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Abstract 

Climate change and soil erosion are very associated with environmental defiance which affects the life sustainabil-
ity of humans. However, the potency effects of both events in tropical regions are arduous to be estimated due to 
atmospheric conditions and unsustainable land use management. Therefore, several models can be used to pre-
dict the impacts of distinct climate scenarios on human and environmental relationships. In this study, we aimed 
to predict current and future soil erosion potential in the Chini Lake Basin, Malaysia under different Climate Model 
Intercomparison Project-6 (CMIP6) scenarios (e.g., SSP2.6, SSP4.5, and SSP8.5). Our results found the predicted mean 
soil erosion values for the baseline scenario (2019–2021) was around 50.42 t/ha year. The mining areas recorded the 
highest soil erosion values located in the southeastern part. The high future soil erosion values (36.15 t/ha year) were 
obtained for SSP4.5 during 2060–2080. Whilst, the lowest values (33.30 t/ha year) were obtained for SSP2.6 during 
2040–2060. According to CMIP6, the future soil erosion potential in the study area would reduce by approximately 
33.9% compared to the baseline year (2019–2021). The rainfall erosivity factor majorly affected soil erosion potential in 
the study area. The output of the study will contribute to achieving the United Nations’ 2030 Agenda for Sustainable 
Development.
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Introduction
Globalization has a prominent role in developing a coun-
try, such as Malaysia, an agricultural country due to its fer-
tile soils and supported climate. In Malaysia, societies meet 

their daily needs with what they cultivate on fertile soils. 
The soil is a part of the ecosystem that can deal with a big 
hazard due to climate change events (Corwin 2021; Fahad 
et al. 2021; Rendana et al. 2019). For many years, the atmos-
phere of the earth has experienced a severe warming situa-
tion due to the increase of greenhouse gases (Shakoor et al. 
2020; Manabe 2019). This leads to a high amount of rain-
fall with higher intensities and magnitude (Ohba and Sugi-
moto 2019). Panagos and Katsoyiannis (2019) explained the 
significance of the sustainable development goals (SDGs) 
on soil erosion. The SDGs goals are closely associated with 
land deterioration and assist to improve the relationship 
between soil, climate, and ecosystem functions. The inte-
gration of soil science and the SDGs can mitigate climate 
change, water scarcity, food scarcity, and biodiversity loss 
issues. Furthermore, the SDGs are generally presented on 
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the earth system using three main pillars, such as environ-
mental, economic, and social pillars (Purvis et al. 2019). All 
these aspects are closely associated with each other and 
implemented to gain long-term sustainability (Dalampira 
and Nastis 2020). The SDGs program aims to incorporate 
solutions according to ecological, social, and economical 
systems. Based on this program, zero land degradation will 
be attained by 2030 (Tóth et al. 2018).

Malaysia is a region with a good climate and riverine thus 
most fertile soils are formed due to precipitation, weath-
ering, and pedo-geomorphological processes. However, 
recently, this important resource is in a very bad state. Soil 
erosion has become a nightmare for the people, especially 
for land developers. The severe impact of quick erosion 
can occur from natural and anthropogenic sources (Poesen 
2018). Because of climate change and El-Niño impact on 
monsoon, the amount of rainfall increases with high inten-
sity and short duration which leads to a higher risk of soil 
erosion (Xu et al. 2019; Zhu et al. 2019). Besides, miscon-
duct in agricultural practices, tree logging, and building 
construction speed up the erosion process (Vijith et  al. 
2018). Therefore, a suitable condition not only induces soil 
erosion but also affects to cause flash floods (Diodato et al. 
2022). To mitigate those issues, soil scientists have used a 
geographical component for the model to obtain the sig-
nificant causatives for soil erosion (Rodrigo-Comino et  al. 
2018). Coupled SSPs–RCPs scenarios data showed a posi-
tive association between climate change and soil erosion (Li 
et al. 2021). Because the high amount of rainfall in a short 
duration can expedite the chemical weathering and produce 
more sediments.

