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Abstract 

Landslide vulnerability prediction maps are among the most important tools for managing natural hazards associ‑
ated with slope stability in river basins that affect ecosystems, properties, infrastructure and society. Landslide events 
are among the most hazardous patterns of slope instability in the coastal mountains of Syria. Thus, the main goals 
of this research are to evaluate the performance of three different statistical outputs: Frequency Ratio (FR), Statistical 
Index (SI) and Index of Entropy (IoE) and therefore map landslide susceptibility in the coastal region of Syria. To this 
end, we identified a total of 446 locations of landslide events, based on the preliminary inventory map derived from 
fieldwork and high-resolution imagery surveys. In this regard, 13 geo-environmental factors that have a high influence 
on landslides were selected for landslide susceptibility mapping. The results indicated that the FR method outper‑
formed the SI and IoE models with a high AUC of 0.824 and better adaptability, followed by the SI with 0.791. Accord‑
ing to the SCAI values, although the FR model achieved the best reliability, the other two models also showed good 
capability in determining landslide susceptibility. The result of FR-based modelling showed that 18.51 and 19.98% of 
the study area fall under the high and very high landslide susceptible categories, respectively. In the map generated 
by the SI method, about 36% of the study area is classified as having high or very high landslide sensitivity. In the IoE 
method, whereas 14.18 and 25.62% of the study area were classified as “very high susceptible” and “high susceptible,” 
respectively. The relative importance analysis demonstrated that the slope aspects, lithology and proximity to roads 
effectively motivated the acceleration of slope material instability and were the most influential in both the FR and SI 
models. On the other hand, the IoE model indicated that the proximity to faults and roads, along with the lithology 
factor, were important influences in the formation of landslide events. As a result, the statistical bivariate models-
based landslide mapping provided a reliable and systematic approach to guide the long-term strategic planning 
procedures in the study area.
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Introduction
Landslides are classified as one of the most important 
physical hazards affecting human life, infrastructure and 
sustainable development (Alsabhan et  al. 2022; Nwaze-
libe et  al. 2022). Landslide event occurs when the shear 
strength of the material, that forms the slope, is greater 
than gravity and other types of shear stress within a path 
(Reichenbach et  al. 2018a, b; Shi et  al. 2020; Karaman 
et  al. 2022). Unlike other natural hazards, the landslide 
risk assessment process is described as complex due to 
the difficulty of landslide inventorization and the spa-
tial interaction between the motivating factors (Naceur 
et al. 2022; Jana et al. 2019; Valiante et al. 2021; Hateffard 
et al. 2021). Globally, landslides cause a real threat to life 
by total or partial destruction of infrastructure projects 
(Emberson et al. 2021; Jamir et al. 2022).

Landslides are among the greatest significant issues 
that governments strive to reduce their destructive 
impacts on lives, properties and infrastructure, especially 
in mountainous areas (Dikshit et  al. 2020; Nakileza and 
Nedala 2020; Batar and Watanabe 2021; Abdo 2022; Rah-
man et al. 2022). Many studies confirmed that increasing 
the landslide events are motivated by the spatial integra-
tion between physical and anthropological factors (Raza-
vizadeh et al. 2017; Akinci and Yavuz Ozalp 2021; Yamusa 
et al. 2022; Jaafari et al. 2022). The first fundamental step 
related to efficient spatial management of landslide risk 
is the preparation of landslide susceptibility mapping 
(Das et al. 2022; Guo et al. 2021; Skrzypczak et al. 2021). 
A landslide susceptibility map, however, delineates zones 
vulnerable to future landslide events within a given area. 
the high-quality generation of landslide susceptibility 
map depends on the effectiveness of the fieldwork, access 
to the most suitable data, the overall determination of the 
spatial conditioning factors and the appropriate selec-
tion of modelling and simulation methods (Mersha and 
Meten 2020; Wubalem 2021).

Recently, scientists throughout the world have used 
many approaches integrated with geographic informa-
tion systems (GIS) to map landslide susceptibility, includ-
ing weight of evidence (WoE; Cao et al. 2021); evidential 
belief functions (EBF; Anis et al. 2019); multivariate logis-
tic regression model (Li et  al. 2021a, b; Castro-Miguel 
et  al. 2022), information value (IV) and frequency ratio 
(FR; Rahman et al. 2022); generalized additive model (Lin 
et  al. 2021); analytical hierarchy process (AHP; Kumar 
and Anbalagan 2016; Babitha et al. 2022); support vector 
machine (SVM; Naceur et al. 2022); generalized additive 
model (GAM; Chen et al. 2017a); digital elevation model 

and hazard index (Hamza and Raghuvanshi 2017); multi-
criteria decision analysis (MCDA; Pham et al. 2021a).

As such, landslide susceptibility models can be clas-
sified into three categories: machine learning-based 
models, empirical approaches-based models and statisti-
cal-driven models. However, each of the aforementioned 
landslide susceptibility models has its own set of benefits 
and disadvantages (Reichenbach et  al. 2018a, b). The 
machine learning-based landslide susceptibility models 
offer superior flexibility and adaptability, but they are 
limited by the model parameters used and the quantity 
of the training dataset (Zhou et al. 2018). In spite of the 
fact that the empirical models make use of past informa-
tion and experience, the analysis results may differ sig-
nificantly from the natural conditions (Ghosh et al. 2011). 
Whilst statistical-based landslide susceptibility models 
can reflect the relation between input conditional fac-
tors and output assessment outcomes, the linear model 
is very simple and subject to aberrations (Reichenbach 
et  al. 2018a, b). As a result, prior studies demonstrate 
that the efficacy of established susceptibility models dif-
fers depending on various conditioning factors, and no 
one method is preferable in all settings (Zhou et al. 2018; 
Argyriou et al. 2022).

According to the current literature, the Mediterranean 
terrain is one of the areas most affected by the landslides 
risk (Argyriou et  al. 2022; Abdo 2022). The landslide is 
considered one of the most direct impacts on slope insta-
bility in Mediterranean environments (Ullah et al. 2022). 
Hence, the prediction of landslides is one of the most 
important pivots of geological and geomorphological 
studies in these environments, such as Isparta−Antalya 
highway (D-685), Turkey (Hepdeniz 2020), Ionian 
Islands, Greece (Mavroulis et al. 2022), Mila town, Alge-
ria (Bounemeur et al. 2022) and the prefecture of Chania, 
Crete (Psomiadis et al. 2020).

