long-term net cloud feed-
back tends to be smaller than interannual cloud feedback, 
although the two correspond well qualitatively among 
multi-models participated in the Coupled Model Inter-
comparison Project (CMIP). Difference in spatial pat-
terns of SST perturbations between the two (long-term 
and interannual feedbacks) was suggested to be a factor 
for the difference in the cloud feedback, consistent with 
Andrews et  al. (2015). Zhai et  al. (2015) examined the 
seasonal relationship between SST and marine BL cloud 
in observations and CMIP models. They found that (1) 
modeled long-term correspondence between the two 
(SST and marine BL cloud) is similar to seasonal corre-
spondence among the CMIP models and (2) models with 

Table 1  Factors for low cloud feedback

Left column indicates physical processes affecting low cloud cover (LCC) over the subtropical ocean. The second, third, and fourth columns from the left indicate the 
projected change in a warming climate, resultant change in low cloud and boundary layer (BL), and resultant low cloud feedback, respectively (Qu et al. 2015b; Myers 
and Norris 2016)

Change in a warming 
environment

Resultant changes in BL  
and cloud

Resultant low cloud 
feedback

SST (Hanson 1991; Clement et al. 2009) Increasing Deeper BL, less cloud Positive

SST-related process: Surface evaporation (Chung and Teix-
eira 2012; Rieck et al. 2012)

Increasing Deeper BL, less cloud Positive

SST-related process: Moisture contrast at inversion (Brient 
and Bony 2013; van der Dussen et al. 2015)

Increasing Deeper BL, less cloud Positive

Strength of inversion (Klein and Hartmann 1993; Wood and 
Bretherton 2006)

Increasing Shallower BL, more cloud Negative

FT relative humidity (Klein et al. 1995; Lacagnina and Selten 
2013; Myers and Norris 2015)

Decreasing Decreasing high and middle  
clouds, but uncertain in low cloud

Uncertain

FT subsidence (Myers and Norris 2013) Weakening Higher cloud top, more cloud Negative

Surface wind speed (Klein et al. 1995; Qu et al. 2015b) Uncertain Uncertain

Cold advection (Klein et al. 1995; Mansbach and Norris 
2007; Myers and Norris 2015)

Enhanced More convective BL, more cloud Negative
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realistic SST–cloud relationship compared with observa-
tions on seasonal timescale tend to have larger long-term 
positive cloud feedback, suggesting a higher ECS than 
the raw estimate from the CMIP models. Tsushima et al. 
(2013) evaluated representations of seasonal variations of 
cloud radiative effects of cloud regimes in climate models 
and found that models that capture the seasonal variation 
of stratocumulus cloud regimes tend to have higher ECS.

Qu et al. (2015b) developed a heuristic model relating 
future LCC change to changes in the atmospheric condi-
tions and SST (Table 1). They found that three large-scale 
controls are dominant: strength of temperature inver-
sion, strength of BL–FT humidity contrast, and surface 
latent heat flux (Fig.  1). This approach is an extension 
from Qu et  al. (2014), which examined the SST effect 
as a surrogate for multiple processes including the lat-
ter two (latent heat release and humidity gradient; Fig. 1; 
Table 1). Contribution of the inversion strength (negative 
feedback) is relatively smaller than the total contribution 
of the SST (positive feedback; Table 1; Fig. 1), resulting in 
a small positive feedback (reduction of LCC) in a multi-
model ensemble mean. By comparing with observed LCC 
sensitivity to the predictor variables, they concluded that 
observations suggest a systematic LCC reduction (−7 

to −3 % during the twenty-first century) and a reduced 
reflection of solar radiation under a warming climate (Qu 
et al. 2015b). Myers and Norris (2016) also conducted a 
similar analysis and concluded that the SST effect and the 
inversion effect largely compensate each other, leading 
to a weak positive cloud feedback (0.4 ± 0.9 W m−2 K−1) 
while uncertainty ranges due to observations and regres-
sion method are both substantial.