The Universal Soil Loss Equation (USLE) method is exten-
sively employed for calculating soil loss or erosion, since it 
can incorporate some factors of soil erosion (Alewell et al. 
2019). Besides, the human factors that can promote soil 
erosion, current studies obtain other factors affecting land 
deterioration are climate (Xiong et al. 2019). Furthermore, 
the 4th scenario for the world’s greenhouse gases issue that 
is recognized as “Shared Socioeconomic Pathways” (SSPs) 
SSP2.6, SSP4.5, SSP7.0, SSP8.5 has been announced by 
IPCC (Intergovernmental Panel on Climate Change; Chen 
et al. 2020). These scenarios predict distinct greenhouse gas 
emission types, for instance, the SSP2.6 indicates low green-
house gases emission, the SSP4.5, and SSP6 represent stable 
scenarios, whilst SSP8.5 expresses high greenhouse gases 
emission (Hu et  al. 2021). Several works have been con-
ducted to estimate the effects of clime on the erosion of soil 
using distinct CMIP5–RCP periods all over the world for 
instance, in Iran (Hateffard et al. 2021), Nepal (Talchabhadel 
et al. 2019), Turkey (Orozbaev et al. 2020), Sri Lanka (Sena-
nayake and Pradhan 2022), Europe (Panagos et  al. 2021), 
Uzbekistan (Gafforov et al. 2020), and Kenya (Watene et al. 
2021). However, new studies about the effect of climate on 

the erosion of soil under CMIP6–SSP scenarios are still 
scarce. Therefore, in this current study, we would take focus 
on this topic.

Soil erosion is a native geological process; however, after 
anthropogenic interference may be categorized as a land 
quality reduction, which has been a repeated issue for long 
period across the world for authorities, and particularly, in 
nations, such as Malaysia (Rendana et al. 2018). Currently, 
researchers have investigated land deterioration factors 
in Malaysia, such as deforestation (Jaafar et  al. 2020), soil 
acidification (Mahmud and Chong 2022), soil salinization 
(Kh’ng et al. 2021), land-use changes, and biodiversity loss 
(Wilkinson et al. 2018), and water erosion (Islam et al. 2020). 
Several studies have tried to combine geographic informa-
tion systems, remote sensing, and the RUSLE method for 
the mapping of soil erosion (Anees et al. 2018; Roslee and 
Sharir 2019). Some current methods such as machine learn-
ing or artificial neural networks are also widely used for soil 
erosion prediction and mapping in Malaysia (Sarkar and 
Mishra 2018; Vu et al. 2020). However, in spite of the many 
studies on soil erosion analysis, there are narrow notions on 
soil erosion analysis according to future climate change sce-
narios in Malaysia and other tropical basin areas.

Chini lake basin, Malaysia has experienced significant 
economic growth over the 10-year period. Many land use 
activities in the basin area have converted from forests to 
oil palm rubber, mining, settlements, and tourism areas. 
These activities have greatly influenced the biological, 
hydrological, and ecological functions of the Chini lake 
ecosystem. Logging activities in the steep areas have led 
to severe environmental deterioration. Soil erosion rate, 
sedimentation, and nutrient loss have raised due to these 
changes. Pesticides and chemical fertilizers from agri-
cultural activities have also raised N, P, and heavy metal 
concentrations in the lake water (Rendana et  al. 2016). 
The soil erosion in the Chini basin area was sheet and 
rill erosions because of runoff events started by heavy 
rainfall. The bank erosion was found near the lake due to 
the effect of ripples produced by motorboats activities. 
These unsustainable land use systems around the basin 
area have led to various environmental issues especially 
soil erosion in the area. In addition, soil erosion would 
decline the terrestrial and aquatic biodiversities of the 
lake. Thus, the objective of this study was to predict the 
soil erosion potential in the Chini lake basin, Malaysia 
under CMIP6 scenarios.

Materials and methods
Study area
This research was carried out in the Chini lake basin 
region encompassing 52.89  km2 in Pahang State situ-
ated on the Eastern coast of Peninsular Malaysia. The 
study region is located between the latitude 3° 23′ N–3° 
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28′ N and longitude 102° 53′ E–102° 58′ E (Fig.  1). The 
clime of this region was categorized into two types of 
monsoon; southwest and northeast monsoons (Hin and 
Othman 2020). The average annual precipitation was 
about 2500  mm and the temperature was about 28  °C. 
The study region was distinguished by various land-use 
classes including forest, agricultural, urbanized, and bare 
and mining areas.