Due to fragile physical characteristics and the accel-
eration of human activities, the coastal mountain area 
(CMA) is considered one of the most vulnerable areas 
to geomorphological hazards in Syria (Alsafadi et  al. 
2022; Abdo 2018; Mohammed et al. 2020a, b, 2021). A lit-
erature review of geomorphological hazards in the east-
ern Mediterranean revealed an almost complete absence 
of studies related to landslide susceptibility in CMA 
which is prone to annual landslide events. For example, 
landslides in the winter of 2019 caused severe conse-
quences regarding casualties and the partial destruction 
of the infrastructure in the Tartous Governorate. In this 
regard, the importance of this study can be justified by 
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the urgent need to conduct more landslide assessment 
studies in a highly vulnerable area such as CMA. In addi-
tion, the abundance of related spatial data is considered 
a significant challenge in light of the consequences of the 
current war in Syria and spatial data availability (Chaaban 
et  al. 2022). Thus, bivariate statistical methods (BSM) 
provide a reliable assessment with constructive results, 
especially in areas with scarce data. Moreover, the rel-
evant literature has demonstrated the flexibility and 
performance quality of BSM, especially in the Mediterra-
nean mountain environment (Karim et al. 2019; Karaman 
et al. 2022; Akter and Javed 2022).

The main goals of the present assessment are: (1) to 
digitize the current landslide events; (2) to map land-
slide conditioning factors; (3) to map landslide suscep-
tibility using frequency (FR), Statistical Index (SI) and 
index of entropy (IOE); and (4) to assess the accuracy 
performance and outputs. The major importance of this 
analysis is to conduct an accurate landslide susceptibility 
assessment for Al-Balouta river basin through the com-
bination and comparison of those models. This study 
provides spatial insights of high importance to national 
planners in terms of landslide hazard managing land-
slide risk in the study area, especially during the current 
war period in Syria, which caused a great gap in relevant 
studies.

Study area
The Al-Balouta river basin is sited in northwestern Syria, 
between Latitude 34° 57ʹ–35° 04ʹ North and longitudes 
36° 01ʹ–36° 17ʹ East with an area of 116 km2 (Fig. 1). This 
basin boarded by Al-Khawabi river basin to the west, 
Al-Ghab river basin to the west, Qays River basin to the 
south and Marqya River basin to the north. Geologically, 
the lithological structure of the study area varies from the 
Jurassic to the Quaternary (Ponikarov et al. 1967). Juras-
sic and Cretaceous formations consist of limestone, dolo-
mite, marls, ophiolites, limy marl and sandy limestone. 
Neogene structure consists of basalt and sedimentary 
stones. Quaternary consists of Pleistocene and Holocene 
formations with fluviatile gravels, boulders, and deposits 
in riverbeds. The study area can be categorized into two 
major geomorphological regions based on the phase of 
terrestrial development (Abdo 2020). The hills area (110–
400  m) consists of mainly upland parts distinguished 
by relatively sloping valleys. Dissected mountains area 
(400–1133  m) is featured faulted walls, steep slopes, 
narrow valleys and a diversity of geomorphological pro-
cesses, especially karstification. The study basin is mainly 
subjected to the Mediterranean climate pattern: mild and 
rainy winter and long, dry and hot summer. The average 
summer temperature is 23.6° while in the winter is 10.3°. 
The annual precipitation is between 1000 and 1300 mm, 

with maximum precipitation recorded of about 320 mm 
in January. The study area is located in a wet climate Csa 
according to the Köppen−Geiger climate classification 
(Beck et al. 2018; Mohammed et al. 2020a).

Methodology
Data
The assessment of landslide susceptibility was carried 
out in the study area based on a set of data from various 
sources (Fig. 2). Digital elevation model (DEM) obtained 
from shuttle radar topographic mission (SRTM) was used 
for mapping the topographical factors i.e., slope angle, 
slope aspect, curvature, plan curvature, profile curvature, 
elevation, streams and TWI. Fault and lithological struc-
ture data were acquired from the Ministry of Oil and 
Mineral Resources, Geology Directorate−Lattakia. Veg-
etation data was extracted from Landsat-8 OLI sensor 
satellite data collected from the United States Geologi-
cal Survey (USGC). Rainfall data was collected from the 
Directorate of Meteorology, Tartous governorate. Road 
network data was obtained from the Ministry of Trans-
port and Communications, Directorate of Transport and 
Public Roads. However, the details of the data sources 
have illustrated in Table 1. Figure 2 illustrated the meth-
odology applied in this study.

Landslide inventory map
The landslide inventory map generally represents current 
and historical landslide events of an assigned area using 
various data sources, including GPS-based fieldwork, 
previous reports, interviews with locals and satellite 
image interpretation (Eitvandi et al. 2022; Abu El-Magd 
et al. 2021; Ali et al. 2021, 2020; Abu El-Magd et al. 2021). 
The literature review reveals that a landslide inventory 
map can be generated either by collecting past evidence 
of different landslide patterns or using high-resolution 
satellite data combined with field surveys or by recogniz-
ing specific sites of landslide events in Google Earth by 
high-resolution satellite imageries. Conventionally, the 
inventory map was created using direct field investiga-
tion to confirm the actual locations. However, at present 
with the development of spatial technology, this task 
turns out to be easier to obtain accurate and rapid results 
(Chen et al. 2017a; Ali et al. 2020; Sachdeva et al. 2020; 
Pham et al. 2021b). It is frequently suggested that equiva-
lent numbers of non-landslide locations should also be 
chosen for preparation and validation (Chen et al. 2017b; 
Abu El-Magd et al. 2021; Ali et al. 2021). In the current 
study, the inventory map was prepared according to the 
following strategy: (1) create a preliminary inventory map 
derived from fieldwork, information from local authori-
ties and interviews with locals, (2) use high-resolution 
images (interpretation of Google Earth images (Google 
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Earth Pro tools) to complete the digitizing of landslide 
events, (3) verify the final inventory map quality by con-
ducting extensive fieldwork in various parts of the basin. 
This strategy was relied upon due to the lack of national 
inventory maps that could assist in conducting landslide 
assessment studies. Thus, this strategy can be used in 
other areas of CMA. However, the Geostatistical Analyst 

tools in ArcGIS (Geostatistical Analyst–Subset features) 
were used to divide the landslide events into a training 
dataset and a test dataset (Zhu et al. 2021; He et al. 2021; 
Pham et  al. 2021a, b). A total of 446 locations of land-
slide events, however, are determined in study area. In 
this context, 70% (312 events) of landslides were selected 
randomly for the training dataset, whereas the rest of 

Fig. 1  Location of the study area
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30% (134 events) data was utilized for model valida-
tion (Fig. 1). The fieldwork revealed the diversity of pat-
terns and types of landslides as a result of the complex 

integration between the driving geographical characteris-
tics in the study area (Table 2).
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Fig. 2  Flowchart of the applied methodology

Table 1  Description and source of data used

Factor Data source Format Spatial 
resolution 
(m)