The analyses conducted in Qu et al. (2015b) and Myers 
and Norris (2016) exhibited that contributions of the 
three (inversion strength, humidity contrast, and latent 
heat flux) to LCC change are dominant compared with 
the other factors (Table  1). The CMIP models tend to 
show decreasing trends in the subtropical FT relative 
humidity in a warming climate (Sherwood et al. 2010; Qu 
et al. 2015b). However, the contribution of the FT relative 
humidity to the future LCC change is not robust among 
the models (Qu et  al. 2015b; Myers and Norris 2016). 
Future change in sea surface wind speed is also highly 
uncertain among multi-models, resulting in a minor con-
tribution compared with the others (Qu et al. 2015b).

Sherwood et  al. (2014) suggested an emergent con-
straint, lower tropospheric mixing (LTM), for the uncer-
tainty in low cloud feedback and ECS. The LTM, namely 

Stronger
T Inversion

Warmer Sea Surface
Increased Surface
Latent Heat Flux

Enhanced
BL-FT q Contrast

Lower
Cloud Top

Higher
Cloud Top

Higher
Cloud Top

a      Effect of Inversion Strength

b      Effect of Humidity Contrast c      Effect of Latent Heat Flux

∆LCC = 3.0%

∆LCC = –2.9% ∆LCC = –0.9%

Fig. 1  Summary of key processes associated with low cloud feedback. Dashed gray and solid black balloons represent low clouds over the subtropi-
cal ocean in a base state and in a warmer condition, respectively. See Table 1 for references. a Effect of change in inversion strength. b Effect of sea 
surface temperature (SST)-induced moisture contrast between the boundary layer (BL) and free troposphere (FT). c Effect of SST-induced latent 
heat flux. Values shown in individual panels are multi-model mean of low cloud cover (LCC) change (%; from Qu et al. 2015b)
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shallow upward moisture transport from BL to FT (via 
cumulus congestus and shallow overturning circulation 
over the ocean), cannot be evaluated directly but can be 
diagnosed indirectly by model outputs (differences of 
temperature and relative humidity between the BL and 
the lower FT; Fig. 2a, and vertical profile of atmospheric 
circulation; Fig.  2b, see Sherwood et  al. 2014 for detail) 
and can be compared with observations. The LTM con-
sists of two components: small-scale (parameterized pro-
cess; Fig. 2a) and large-scale LTM (resolved atmospheric 
circulation; Fig. 2b). In the tropics, water vapor and tem-
perature in the BL air are transported to FT via deep con-
vection (blue arrow in Fig.  2) and LTM. The large-scale 
LTM (orange arrow in Fig. 2b) is commonly called shallow 
ascent in the tropics. In the lower FT (Fig. 2a), air parcels 
transported to the upper troposphere by deep convec-
tion turn back with relatively higher temperature and 
lower relative humidity compared with the environment 
(red circle in Fig. 2a) due to rain out within the updraft. 
In contrast, the small-scale LTM (white arrow in Fig. 2a) 
transports cool and moist air to the lower FT (blue cir-
cle in Fig. 2a). In a warming climate, increase in surface 
evaporation tends to be smaller than the convective BL 
dehydration (e.g., Demoto et al. 2013). In addition, mod-
els with stronger LTM in the current climate tend to show 
larger increase in LTM in a warming climate, leading to 
an LTM control for change in the intensity of convective 
BL dehydration and resultant cloud feedback. Actually, 
the sum of the two estimated LTM can explain a half of 
the ECS spread among 48 CMIP models (Sherwood et al. 
2014). The observational constraint suggested a higher 
ECS range (higher than 3 K) than the raw ECS estimate 

from the multi-model ensemble. While correspondence 
of LTM and low cloud feedback was not examined suffi-
ciently (Klein and Hall 2015), this conclusion is consistent 
qualitatively with the above works (Zhai et  al. 2015; Qu 
et al. 2015b; Myers and Norris 2016).