Data acquisition and analysis
To estimate the K factor values, the soil properties data 
were obtained from soil sampling in the field and labora-
tory analysis of soil samples. The random soil sampling 
method was conducted in ten points around the study 
area which covered distinct soil series (Fig. 1). Landsat 8 
images and digital elevation model (DEM) were obtained 

from the United States Geological Survey (USGS) data 
portal. The satellite images consisted of three dates for 
current scenarios of soil erosion rate; Landsat 8 OLI 
Level-2 Product on 7th September 2019, 22nd August 
2020, and 12th September 2021. These images have 
undergone atmospheric correction analysis using ArcGIS 
10.2 software.

The WorldClim website was widely used to obtain 
downscaled CMIP6 annual precipitation parameters. 
This study used the historical precipitation of the latest 
published CMIP6 GCMs. In the CMIP6, the representa-
tive concentration pathways (RCP2.6, RCP4.5, RCP6.0, 
and RCP8.5) from the previous CMIP5 model have been 
renewed to the shared socio-economic pathways (SSP2.6, 
SSP4.5, SSP6.0, and SSP8.5). The CMIP6 model with 
the updated improvements such as improved physical 

Fig. 1  Study area with points of soil sampling presented on the digital elevation model (DEM) map
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processes, land use planning, and model parameteriza-
tion was marked to give the best simulation of future 
climate. In this study, a HadGEM3–GC31–LL model 
of GCMs each for precipitation was chosen from the 
CMIP6 database for the period 2020–2080. The period 
2020–2080 was considered, since the CMIP6 GCMs 
have more than 20-year baseline period. The GCMs were 
selected according to the availability of the SSP (at least 
one SSP), GCMs among precipitation parameters, and 
the availability of precipitation data for the study area. 
Furthermore, the CMIP6 GCMs have not been studied 
for Malaysia until this time, thus we chose to construct 
this climate model for historical soil erosion events.

Compared to the CMIP5, the CMIP6 model has finer 
model resolution and updated the processes of physical 
(Stouffer et al. 2017). we applied one of the CMIP6 mod-
els (HadGEM3–GC31–LL), because it showed a better 
performance than the other models for seasonal average 
temperatures in terms of bias. Cui et al. (2021) analyzed 
the spatial distributions of the observed and multimodel 
ensemble for mean annual temperature and mean sum-
mer temperature. According to their study, the CMIP6 
models exhibited a similar spatial pattern.

A previous study has revealed that the CMIP6 model 
showed significantly higher climate sensitivity than the 
prior CMIP5 model (Zelinka et  al. 2020). In this study, 
the HadGEM3–GC31–LL model was also employed for 
computing R factor values. For an observation of the 
effects of future climate change on soil erosion by water, 
the results of the current climate and predicted climate 
change based on the HadGEM3–GC31–LL model and 
some SSP (SSP2.6, 4.5, and 8.5 in 2040–2060 and 2060–
2080) were applied in our estimation of the rainfall ero-
sivity factor.

Soil erosion calculation
In the tropical regions of Malaysia, soil erosion by 
water was one of the great composite ecological issues 
impendent agricultural sector and human activities. The 
soil erosion analyses in the Chini Lake Basin have been 
investigated by previous works concerning the erosion of 
water (Gupta and Kumar 2017; Teng et  al. 2018). How-
ever, there were no studies that have applied the analysis 
of soil erosion under recent CMIP6 scenarios in the Chini 
Lake Basin, even, in the Southeast Asian region. Hence, 
this is a novel study to estimate current and future soil 
erosion potential under CMIP6 scenarios in this region. 
Our study did not assess wind erosion, but we suggest 
for next future studies shall integrate both wind and 
water erosions. Some criteria of RUSLE (R, K, LS, C, and 
P) were obtained from in  situ measurement and earth 
observation data. Afterward, a raster map was simulated 
in geographical information system software to evaluate 

the spatial–temporal of soil erosion rate in the Chini 
lake basin area. With the incorporation of improved 
techniques in estimating soil erosion with current data 
sources, the produced soil erosion map could represent 
a higher accuracy, compared with other previous works 
(Menshov et al. 2018; Krasa et al. 2019).

The RUSLE method was applied for calculating and 
estimating soil erosion rate in this study. It was one of 
the best popular techniques for soil erosion analysis and 
mapping (Kebede et  al. 2021). The soil erosion analysis 
using RUSLE was according to the following equation:

Soil erosion rate was stated in t/ha  year; R was rainfall 
erosivity; LS was a topographical factor; K was soil erod-
ibility, P was support practice; C was land cover manage-
ment factors.