Source

Slope angle, slope aspect, curvature, 
plan curvature, profile curvature, eleva‑
tion, streams, TWI

DEM Raster 30 Shuttle Radar Topography Mission 
(SRTM)
http://​earth​explo​rer.​usgs.​gov/

Faults and lithology Geological maps of Tartous 
and Safita 1/50,000

Polygon and line vector – Ministry of Oil and Mineral Resources 
(Geology Directorate-Lattakia)

Rainfall Data of four climate stations – – Directorate of Meteorology in Tartous 
governorate

NDVI Landsat-8 OLI (April 16, 2020) Raster 30 Landsat-8 OLI sensor satellite data
https://​earth​explo​rer.​usgs.​gov/

Roads Roads shepfile Line vector – Ministry of Transport and Communi‑
cations (Directorate of Transport and 
Public Roads)

http://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Landslide susceptibility index
Frequency ratio (FR)
The frequency ratio is one of the well-known and widely 
used BSM which have been frequently applied for haz-
ard susceptibility mappings, such as flood and landslide 
(Ali et al. 2020; Kincal and Kayhan 2022). FR is a widely 
utilized method for understanding the potential link-
ing between current landslide events and causative geo-
factors (Rahman et al. 2022). However, FR can be defined 
through a spatial relationship between dependent and 
independent variables, where landslide inventory is the 
dependent variable and landslide conditioning factors are 
the independent variable. The weight of frequency ratio 
was estimated by dividing the pixels containing landslide 
points in each conditioning factors class and the total 
pixels of the considered area. The final weight in the fre-
quency ratio for each conditioning factor is estimated 
using the following equation (Eq. 1):

where XpixelLi is No. of pixels containing landslide points 
in class X , YpixelTi is the No. of total pixels covering in 
class X over the study area, 

∑

XpixelLi is the sum of pix-
els containing landslide points in class X and 

∑

YpixelTi 
is the sum of pixels covering in class X over the study 
area.

The value of frequency ratio >1 indicates there is a posi-
tive relationship between training points and each class 
of landslide conditioning factor and high landslide sus-
ceptibility, whereas a value <1 directs negative relation 
and low landslide susceptibility (Mind’je et al. 2020).

Statistical index (SI)
A statistical index (SI) is also BSM commonly used for 
landslide susceptibility assessment (Thapa and Esaki 
1970). Using the SI, the particular class of a conditioning 
factor can be weighted based on the pixel concentration 

(1)FR =

(

XpixelLi
/

YpixelTi

)

(
∑

XpixelLi
/

∑

YpixelTi

)

of landslide points of specific criteria and the total pixel 
concentration of landslide points across the whole study 
area (Bourenane et al. 2021). The weight of landslide fac-
tors computed using SI can be expressed as Eq. (2)

where ldij is the landslide density for i class of j factor, td 
is the total landslide density of the whole study region, Lij 
is the number of landslides in i class of j factor, Ltn is the 
total number of landslides in the whole study region, pixij 
is the number of pixels in i class of j factor, and pixt is the 
total pixels of the whole study region.

The positive and negative value calculated using SI 
shows the presence and absence of a link between each 
class of landslide causative factors and landslide current 
events of landslide, respectively (Razavizadeh et al. 2017).

Index of entropy (IoE)
Index of entropy (IOE) is another BSM used for landslide 
susceptibility mapping, where determined on the basis of 
certain variables which calculate the weight of each vari-
able. In this method, entropy depicts the level of uncer-
tainty, imbalance, disorder and instability (Youssef et al. 
2015). The role of different conditioning factors on the 
occurrence of landslides is represented by the entropy 
which provides an index system (Sahana et  al. 2020) 
So, the value of entropy is useful for calculating the fac-
tor’s weight (Zhang et al. 2019). The equations which are 
used for calculating the information coefficient and Wf  
expressing the weight of factors as a whole are as follows 
(Eqs. 3–8)

(2)SI = In

�

ldij

td

�

= In





Lij
Ltn
pixij
pixt





(3)Prs =
p

q

(4)(Prs) = Prs

/

∑Ls
s=1 Prs

Table 2  Detail information about landslide events

Study area Triggering spatial characteristics Landslide type

Upper basin Fragile lithological structure of dolomite and limestone, dense faults, very steep slopes, 
high rainfall intensities, dense vegetation and accelerated karstification process

Rainfall-induced rapid mass movements, rock 
falling, bouncing and rolling

Middle basin Fragile lithological structure of marl, dolomite and limestone, dense faults, steep 
slopes, high rainfall intensity, dense vegetation, accelerated karst decomposition 
process and human activity including urbanization, infrastructure projects, dense slope 
cultivation and tourism activity

Rock falls and sliding and debris and mud flows

Lower basin Fragile lithological structure of limestone and sandstone, gentle slopes, moderate rain‑
fall intensities and human activity including urban expansion, infrastructure projects, 
floodplain farming and tourism activity

Shallow landslides and debris and mud flows
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where p and q are the area and percentage of landslide, 
respectively, Prs is the density of possibility, Es and Esmax 
are the entropy values, Is and Wf are information coeffi-
cient and factor’s weight as a whole, respectively.

Results
Landslide‑controlling criteria
A landslide is a physical phenomenon that occurs due 
to the synergic action of many environmental factors 
(Dikshit et  al. 2020). Therefore, to accurately estimate 
the spatial risk of landslides, it is very critical to select 
the triggering factors which have a high influence on the 
landslides. However, it should be noted that these were 
selected depending on the initial data availability, type 
and pattern of landslides, geographical features of the 
study area and Mediterranean landslide literature (Yu 
et al. 2022; Senouci et al. 2021; Ullah et al. 2022). At the 
present assessment, 13 landslide conditioning factors 
were selected (i.e. slope degrees, slope aspect, curvature, 
plan curvature, profile curvature, altitude, distance from 
faults, distance from streams, distance from roads, Nor-
malized Difference Vegetation Index (NDVI), precipita-
tion, geology and Topographic Wetness Index (TWI).

Slope angle
Slope angle is a main terrestrial motivating factor influ-
encing slope debris stabilization (Costache and Tien Bui 
2020; Abdo 2022). It is an important landslide condi-
tioning factor because the likelihood of landslide occur-
rence increases with the slope angle values (Abedini et al. 
2019). Mohan et al. (2021) mentioned that the effects of 
stress and gravity on the slope materials are higher with 
the slope angle increasing. In the current evaluation, the 
slope angle parameter map of the study basin was derived 
from digital elevation model (DEM) and was divided into 
six classes: flat (0°–5°), gentle slope (5°–10°), moderate 
(10°–15°), moderate steep (15°–20°), steep (20°–25°) and 
very steep (<25°) as reported in Fig. 3a.