Structural and parametric uncertainty in low cloud 
feedback
In the previous section, we reviewed the spread of the 
low cloud feedback among different climate models. 
However, the limited size of the CMIP model ensemble 
does not necessarily cover the whole possible uncer-
tainty range (Tebaldi and Knutti 2007; Collins et  al. 
2011). Parameterizations of model physics (e.g., convec-
tion, cloud microphysics, and turbulence) for reproduc-
ing realistic current climatology (Mauritsen et  al. 2012) 
could lead to a biased estimate of the cloud feedback 
and ECS. Recently, uncertainty due to the behavior of 
physics schemes implemented in climate models has 
been addressed by single or multi-model frameworks. 
PPE is an effective approach to evaluate a sensitivity of 
cloud feedback and ECS to parameter settings in phys-
ics schemes (Murphy et  al. 2004; Stainforth et  al. 2005; 
Sanderson et  al. 2010; Collins et  al. 2011; Klocke et  al. 
2011). Webb et  al. (2015) compared uncertainty ranges 
of cloud feedback between models which have their con-
vection schemes turned on and off. They concluded that 
convective parameterization is important in some mod-
els, but other processes also contribute to the spread of 
the cloud feedback among different models.

Yokohata et al. (2010) and Sanderson (2011) compared 
uncertainty in cloud feedback between PPEs developed 

BL

FT

a                    Small-Scale LTM b       Large-Scale LTM

Tropopause

Deep
Convection

Large-Scale 
LTM

Updraft

Rain Out

Cool & 
Moist

Warm & 
Dry

Moist

Smale-Scale 
LTM

Fig. 2  Schematic of lower tropospheric mixing. a Small-scale lower tropospheric mixing (LTM; curved white arrow) between moist BL and dry FT 
over the tropical ocean (Sherwood et al. 2014). Blue, pink, and red circles represent cool and moist to warm and dry air parcels, respectively. b Large-
scale LTM (orange arrow)
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by different climate models. They showed that sensitiv-
ity of cloud feedback to parameter perturbations was 
dependent on model structures, suggesting a necessity 
for evaluating both the parametric and structural (i.e., 
model configuration) uncertainty. Gettelman et al. (2012) 
and Watanabe et  al. (2012b) developed multi-physics 
ensembles (MPEs) by swapping model physics schemes 
between two climate models (old and new versions of the 
model). They showed that cloud feedback and ECS vary 
substantially among MPE models (Fig. 3; detailed below), 
contributing to the difference in cloud feedback and ECS 
between the two versions of the climate model (Gettel-
man et al. 2012; Watanabe et al. 2012b). However, MPE 
also relies on particular parameter settings, implying a 
possible parametric uncertainty that cannot be addressed 
by MPE models alone.

To evaluate both the parametric and structural uncer-
tainty, Shiogama et al. (2014) developed a multi-parame-
ter multi-physics ensemble (MPMPE) based on the MPE 
models developed by two versions of Model for Interdis-
ciplinary Research on Climate (MIROC; Table  2; Wata-
nabe et  al. 2012b). They developed PPEs based on the 
eight MPE models and examined the uncertainty in cloud 
feedback and ECS. Figure  3 shows the shortwave cloud 
feedback in the MPMPE (Kamae et al. 2016b) evaluated 
using the International Satellite Cloud Climatology Pro-
ject (ISCCP) simulator (Klein and Jakob 1999; Webb et al. 
2001) implemented in the models and ISCCP cloud radi-
ative kernel (Zelinka et  al. 2012a). Estimated feedbacks 
were generally consistent with estimates (difference in 
all-sky and clear-sky TOA radiation) of Shiogama et  al. 
(2014). Compared with MIROC5A with a large negative 
shortwave cloud feedback and a low ECS, models with 
swapped physics schemes (cloud, convection, and turbu-
lence) to older ones generally show larger cloud feedback 
and higher ECS (Table  2; Fig.  3; Watanabe et  al. 2012b; 
Shiogama et  al. 2014; Kamae et  al. 2016b). The differ-
ence in the shortwave cloud feedback among the eight 
MPE models can largely be attributed to spreads in low 
cloud and middle cloud feedback over the tropical ocean 
(Watanabe et  al. 2012b). Shiogama et  al. (2014) further 
compared parametric uncertainty between the eight 
MPE models and concluded that (1) uncertainty in low 
cloud feedback, middle cloud feedback, and ECS are sen-
sitive to model the structure (consistent with Yokohata 
et al. 2010 and Sanderson 2011); and (2) the relationship 
of cloud feedbacks between different cloud levels can 
influence the total spread of the cloud feedback in a given 
PPE (e.g., a positive correlation between low and middle 
cloud feedbacks results in large spreads in total feedback 
and ECS).