The rainfall erosivity factor represented the total ener-
gies of water drops that markedly influenced the soil 
aggregate stability and promoted soil erosion (Lee et  al. 
2021). This factor was determined from annual rainfall 
data using a combination formula from Morgan (2009) 
and Roose (1977) as specified in Eqs. (2–4):

R was the rainfall erosivity factor (MJ  mm/ha  hr  year), 
and ρ indicated the rainfall yearly (mm). The rainfall ero-
sivity factor was analyzed for two distinct scenarios to 
calculate the future and current R factors. Rainfall erosiv-
ity values were acquired by calculating the annual R val-
ues from 2019 to 2021, and they were used as delegations 
for the current period. In the current period, we would 
like to investigate the effect of the COVID-19 pandemic 
where in 2020 there was a restriction period imple-
mented in the country so it would be interesting to find 
out how soil erosion when human activities were sus-
pended. Based on the COVID-19 studies, the virus would 
keep on growing around the world until the 2020  year 
when no mitigation actions were conducted (Rendana 
and Idris 2021). While, for future climate estimation, 
there were two distinct mean values were chosen for the 
rainfall erosivity factor. The first was from 2040 to 2060 
and the other was from 2060 to 2080 periods.

The erodibility of soil indicated soil structure vulner-
ability to being dispersed by water drops and carried by 
runoff (Jiang et al. 2020). The soil erodibility values were 

(1)Soil erosion rate = (R × LS × K × P × C)

(2)Rmorgan =
(9.28ρ − 8838.15)× (75)

100

(3)Rroose = 0.5× ρ × 17.3

(4)R =
(Rmorgan + Rroose)

2
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determined using soil sampling and laboratory analy-
sis according to the standard method, the formula was 
shown in Eq. (5) by Tew (1999):

Kfactor was the erodibility of soil (t ha hr/ha MJ mm), N1: 
clay (%) + very fine sand (%), S: soil structure, N2: clay 
(%) + very fine sand (%) + sand (%), and P: hydraulic con-
ductivity (cm/hr). Thereafter, each polygon layer contain-
ing soil series was specified a K value in the GIS setting. 
In this study, we also compared our K values with K val-
ues from the Department of Irrigation and Drainage of 
Malaysia (2010) and used them for covering nonsampling 
areas.

The steepness and length of the slope had crucial com-
ponents in soil loss. It indicated potencies of topographi-
cal factors in soil loss and runoff events (Brychta and 
Brychtová 2020). Topographical factors were determined 
by a formula from Wischmeier (1975) in the following 
equation:

L was flow accumulation (the upper slope region to a 
specified pixel) with a size of a pixel of 30 m. Flow accu-
mulation was generated from DEM; 0.6 was chosen as 
the m value, because slope > 12%; s represented percent 
slope.

Management of land cover or C factor had a prominent 
role in soil erosion analysis by covering the upper layer 
of soil from the impact of water drops. Several studies 
have found soil erosion was highly associated with veg-
etation cover (Nikolic et  al. 2019). The classification of 
the distinct land cover classes was carried out using three 
Landsat 8 satellite images acquired in 2019, 2020, and 
2021. The Landsat images were obtained from the United 
States Geological (USGS) Earth Explorer. The selection of 
the Landsat satellite images dates depended on the image 
quality based on the percentage of cloud cover. Each 
image was georeferenced to the WGS 84 datum and Ker-
tau RSO Malaya Meter coordinate system.

A complex pre-processing such as geo-referenc-
ing, layer stacking, mosaic, and atmospheric correc-
tion is conducted to ortho-rectify the satellite images 
and remove the effect of the atmosphere on the reflec-
tance values of images taken by satellite. In this study, 
the supervised classification was performed to classify 
the land cover/use. The supervised classification based 
on (Shakya et  al. 2018) is where the user develops the 

(5)
Kfactor =

(2.1× 10−4(12−OM)(N1×N2)1.14 + 3.25(S− 2)+ 2.5(P− 3))

(100× 7.59)

(6)

LSfactor =

(

L

22.13

)

×m× (0.065+ 0.046s + 0.0065s2)

spectral signatures of known classes (i.e., urban and for-
est) and then the ArcGIS software will set values in each 
pixel in the image to the class that its signature is most 

proportionate. The supervised classification was applied 
after the user creates the area of interest (AOI) or train-
ing classes. The training sites were chosen in accordance 
with the field data or sampling points (Fig.  1). Finally, 
the images were categorized into six classes as shown in 
Table 1. The output of the Kappa coefficient for accuracy 
analysis showed a good value of 0.85 and total accuracy 
of around 88%. Formulas of the Kappa coefficient and 
total accuracy are shown in Eqs. 7–8:

where r was the number of rows in the matrix, xi+ and xii 
were the marginal totals of row r and column i, X was the 
number of observations in row i and column i, N was the 
total number of observations, and nii was the number of 
correctly classifed pixels (Fig. 2).