Slope aspect
Slope aspect has an indirect influence on landslide trig-
gering because it could control some of the climatic 

(5)Es =

Ls
∑

s=1

(Prs) log2 (Prs), s = 1, . . . , n

(6)Esmax = log2 Ls, Ls −No. of classes

(7)Is = Esmax − Es
/

Esmax, I = (0, 1), s = 1, . . . . . . , n

(8)Wf = IsPrs

parameters like humidity, insolation, wind speed and 
direction, amount of precipitation, etc (Abdo 2021;  Ma 
et  al. 2020). Aspect map, moreover, indicates how 
much the proportion of the investigated area is covered 
with various slope directions. In the present assess-
ment, the slope aspect parameter map was also derived 
from the DEM and is characterized by 8 aspect direc-
tions and the flat zones: as flat (− 1), north (337.5°–360°, 
0°–22.5°), northeast (22.5°–67.5°), east (67.5°–112.5°), 
southeast (112.5°–157.5°), south (157.5°–202.5°), south-
west (202.5°–247.5°), west (247.5°–292.5°) and northwest 
(292.5°–337.5°) as illustrated in Fig. 3b.

Curvature
Curvature represents another morphometric landslide 
predictor, derived from DEM, which has a high influence 
on landslide susceptibility by shifting the values of slope 
angle or aspect. Curvature effects throw given by the con-
trol that the values of the curvature have over the phe-
nomenon of soil erosion and the rapid flow of water on 
the slopes (Costache and Tien Bui 2020). In this regard, 
negative curvature shows an area of land that is concave, 
while a positive curvature highlights a convex surface of 
the ground. In this assessment, the values of the curva-
ture were divided into the following classes: <− 0.05 (neg-
ative curvatures), − 0.05–0.05 (flat) and >0.05 (positive 
curvatures) as shown in Fig. 3c.

Plan curvature
The plan curvature, which is derived also from DEM in 
GIS environment, is an important landslide condition-
ing factor because its values can indicate the areas with 
a convergent or a divergent runoff (Costache and Tien 
Bui 2020) Plan curvature affects the dramatic change 
of water channels distance by the slope flowing (Ullah 
et al. 2022). Figure 3d shows the plan curvature map that 
was extracted from the DEM in GIS environment and 
categorised into three groups: <− 0.05 (negative plan 
curvatures), − 0.05–0.05 (flat) and >0.05 (positive plan 
curvatures) as presented in Fig. 3d.

Profile curvature
Profile curvature is an important morphometric landslide 
influencing factor because it shows the areas with accel-
erated soil erosion and runoff (Costache 2019). Thus, 
profile curvature essentially triggered the slope debris 
movement (Di et al. 2019) Profile curvature values in this 
study were calculated by using DEM in GIS environment 
and classified in the following classes <− 0.05 (negative 
plan curvatures), − 0.05–0.05 (flat) and >0.05 (positive 
plan curvatures) as showed in Fig. 3e.
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Fig. 3  Spatial outputs for delanating landslide sensitivity maps of Al-Balouta river basin a slope angels, b slope aspect, c curvature, d profile 
curvature, e plan curvature, f altitude, g NDVI, h proximity to faults, i proximity to rivers, j proximity to roads, k rainfall, l lithology and m TWI
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Fig. 3  continued
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Fig. 3  continued
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Fig. 3  continued
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Elevation
The elevation conditioning factor is a highly used param-
eter in landslide susceptibility studies due to the fact that 
this factor controls many other climatic as well as geo-
morphological parameters (Costache and Tien Bui 2020). 
It is often considered that the susceptibility to landslides 
is higher in areas with high altitudes and vice versa (Chen 
et  al. 2018; Costache and Tien Bui 2020). In this study, 
the elevation factor map was extracted using DEM and 
divided into five classes: <200 m, 200–400 m, 400–600 m, 
600–800 m and >800 m as shown in Fig. 3f.

Proximity to faults
The proximity to faults is an essential geological factor 
triggering landslide sensitivity since the likelihood of 
landslides will increase as the distance to faults decreases 
(Fang et  al. 2021). Primarily, the landslide phenomenon 
will occur along the faults that enhance slope instability. 
The proximity to faults map, in the current evaluation, 
was calculated using the Euclidean Distance tool in GIS 
software as shown in Fig. 3g.

Proximity to rivers
Similar to the case of the previous factor, the proximity 
to rivers is a significant triggering criterion for landslide 
susceptibility (Ma et al. 2020). In fact, a watercourse can 
destabilize the stabilization of the slope by flow energy 
and erosion capacity, especially down the slope (Sahana 
et  al. 2020). In the case of the current investigation, 
the proximity to rivers was grouped into five classes as 
shown in Fig. 3h.

Proximity to roads
The proximity to roads is an anthropogenic factor that 
influences directly triggers slope materials instability 
(Karlsson et al. 2017). The road construction process and 
the weight and traffic of vehicles could frequently lead to 
landslide occurrence. The road network was derived from 
the Directorate of Transportation of Tartous Governo-
rate (DTTG) and buffered with a Euclidean distance of 
100 m in the GIS environment to paper the proximity to 
the road map (Fig. 3i).

NDVI
The Normalized Difference Vegetation Index (NDVI) is 
a wide landslide conditioning factor used in the majority 
of the previous landslide assessment literature (Hussain 
et al. 2022; Yousefi et al. 2022; Huang and Zhao 2018; Wu 
et al. 2020). NDVI map was created by utilizing Landsat 8 
imagery and Eq. 9:

(9)NDVI = (NIR − RED)/(NIR+ RED)

where NIR is the near-infrared band (band 4, 0.76–
0.90  μm) and RED is the red band (band 3, 0.63–
0.69 μm). Figure 3j showed the classes of NDVI values in 
the study area.

Rainfall
Rainfall is a principal climatic criterion that motivates 
slope materials instability by the heavy rainfall intensifi-
cations, the high kinetic energy of the raindrops and gen-
erated runoff (Youssef et al. 2015; Bui et al. 2019; Sahana 
et  al. 2020). In this regard, landslide events accelerate 
in the Mediterranean mountainous regions due to the 
orographic precipitation pattern which produces heavy 
rainstorms with great peaks of runoff (Mohammed et al. 
2020a). The rainfall map in the study area was deline-
ated depending on the five rainfall stations data (1972–
2019) obtained from the Directorate of Meteorology 
in Tartous governorate. The inverse distance weighted 
(IDW) method, however, was utilized for mapping 
(Mohammed et al. 2020a; Valiante et al. 2021). Figure 3k 
depicted the five spatial domains of rainfall: >1000  mm, 
1000–1100  mm, 1100–1200  mm, 1200–1300  mm 
and >1300 mm.