Multiple PPEs with different model structures like 
MPMPE can cover both the parametric and structural 

uncertainty. It is needed to examine the physical pro-
cesses determining total cloud feedback and its com-
ponents (fractional coverage, clout top height, and 
optical depth) including low cloud feedback in the 
multiple PPEs. However, it has not been clarified why 
different PPEs show different parameter sensitivity of 
low and middle cloud feedback (Shiogama et al. 2014; 
Kamae et  al. 2016b). Swapping physics schemes like 
cumulus convection may result in a different behav-
ior of cloud in a control climate and its change in a 
perturbed climate (Watanabe et  al. 2012b). Kamae 
et  al. (2016b) applied the observational constraint of 
low cloud feedback (LTM) to the MPMPE and con-
cluded that LTM is effective to constrain the uncer-
tainty in low cloud feedback, but is not applicable to 
total cloud feedback and ECS, at least for a part of 
PPEs. The physical reasons for the differences in the 
LTM–ECS relationship among different ensembles are 
still unclear. Further works are needed to evaluate the 
uncertainty range of cloud feedback and constrain the 
ECS uncertainty among multiple PPEs developed by 
different climate models.

Conclusions
Historical observations including satellite and imple-
mentation of satellite simulator enable to evaluate the 
reproducibility of the modeled clouds and its variations 
on seasonal, interannual, and decadal timescales. The 
accumulated observations suggest that the large-scale 
controls of LCC can also be applied to the long-term 
cloud change under global warming. The observation–
model merged approaches suggest that the warmer sea 
surface and dryer FT relative to BL result in a less LCC, 
although the larger FT warming relative to BL enhances 
the LCC, resulting in a positive low cloud feedback. It 
is worthwhile to examine whether this physically robust 
low cloud feedback is also confirmed in multiple PPEs 
that can cover wider uncertainty ranges than the CMIP 
multi-models.

In the previous studies, observation-based constraint of 
the tropical LCC change in a warming climate (Qu et al. 
2015b; Myers and Norris 2016) consists both of the tem-
perature-mediated cloud change and the rapid adjust-
ment (see “Introduction”). Qu et al. (2015a) pointed out 
the importance of the rapid adjustment on the inversion 
strengthening in global warming simulations. Bretherton 
et al. (2013) decomposed the rapid adjustment and tem-
perature-mediated change in low cloud using single LES. 
Decomposed cloud adjustment and temperature-medi-
ated change should be compared among different models 
in comprehensive frameworks. In the CFMIP, it has been 
planned that multiple SCMs are used to conduct sensi-
tivity experiments with SST increase or CO2 increase 
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to evaluate the two effects on the LCC separately. The 
results of the simulations could contribute to evaluate 
the robustness of CO2, SST, and other controls of the low 
cloud feedback among different models.

Evaluating the dependency of uncertainty in cloud 
feedback on physics schemes is also an ongoing issue. 
PPEs developed by different models can facilitate the 
evaluation of the structure dependency of the PPE cloud 

a                   MIROC5A

b             CLD – MIROC5A

c              CNV – MIROC5A

d             VDF – MIROC5A

f          CLDCNV – MIROC5A

g          CLDVDF – MIROC5A

h       CLDCNVVDF – MIROC5A

e          CNVVDF – MIROC5A

–8 80

–8 80 W m   K
–2 –1

W m   K
–2 –1

Fig. 3  Variation in shortwave cloud feedback in the MPMPE. a Shortwave cloud feedback (W m−2 K−1) in MIROC5A model averaged for the PPE 
members (Table 2; Shiogama et al. 2014; Kamae et al. 2016b). b–h Differences in CLD, CNV, VDF, CNVVDF, CLDVDF, CLDCNV, and CLDCNVVDF mod-
els compared with MIROC5A
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feedback. Different roles of uncertainty in low cloud and 
middle cloud feedback in multiple PPEs and its physical 
reasons have not been examined sufficiently. Multi-PPE 
comparison frameworks may be effective to explore PPE 
uncertainty in the low cloud feedback and ECS and con-
strain it by the accumulated observational insights.
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