The conservation practice or P factor indicated soil 
erosion from upper and below slopes under certain con-
servation uses. For example, terracing, contour, strip 
cropping and influence the runoff course and change 
flow distribution (Wen et al. 2021). P factor values were 
specified based on the recent land-use map and recom-
mended by the Department of Irrigation and Drainage of 
Malaysia (2010) and Morgan (2009) (Table 1).

Spatial variation of soil erosion was obtained by calcu-
lating all the RUSLE factors to produce current and future 
soil erosion maps. In the matter of future soil erosion, K, 
P, and LS factors were calculated in the same recent sce-
nario, C values were computed in a mean of C2019, C2020, 

(7)
N

∑

r

i=1 xii −
∑

r

i=1 (xi+)(xi+)

N 2 −
∑

r

i=1 (xi+)(xi+)

(8)OA =

(

1

N

) r
∑

i=1

nii

Table 1  P and C factors with recent total area land-use in Chini 
lake basin area. Source: Department of Irrigation and Drainage of 
Malaysia (2010), Morgan (2009)

Land use C factor P factor Area (km2) Area (%)

Bare land 1.00 0.10 3.2 6

Agricultural area 0.20 0.40 8.9 16.7

Urbanized area 0.25 0.70 5.4 10.2

Forest/tree 0.03 0.10 35.5 67.1
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and C2021, whilst the R factor was calculated as a mean for 
two distinct periods; R2040-2060 and R2060-2080. Therefore, 
the future soil erosion map could be stated in the follow-
ing equation:

Statistical analysis
This study calculated average values for RUSLE factors 
and total soil erosion values by extracting values in each 
pixel raster map using ArcGIS software. Eventually, the 
relationship between total soil erosion and each RUSLE 
factor was analyzed using Pearson correlation analysis in 
IBM SPSS Statistic 21 software.

Results and discussion
Factors impacting soil erosion in the Chini Lake Basin
Based on our results, the erodibility of soil values 
greatly differed. It ranged from 0.001 to 0.039 ton ha hr/

(9)
SSP2.6, SSP4.5, SSP8.5 : A = Rmean × K × LS × C(mean) × P

ha  MJ  mm. This divergence could be affected by soil 
type and land use in the study area. For instance, the 
K factor values in dense areas such as forests and sec-
ondary forests showed low K factor values (south-
ern, southeastern, and southwestern parts) while the 
agricultural and urbanized areas showed high K fac-
tor values (northern, northeastern, and northwestern 
parts). This was consistent with a previous study by 
Hateffard et al. (2021) that found the erodibility factor 
was mainly high in the agricultural area from 0.30 to 
0.44  ton  ha  hr/ha  MJ  mm. The K factor values tended 
to reduce in regions with high elevation. The K factor 
values in this study were obtained from the calculation 
of soil properties based on data collected from field 
sampling activity. The K values from the laboratory 
work were matched with the K values from the Depart-
ment of Irrigation and Drainage of Malaysia (2010). 
There was about a 95% match of the K values based on 
our calculation and the Department of Irrigation and 
Drainage of Malaysia (2010), thus it showed that the 

Fig. 2   R factor distribution (2019; 2020; 2021) in Chini lake basin area
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K values could be used in this study. According to our 
results, the mean K factor was 0.01 t ha hr/ha MJ mm, 
with the mean organic matter was 3.4%, and clay per-
cent was 80.4%, which led to increasing the K values in 
this study. However, Our K values were consistent with 
the other studies. For example, in Iran, the mean K fac-
tor was 0.01  t  ha  hr/ha  MJ  mm (Ostovari et  al. 2019), 
in India, the K values were 0.01–0.1 t ha hr/ha MJ mm 
was found (Jena et al. 2018), and the mean K factor was 
0.01 t ha hr/ha MJ mm in China (Teng et al. 2019).