Lithology
Lithology is a landslide conditioning factor that can pro-
vide very useful information regarding the likelihood of 
landslide occurrence based on the structural features of 
specific geological formations (Abedini et  al. 2019). For 
example, the presence of specific rock clays or marl can 
favour landslide occurrence (Sahana et  al. 2020). Nine 
geological entities in the study area were digitized from 
Tartous, Safita and Mesiyaf geological map 1:50,000, 
including Upper Jurassic (J3), Middel Jurassic (J2), Lower 
Jurassic (J1), Albian and Abitian (C2-3), Lower Albian 
(C2), Lower Cenomanian (C4

s), Upper Cenomanian (C4
b), 

Basaltic Albian (Bc
3) and Basaltic Paleocene (βN2-b), as 

illustrated in Fig. 3l.

TWI
Topographic Wetness Index (TWI) is a morphometri-
cal indicator commonly used in recent studies related to 
landslide susceptibility mapping. TWI values highlight 
the areas where the topographical humidity is higher 
due to high water accumulation (Singha et al. 2022; Chen 
et al. 2018; Abdo 2020). TWI is calculated utilizing DEM 
in GIS environment based on Eq. (10).

where α is the cumulative up slope area draining through 
a point (per unit contour length) and tan β is the slope 

(10)TWI = ln
(

α
tan β

)
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angle at the point. In the present assessment, the TWI 
values were divided into four spatial domains as: <3) low 
wetness), 3–6 (moderate wetness), 6–9 (high wetness) 
and >9 (very high wetness), as shown in Fig. 3m.

Landslides correlation with conditioning criteria
Application of FR
As per the equation of FR (Eq. 1), if the value is >1, it sig-
nifies that there is a positive correlation between train-
ing points and a particular class of landslide conditioning 
factors and high landslide susceptibility. The result of the 
FR model showed that the slope with 20°–25° and >25° 
have a ratio value of 1.31 and 1.26, respectively. The 
slope aspect facing east, southeast and south, all have a 
ratio value >1. Convex curvature with ratio value 1.12, 
600–800  m and >800  m elevation with ratio value 1.22 
and 1.23, respectively, NDVI ranges between 0.3 and 0.6 
with a ratio value 1.19, proximity to a fault between 100 
and 200  m with a ratio value of 1.07, proximity to riv-
ers between 100 and 200 m and <100 m with ratio value 
1.33 and 1.11, respectively, rainfall >1300 with 1.33 ratio 
value, among lithology J2 and J1-2 with ratio value 1.81 
and 1.82, respectively and greater value of TWI (>9) has a 
ratio value 1.07, indicating that these all are a more rele-
vant class of the selected criteria having a significant role 
in landside occurring and positive correlation with land-
slide susceptibility (Table 3).

Application of SI
In the case of a SI, a positive and negative value of each 
class of landslide conditioning factors indicates the pres-
ence and absence of a relationship with landslide sus-
ceptibility. The result of SI is more similar to FR. Table 3 
shows that those classes of landslide conditioning factors 
have an FR value of >1, having a positive SI value. The 
result of the calculated SI value shows that the slope is 
between 20° and 25° and >25° have SI values of 0.27 and 
0.23, respectively. Slope aspect facing east (SI = 0.08), 
southeast (SI = 0.52) and south (SI = 0.32), all have a posi-
tive value. Convex curvature (SI = 0.11), elevation with 
600–800 m and >800 m (SI = 0.20 and 021, respectively), 
NDVI ranges between 0.3 and 0.6 (SI = 0.18), proximity 
to a fault between 100 and 200  m (SI = 0.07), proximity 
to river between 100 and 200  m and <100  m (SI = 0.28 
and 010, respectively), rainfall >1300 (SI = 0.32), among 
lithology J2 and J1-2 (SI = 0.59 and 0.60, respectively) and 
the value of TWI with >9 (SI = 0.07), representing impor-
tant classes causing landslides in the stud area.

Application of IoE
Based on Eqs.  (3–8), the individual factor’s weight has 
been calculated for preparing the landslide susceptibil-
ity index. A higher value of the index of entropy (IOE) 

indicates more causative for landslide occurring. The 
result of IOE weight reveals that proximity to faults, 
lithology and proximity to roads having an IOE value 
of 1.26, 1.22 and 1.19, respectively, followed by proxim-
ity to river (IOE = 0.99), rainfall (IOE = 0.91) and TWI 
(IOE = 0.74). Hence, these are more important factors 
for evaluating landslide susceptibility in the study area 
out of the thirteen selected. On the other hand, curva-
ture (IOE = 0.004), plan curvature (IOE = 0.01), slope 
(IOE = 0.02), profile curvature (IOE = 0.04), elevation 
(IOE = 0.04) and slope aspect (IOE = 0.07) are less impor-
tant factors for landslide susceptibility assessment in the 
study area with lower IOE value (Table 4).

Landslide delineation and assessment
In this analysis, three different statistical approaches 
were tested in modelling the landslide susceptibility in 
Al-Balouta river basin. In this regard, data derived from 
augmented fieldwork and remote sensing in a GIS envi-
ronment were used in the modelling process. Figures 4, 
5 and 6 show the results of the multi-criteria modelling 
process after being categorized using the Natural Brecks 
method in a GIS environment into five degrees of sever-
ity: very low, low, moderate, high and very high.

Moreover, Fig. 7 indicates the classification of landslide 
pixels for each susceptibility degree in the study area. In 
the FR-based modelling, 18.51% and 19.98% of the study 
area fall under high and very high landslide susceptibility, 
respectively. While moderate, low and very low covered 
29.09%, 24.63% and 7.78% of the area under investiga-
tion, respectively. In the map generated by the SI method, 
about 36% of the study area is classified under high and 
very high landslide sensitivity. Whilst, the remaining 
25%, 23.57% and 15.30% of landslides are classified as 
moderate, high and very high landslide susceptibility, 
respectively. In the IOE method, 14.18% and 25.62% of 
the study area were classified as very high and high land-
slide susceptible, respectively. While moderate, low and 
very low landslide susceptibility covered 19.87%, 30.04% 
and 10.29% of the study area, respectively.

Validation of landslides susceptibility map
Landslide vulnerability prediction maps are among the 
most important tools for managing natural hazards 
associated with slope stability in river basins. Statistical 
models that spatially linking between landslide incidents 
and causative factors provide a reliable and constructive 
approach in the landslide sensitivity mapping process. 
However, evaluating the accuracy of the conducted mod-
elling process outputs is a necessary final procedure in 
order to verify the applied models performance. At the 
present study, landslide capability maps acquired by the 
FR, SI and IOE were evaluated using the verifying data 
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Table 3  The linking between classes of landslide causative criteria and present landslide events by FR

Parameter Class No. of landslide % of landslide No. of pixels in 
domain

% of domain FR SI

1 Slope (Degree) 0–5 12 3.59 43,627 5.86 0.61 − 0.49

5–10 41 12.28 119,918 16.10 0.76 − 0.27

10–15 71 21.26 163,382 21.93 0.97 − 0.03

15–20 71 21.26 175,950 23.62 0.90 − 0.11

20–25 71 21.26 121,309 16.28 1.31 0.27

25< 68 20.36 120,811 16.22 1.26 0.23

2 Slope aspect Flat 0 0.00 1308 0.18 0.00 None

North 9 2.69 52,881 7.10 0.38 − 0.97

Northeast 13 3.89 56,363 7.57 0.51 − 0.66

East 22 6.59 45,126 6.06 1.09 0.08

Southeast 75 22.46 99,730 13.39 1.68 0.52

South 84 25.15 136,654 18.34 1.37 0.32

Southwest 41 12.28 98,417 13.21 0.93 − 0.07

West 35 10.48 92,398 12.40 0.84 − 0.17

Northwest 38 11.38 110,164 14.79 0.77 − 0.26

North 17 5.09 51,956 6.97 0.73 − 0.31

3 Curvatuer Concave 112 33.53 280,770 37.69 0.89 − 0.12

Flat 79 23.65 179,517 24.10 0.98 − 0.02

Convex 143 42.81 284,710 38.22 1.12 0.11

4 Plan curvature Concave 89 26.65 235,248 31.58 0.84 − 0.17

Flat 111 33.23 264,520 35.51 0.94 − 0.07

Convex 134 40.12 245,229 32.92 1.22 0.20

5 Profile curvature Concave 122 36.52 248,078 33.30 1.10 0.09

Flat 118 35.32 250,650 33.64 1.05 0.05

Convex 94 28.14 246,269 33.06 0.85 − 0.16

6 Elevation <200 3 0.89 8707 1.17 0.77 − 0.26

200–400 16 4.79 85,598 11.49 0.42 − 0.87

400–600 55 16.46 177,848 23.87 0.69 − 0.37

600–800 106 31.73 193,667 26.00 1.22 0.20

>800 154 46.10 279,177 37.47 1.23 0.21

7 NDVI <0.1 1 0.299 4402 0.59 0.51 − 0.68

0.1–0.3 21 6.28 133,083 17.86 0.35 − 1.04

0.3–0.6 201 60.18 375,287 50.37 1.19 0.18

>0.6 111 33.23 232,225 31.17 1.07 0.06

8 Proximity to faults <100 44 13.17 101,919 13.68 0.96 − 0.04

100–200 47 14.07 97,725 13.12 1.07 0.07

200–300 39 11.67 90,056 12.09 0.97 − 0.03

300–400 28 8.38 81,158 10.89 0.77 − 0.26

>400 176 52.69 374,139 50.22 1.05 0.05

9 Proximity to rivers <100 130 38.92 261,091 35.05 1.11 0.10

100–200 127 38.02 213,740 28.69 1.33 0.28

200–300 52 15.56 161,657 21.70 0.72 − 0.33

300–400 20 5.98 85,007 11.41 0.52 − 0.64

>400 5 1.49 23,502 3.15 0.47 − 0.75

10 Proximity to roads <100 42 12.57 210,599 28.27 0.44 − 0.81

100–200 49 14.67 149,672 20.09 0.73 − 0.31

200–300 39 11.67 104,913 14.08 0.83 − 0.19

300–400 45 13.47 70,282 9.43 1.43 0.36

>400 159 47.60 209,531 28.13 1.69 0.53
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sets excluded from the modelling process. The area under 
curve (AUC) of the receiver-operating characteristics 
(ROC) was utilized for the standard accuracy evaluation 
of both landslide sensitivity outputs and the three mod-
els performance. The forecasting rate curves (Fig.  8a) 
showed that the applied models performance in land-
slide susceptibility modelling is greater for FR with 0.841 
of AUC followed by SI and IOE with 0.821 and 0.788 of 
AUC, respectively. Moreover, Fig. 8b illustrated that the 
AUC of performed models success rate was larger for FR 
with 0.824, followed by SI and IOE with 0.791 and 0.776 
of AUC. In this sense, prior validation outcomes illustrate 
that the used curative factors have generated construc-
tive maps with a great rate of accuracy. Although the FR 
method has achieved the highest performance accuracy, 
the accuracy of the SI and IOE models is considered con-
structive in assessing the landslides susceptibility in the 
study area.

Importance of implemented models and key parameter
In the present investigation, the Seed Cell Area Index 
(SCAI) method was used to assess the significance of 
each applied model. SCAI enables proportional cali-
bration between the test dataset with derived landslide 
susceptibility zones by each applied model (Süzen and 
Doyuran 2004; Li et  al. 2021a, b; Rehman et  al. 2022). 
In the context of SCAI values, higher values in very low 
susceptibility and lower values in very high susceptibil-
ity indicate higher reliability of the model (Rahman et al. 

2022). Although the FR model achieved the best reli-
ability according to the SCAI results (Table 5), the other 
two models also showed a good capability in determining 
landslide susceptibility in the study area.

Additionally, the relative importance of each key 
parameter in generating landslide events was calculated 
depending on the weights calculated in Tables  3 and 4. 
Figure  9a shows that the slope, lithology, proximity to 
roads and elevation parameters were the most influential 
in the FR model. Similarly, lithology, slope and proxim-
ity to roads effectively motivated the acceleration of slope 
materials instability in SI model (Fig. 9b). in IoE model, 
Fig.  9c depicts the important influence of proximity to 
faults, proximity to roads and proximity to rivers factors 
in the creation of landslide events.

Discussion
Spatial assessment of landslide susceptibility is a critical 
basis for creating safe spatial development, especially in 
areas with insufficient spatial data. Thus, many studies 
aim to produce landslide susceptibility maps using differ-
ent modelling methods in a GIS environment (Chowd-
huri et al. 2020; Tesfa 2022; Zhang et al. 2022). Population 
and infrastructure are exposed to frequent landslide 
events in CMA as a result of the complex spatial inter-
action between a set of physical and human geographi-
cal factors. Hitherto, there is a large gap in the national 
literature concerned with conducting landslide predic-
tion studies. Hence, there is an urgent need to provide 

Table 3  (continued)