The average value of the LS factor (slope length) was 
4.51  m (Fig.  3). As a whole, the LS value in this study 
ranged from 0 to 221 m. The LS value was greater in the 
southern, southwestern, and northwestern parts of the 
study area than in the northern, northeastern, and south-
eastern parts which were distinguished by low slope and 
runoff rates. Although the dominant P factor was classi-
fied as forest areas with more than 60% of the study area. 
Meanwhile, the bare lands would contribute to a high P 
value due to high erosion potential, although these areas 
had less than 10% (Fig. 5). The topographical factor was 
estimated according to the clustering of the slope raster 
map. This factor was considered to be the most affecting 
factor for erosion headway. This result was in line with 
Zhang and Wang (2017) who also found that this fac-
tor was very associated with the increase in soil erosion 
values. Another study by Pham et  al. (2018) stated the 
P and C factors could minimize the soil erosion values, 
by planting vegetation cover and building stone walls. 
In a study that was carried out at complex hillslopes, 
Sabzevari and Talebi (2019) revealed the greatest erosions 
were observed in slopes (distended discrete type), while 
the lowest erosions were associated with slopes (sunken 
discrete type). As a whole, analyzing the map of LS factor 
with the soil erosion map showed that raising the length 

of the slope, frequency, and level of soil erosion also was 
raised was the same as the finding of Qin et al. (2018).

Figure 4 exhibits C factor maps in several years; 2019, 
2020, and 2021. There was no notable distinction in C 
value in study periods. However, it was mainly different 
during 2019. Hence, the land cover during 2019 was the 
most susceptible to a raising erosion rate. There was a 
bit of difference between the C factor map in 2019 and 
2020 where the clouds have become obstacles to analyz-
ing what land covers below them. This was the reason we 
obtained more urban and bare areas during those peri-
ods, because the reflectance value of clouds gave identical 
signatures with urban or bare areas. The intensive land-
use conversion could highly influence the C factor values 
(Almagro et al. 2019). During the current scenario (2019–
2021), C factor values in 2019 showed a significantly dif-
ferent from 2020 and 2021, which could be caused by the 
increase in open land areas for mining and agricultural 
activities. To support this notion, we compared the land 
use obtained in this study with the land use data from 
the Department of Agriculture. It showed that the Chini 
lake basin experienced a great change during that period. 
All surrounding the Chini lake, specifically in the north-
western area, the forest covering the land. In the north-
east of the basin, the areas were first covered by forest, 
but recently the forest was mostly cut down, only left 
orchards and shrubs. Besides, the sides of the basin were 
majorly converted to oil palm areas. The oil palm areas 
expanded until the southeastern side of the basin. They 
occupied about 70% of the basin area. In the center of the 
basin, there were abandoned and activated mining sites. 
The use of land for this activity increased year after year 
based on the ore resource demand.

In addition, the prior studies also reported that the 
study area had great potential for iron and barite ores 

Fig. 3   Spatial variation of (a) K factor and (b) LS factor in Chini lake basin area
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thus it was conducted mining activities, especially 
in the southeastern parts of the study area. While, in 
the northern parts, the oil palm plantation has greatly 
developed in the study area due to the suitable soil for 
oil palm growth. The C factor was not different from 
the R factor as it was also prone to the regions under 
tropical conditions and anthropogenic effects (Jiang 
et al. 2017). Therefore, both factors contributed to the 
complexity and increment of soil erosion rate in the 
study area. Results of our study also found that non-
agricultural regions such as urban areas and bare areas 
also experienced dynamic changes thus they could be 
considered for increasing soil erosion. Swarnkar et  al. 
(2018) reported that there was an agreement in the soil 
erosion science assemblage regarding the exact C and P 
factor values due to the impacts of different slope-pres-
ervation techniques. Hence, we suggested the author-
ity concerned to the areas where these two factors 
exhibited significant changes from the current period 
to the predicted period to evade a permanent loss of 

soil fertility or flood events, and tremendous sediments 
flowing to rivers.

In this study, we used three R factors (rainfall erosiv-
ity) values from 3 years of study periods (2019, 2020, and 
2021) (Fig. 2). The highest R factor values were observed 
in 2019 followed by 2021 and 2020. The annual mean 
R factors in 2019, 2020, and 2021 were 18,777, 13,861, 
and 16,504 MJ mm/ha hr year. The highest R factor was 
majorly observed in the northern to northeastern parts of 
the study area that related to lower terrain (Fig. 5).