Parameter Class No. of landslide % of landslide No. of pixels in 
domain

% of domain FR SI

11 Rainfall <1000 6 1.796 32,050 4.30 0.42 − 0.87

1000–1100 23 6.88 78,308 10.51 0.66 − 0.42

1100–1200 41 12.27 136,634 18.34 0.67 − 0.40

1200–1300 44 13.17 141,577 19.00 0.69 − 0.37

>1300 220 65.86 356,428 47.84 1.38 0.32

12 Lithology C2-3 6 1.7 32,186 4.32 0.42 − 0.88

J3 24 7.18 63,649 8.54 0.84 − 0.17

C3 85 25.44 221,036 29.67 0.86 − 0.15

Bc3 6 1.79 55,183 7.41 0.24 − 1.42

BN2-b 1 0.29 21,363 2.87 0.10 − 2.26

C4s 47 14.07 143,762 19.30 0.73 − 0.32

C4b 0 0 4313 0.58 0.00 None

J2 146 43.71 180,214 24.19 1.81 0.59

J1-2 19 5.68 23,291 3.13 1.82 0.60

13 TWI <3 292 87.42 619,173 83.11 1.05 0.05

3–6 35 10.47 101,664 13.65 0.77 − 0.26

6–9 3 0.89 15,841 2.13 0.42 − 0.86

>9 4 1.19 8319 1.12 1.07 0.07
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Table 4  Important factors for landslide susceptibility assessment in the study area with lower IoE value

Parameter Class % of landslide % of domain Prs (Prs) Es Esmax Is Wf

1 Slope (Degree) 0–5 3.59 5.86 0.61 0.11 0.34 2.58 0.02 0.02

5–10 12.28 16.10 0.76 0.13 0.38

10–15 21.26 21.93 0.97 0.17 0.43

15–20 21.26 23.62 0.90 0.16 0.42

20–25 21.26 16.28 1.31 0.22 0.48

25< 20.36 16.22 1.26 0.22 0.48

2 Slope aspect Flat 0.00 0.18 0.00 0.00 0.00 3.32 0.08 0.07

North 2.69 7.10 0.38 0.05 0.20

Northeast 3.89 7.57 0.51 0.06 0.25

East 6.59 6.06 1.09 0.13 0.38

Southeast 22.46 13.39 1.68 0.20 0.47

South 25.15 18.34 1.37 0.17 0.43

Southwest 12.28 13.21 0.93 0.11 0.35

West 10.48 12.40 0.84 0.10 0.34

Northwest 11.38 14.79 0.77 0.09 0.32

North 5.09 6.97 0.73 0.09 0.31

3 Curvature Concave 33.53 37.69 0.89 0.30 0.52 1.58 0.004 0.004

Flat 23.65 24.10 0.98 0.33 0.53

Convex 42.81 38.22 1.12 0.37 0.53

4 Plan curvature Concave 26.65 31.58 0.84 0.28 0.51 1.58 0.01 0.01

Flat 33.23 35.51 0.94 0.31 0.52

Convex 40.12 32.92 1.22 0.41 0.53

5 Profile curvature Concave 36.53 33.30 1.10 0.37 0.53 1.58 0.01 0.04

Flat 35.33 33.64 1.05 0.35 0.53

Convex 28.14 33.06 0.85 0.28 0.52

6 Elevation <200 0.90 1.17 0.77 0.18 0.44 2.32 0.04 0.04

200–400 4.79 11.49 0.42 0.10 0.33

400–600 16.47 23.87 0.69 0.16 0.42

600–800 31.74 26.00 1.22 0.28 0.52

>800 46.11 37.47 1.23 0.28 0.52

7 NDVI <0.1 0.30 0.59 0.51 0.16 0.43 2.00 0.08 0.06

0.1–0.3 6.29 17.86 0.35 0.11 0.36

0.3–0.6 60.18 50.37 1.19 0.38 0.53

>0.6 33.23 31.17 1.07 0.34 0.53

8 Proximity to faults <100 13.17 13.68 0.96 0.20 0.46 2.31 1.31 1.26

100–200 14.07 13.12 1.07 0.22 0.48

200–300 11.68 12.09 0.97 0.20 0.46

300–400 8.38 10.89 0.77 0.16 0.42

>400 52.69 50.22 1.05 0.22 0.48

9 Proximity to rivers <100 38.92 35.05 1.11 0.27 0.51 2.20 1.20 0.99

100–200 38.02 28.69 1.33 0.32 0.53

200–300 15.57 21.70 0.72 0.17 0.44

300–400 5.99 11.41 0.52 0.13 0.38

>400 1.50 3.15 0.47 0.11 0.36

10 Proximity to roads <100 12.57 28.27 0.44 0.09 0.31 2.17 1.17 1.19

100–200 14.67 20.09 0.73 0.14 0.40

200–300 11.68 14.08 0.83 0.16 0.43

300–400 13.47 9.43 1.43 0.28 0.51

>400 47.60 28.13 1.69 0.33 0.53
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in-depth spatial assessments of landslide risk that assist 
in the management and mitigation process. In this evalu-
ation, the performance of three bivariate statistical meth-
ods was tested and compared in landslide susceptibility 
mapping in Al-Balouta river basin.

The inventorization process of landslide events is the 
primary step in landslide susceptibility modelling. This 
process involves multiple procedures in areas without 
documented records of current landslide events. Despite 
the high frequency of landslide events in most of the 
watersheds in CMA, there is a loss of historical records 
for the landslide locations. In the current study, a tech-
nical-field strategy was based on producing an inventory 

map of 446 landslide locations. However, this strategy can 
be relied on in most areas of CMA in generating similar 
inventory maps for the different types of slope material 
movement (Es-Smairi et  al. 2022). This inventory map 
enabled a perfect modelling process with thirteen driving 
factors. The selection of causative factors is a critical task 
in the context of the most reasonable extraction of land-
slides using bivariate statistical models (Wubalem et  al. 
2022). The fieldwork carried out showed the diversity of 
landslide patterns, including rainfall-induced rapid mass 
movements, rock falling, bouncing and rolling, shal-
low landslides and debris and mud flow. These patterns 
represent a direct reflection of the complex interaction 

Table 4  (continued)

Parameter Class % of landslide % of domain Prs (Prs) Es Esmax Is Wf

11 Rainfall <1000 1.80 4.30 0.42 0.11 0.35 2.2 1.20 0.91

1000–1100 6.89 10.51 0.66 0.17 0.44

1100–1200 12.28 18.34 0.67 0.18 0.44

1200–1300 13.17 19.00 0.69 0.18 0.45

>1300 65.87 47.84 1.38 0.36 0.53

12 Lithology C2-3 1.80 4.32 0.42 0.06 0.25 2.62 1.62 1.22

J3 7.19 8.54 0.84 0.12 0.37

C3 25.45 29.67 0.86 0.13 0.38

Bc3 1.80 7.41 0.24 0.04 0.17

BN2-b 0.30 2.87 0.10 0.02 0.09

C4s 14.07 19.30 0.73 0.11 0.34

C4b 0.00 0.58 0.00 0.00 0.00

J2 43.71 24.19 1.81 0.27 0.51

J1-2 5.69 3.13 1.82 0.27 0.51

13 TWI <3 87.43 83.11 1.05 0.32 0.53 1.91 0.90 0.74

3–6 10.48 13.65 0.77 0.23 0.49

6–9 0.90 2.13 0.42 0.13 0.38

>9 1.20 1.12 1.07 0.32 0.53

Fig. 4  Landslide susceptibility map in FRB obtained from the FR model
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Fig. 5  Landslide susceptibility map in FRB obtained from the SI model

Fig. 6  Landslide susceptibility map obtained from the IOE model
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between natural and human characteristics in the study 
area,

Bivariate statistical methods are flexible in implemen-
tation with constructive spatial outcomes that assist in 
managing the landslide risk (Liu et  al. 2022; Kincal and 
Kayhan 2022). In this investigation, the FR model pro-
vided the best performance in comparison with the SI 
and IoE models. In addition to the performance accuracy, 
the FR model was also identified as the best model in 
terms of landslide classification capacity. The FR model, 
however, is based on a direct spatial correlation through 
the application of an independently relativistic math-
ematical structure between current landslide events and 
classifications of causative factors. Thus, direct moni-
toring of the spatial sensitivity of these classifications 
through quantitative discrimination of landslide events 
generation. However, this result allows reducing limi-
tations in this assessment and consistents with land-
slide assessment studies conducted worldwide (Babitha 
et al. 2022; Alsabhan et al. 2022; Akter and Javed 2022). 
Despite the better performance of the FR model, the SI 
and IoE models also provided reliable performance in 
landslide susceptibility mapping. In the context of each 
key factor influencing, slope, lithology and proximity to 
roads factors were the most influential in landslide events 
creation. This result is consistent with observations of 
fieldwork that emphasized the influence of lithological 
structure and human activity as actual driving factors. 
Similar results were reported by Tesfa (2022), Senouci 
et al. (2021) and Yamusa et al. (2022).

In this regard, the outputs of the modelling process 
indicated that the high and very high landslide suscepti-
bility zones were mainly concentrated in the eastern and 
northeastern parts with some middle parts along the riv-
erbeds. The fieldwork revealed that the terrain of these 
areas is characterized by structural fragility and steep 
slopes with more than 50° in some locations. Also, these 
areas are characterized by high-intensity rainstorms that 
cause more landslide events as a result of crossing rainfall 
thresholds for landslide (Mohammed et al. 2021). These 
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Fig. 8  AUC for methods performance Al-Balouta river basin: a 
prediction rate curves of the landslide susceptibility models used, b 
success curves of the landslide susceptibility models utilized

Table 5  SCAI value for each landslide susceptibility zone

Susceptibility zone FR SI IoE

Area (%) Landslide 
events (%)

SCAI Area Landslide 
events (%)

SCAI Area Landslide 
events (%)

SCAI

Very low 7.78 4.48 1.74 15.27 13.43 1.14 10.82 6.72 1.61

Low 24.64 17.91 1.38 23.58 17.16 1.37 30.05 22.39 1.34

Moderate 29.06 17.91 1.62 25.01 17.16 1.46 19.94 20.15 0.99

High 19.99 22.39 0.89 21.13 23.13 0.91 25.01 25.37 0.99

Very high 18.52 37.31 0.50 15.01 29.10 0.52 14.18 25.37 0.56
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characteristics are integrated with the great acceleration 
of the karstification process, which causes many slope 
instability patterns, including karst rockfalls and slides of 
rocks and soil mixture. Karst land systems are character-
ized by their significant susceptibility to a combination 
of physical processes and human activities (Chen et  al. 
2022). Many studies have indicated a great correlation 
between the karstification process and landslides, espe-
cially in the Mediterranean environment (Devoto et  al. 
2021; Pisano et  al. 2022). Moreover, the acceleration of 

human activity, especially infrastructure projects, has 
contributed to the instability of slopes. Unfortunately, 
the spatial distribution of landslide events is not consid-
ered when planning these projects. For instance, the road 
network is built on steep slopes with large loads on slope 
aspects. These spatial interpretations are consistent with 
Jamir et  al. (2022), Das et  al. (2022) and Yamusa et  al. 
(2022).

In this evaluation, FR, SI and IoE models provided a 
satisfactory performance for a comprehensive assessment 
of landslides susceptibility in Al-Balouta river basin. The 
outputs of this study are critical for planners and deci-
sion-makers in light of the paucity of relevant geographi-
cal data. Moreover, this study represents a constructive 
contribution in the context of enhancing the national 
landslides studies, especially during the current war con-
ditions in Syria.

Conclusion
In this research, landslide hazard maps were produced 
based on three models (FR, SI and IOE). Although there 
are advantages and limitations to applying the landslide 
susceptibility models, they provided a reliable and con-
structive approach to landslide sensitivity mapping and 
proved that there is no statistical model that suits all 
geo-environmental variables. Three alternative statisti-
cal approaches were investigated in order to increase the 
accuracy and flexibility of landslide susceptibility map-
ping within a GIS framework. To demonstrate the effi-
ciency of the suggested models, a case study of landslide 
susceptibility mapping in the Al-Balouta river basin in 
northern Syria is done. The output of this research can be 
summarized as follows:

1.	 For FR and SI models, the relevant classes for the 
selected criteria that have a direct impact on landslide 
susceptibility were: (1) slopes with 20°–25° and >25°; 
(2) the slope aspect facing east, southeast and south; 
(3) convex curvature; (4) elevations between 600 and 
800  m and >800  m and >800  m; (5) NDVI ranges 
between 0.3 and 0.6; (6) proximity to faults between 
100 and 200 m; (7) proximity to rivers between 100 
and 200  m and <100  m; (8) rainfall >1300  mm, (9) 
lithology J2 and J1-2; and (10) a greater value of TWI 
(>9).

2.	 For IOE model, the most important criteria were: 
(1) proximity to faults; (2) lithology; (3) proximity to 
roads; (4) proximity to river; (5) rainfall; and (6) TWI.

3.	 Based on the three applied models, the landslide haz-
ard maps indicate that 14–18% of the study area was 
categorized as very high susceptibility to landslide, 
while 20–25% of the study area was classified into 
high susceptibility to landslide.
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4.	 FR method has achieved the highest performance 
accuracy, however, the accuracy of the SI and IOE 
models is considered constructive in assessing the 
landslides susceptibility in the study area.

5.	 The relative importance analysis demonstrated that 
the slope aspects, lithology and proximity to roads 
effectively motivated the acceleration of slope mate-
rial instability and were the most influential in both 
the FR and SI models. On the other hand, the IoE 
model indicated that the proximity to faults and 
roads, along with the lithology factor, were important 
influences in the formation of landslide events.
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