Current soil erosion potential scenario
Figure  6 shows the mean predicted soil erosion rate in 
the Chini lake basin area in 2019, 2020, and 2021 was 
about 73.96, 40.18, and 37.12  t/ha  year, respectively. 
According to this result, the COVID-19 period has sig-
nificantly decreased soil erosion rates, especially during 
the restriction period (2020) and post-restriction period 
(2021). The closure of human activities has dropped the 
number of sediments that originated from the tourism 

Fig. 4    Cover management (C) factor pattern (2019; 2020; 2021) in Chini lake basin area
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and mining sites around the study area which were car-
ried by runoff events and finally polluted the water body. 
This was consistent with other studies that also found 
there was an improvement in water quality during the 
lockdown period in India (Yunus et al. 2020), China (Liu 
et  al. 2022), and Turkey (Tokatlı and Varol 2021). The 
southeastern part of the study area was more vulner-
able to soil erosion when this area recorded more than 
150 t/ha year of erosion, otherwise to the northern areas 
less than 10  t/ha year. Table 2 depicts the percentage of 
areas that influenced soil erosion classes during the cur-
rent scenario. The current erosion rate in major areas of 
the basin area was at class 1 (< 10 ton/ha year) (Table 2). 
Table 3 exhibits the correlation analysis between RUSLE 
values and soil erosion values in the study area. This was 
found LS factor, C, and P factors correlated with soil ero-
sion rate. In contrast, R and K factors had less correlation 
with soil erosion rate in the study area.

Spatial analysis of soil erosion could assist to calculate 
the annual soil loss values that were greater than 10  t/
ha  year. The results showed that the southeastern and 
northwestern areas were the most influenced from the 

2019 to 2021 periods. These regions were distinguished 
by bare areas and steep slopes areas. Our study observ-
ably ensured that soil loss was able simply influenced 
by diverse land cover types. The C factor map exhibited 
that bare areas were mostly found in the southeastern 
areas that had the greatest values of soil erosion, where 
the LS factor varies from 0 to 121 (Fig. 3b). In contrast, 
agricultural areas governed in the low slope regions with 
LS factor varied from 0 to 13, which reduced the soil 
erosion process. Based on this notion, Table  3 obtains 
the greatest relationship between the LS factor and soil 
erosion (r = 0.70, p < 0.05), which indicated the crucial 
role of the length of the slope in promoting soil erosion. 
Considering the erosion process in the bare areas and as 
followed by some urban areas revealing the greatest soil 
erosion, prosecuted greater control and preservation. 
Hence, those areas should be taken into in the next land 
preservation strategy in light of topographical factors 
as a prominent key to climate shift and soil erosion fre-
quency (Borrelli et al. 2017). This output totally assured 
the finding of a study by Saco et al. (2018) who explained 
that higher slope regions with sparse vegetation could 

Fig. 5   P factor pattern (2019; 2020; 2021) in Chini lake basin area
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contribute to greater erosion occurrences. Bare areas 
have exhibited the highest soil erosion values in the cur-
rent scenarios situated on steep slope areas.

To minimize the soil erosion rate in basins, humans 
could apply soil and water conservation measures within 
the basins. Sun et al. (2019) investigated the application 

of large-scale ecological restoration and it led to a notable 
reduction of sediment load from the Chinese Loess Pla-
teau into the Yellow River. It was the same with another 
study in the Zhou River Basin where the sediment load 
and streamflow of the basin were reduced by 80% and 
50%, respectively. The landscape engineering actions 
were primarily responsible for both factors decreased 
(Sun et al. 2020a). In addition, a higher risk of high sedi-
ment load frequently occurred during heavy rainfall and 
within small basins (Sun et al. 2020b).

Predicted future soil erosion potential scenario
Several scenarios of estimated R value were analyzed 
from a new generation of climate design, or CMIP6 for 
periods of 2040–2060 and 2060–2080. Comparing the 
baseline and predicted R values computed from annual 
rainfall data (2019–2021) with the predicted R values 
obtained from three “Shared Socioeconomic Pathways” 
(SSPs) is found in Fig. 7. The greatest R factor values were 
mostly found from the northwestern to the northern part 

Fig. 6   Spatial distribution of soil erosion rate (2019; 2020; 2021) in Chini lake basin area

Table 2  Percentage of soil erosion classes under 3-year periods 
in the study area

Class 1: very low; class 2: low, class 3: moderate, class 4: high, and class 5: very 
high

Soil erosion class (t/ha year) Years

2019 (%) 2020 (%) 2021 (%)

Class 1 (<10) 84.07 86.68 87.57

Class 2 (10–50) 7.78 6.45 6.49

Class 3 (50–100) 2.06 1.69 1.45

Class 4 (100–150) 1.07 0.99 0.86

Class 5 (>150) 5.03 4.19 3.63
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of the basin region. The same distribution was shown in 
the predicted R (Fig.  7). Figure  8 reveals the alterations 
between current and predicted soil erosion under cli-
mate change scenarios of SSPs. This was estimated the 
areas with greater R factor values were situated from the 
northern to the northeastern part of the study area.

The current and downscaled R factor were calculated 
and mapped according to national rainfall stations (for 
current rainfall data), and rainfall data acquired from 
WorldClim data (for predicted rainfall data). The precise 
modeling of current rainfall erosivity values produced 

the best outputs in predicting soil erosion, specifically in 
regions with poor annual rainfall values and also greatly 
driven by climate factors. These outputs could deliver 
new notions to evaluate the presence of gullies and rills 
erosion processes, because they were very prone to the 
alteration of precipitation scheme and human activities 
effects (Kou et al. 2020).

The predicted soil erosion values showed a very high 
soil erosion (> 150 t/ha year) mostly found in the north-
western and southeastern areas of the basin region under 
SSP scenarios (Fig.  8). This result exhibited the same 

Table 3  Pearson’s correlation between soil erosion rate and RUSLE factors

* Correlation is significant at the 0.05 level (two-tailed)

RUSLE factors

Rainfall erosivity Topography Soil erodibility Support practice Land cover

Correlation value (r) 0.94** 0.70* − 0.48 0.74* 0.75*

p value 0.01 0.02 0.06 0.01 0.01

Fig. 7   Estimated changes in R factor according to the HadGEM3–GC31–LL model and SSPs for distinct scenarios (a) baseline 2019–2021, (b) SSP2.6 
(2040–2060), (c) SSP2.6 (2060–2080), (d) SSP4.5 (2040–2060), (e) SSP4.5 (2060–2080), (f) SSP8.5 (2040–2060), (g) SSP8.5 (2060–2080)
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spatial variability of soil erosion as the current scenario. 
This future model revealed these similar areas would be 
exposed to speed the rate of soil erosion if appropriate 
land conservation policies were not applied. Specifically, 

areas of very high erosion values (> 150 t/ha year) reduced 
to 3.5% in the SSP2.6 (2061–2080) and 5.5% in the SSP8.5 
(2061–2080) (Table  4). Spatial diversity between future 
RUSLE under distinct SSPs scenarios and current RUSLE 

Fig. 8    Estimated future soil erosion changes under distinct scenarios of SSPs (a) baseline 2019–2021, (b) SSP2.6 (2040–2060), (c) SSP2.6 (2060–
2080), (d) SSP4.5 (2040–2060), (e) SSP4.5 (2060–2080), (f) SSP8.5 (2040–2060), (g) SSP8.5 (2060–2080)

Table 4  Zonal statistical (average t/ha year) for each soil erosion classes under baseline and estimated SSP scenarios

Scenario Time series Mean soil erosion 
rate (t/ha year)

Percentage soil erosion class (%)

Class 1 (<10 t/
ha year)

Class 2 (10–50 t/
ha year)

Class 3 (50–
100 t/ha year)

Class 4 (100–
150 t/ha year)

Class 5 
(>150 t/
ha year)

Baseline 2019–2021 50.42 86.1 6.9 1.7 1.0 4.3

SSP2.6 2040–2060 33.30 88.3 6.0 1.5 0.8 3.4

2060–2080 34.52 88.1 6.1 1.5 0.8 3.5

SSP4.5 2040–2060 35.90 87.8 6.3 1.5 0.8 3.6

2060–2080 36.15 87.8 6.3 1.5 0.8 3.6

SSP8.5 2040–2060 35.36 87.9 6.2 1.5 0.8 3.5

2060–2080 33.46 88.3 6.0 1.5 0.8 3.4
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(2019–2021) exhibited a slightly decrease erosion rate in 
most areas of the basin region.

To assess the effect of future climate shifts on soil loss 
sensitivity, data obtained from CMIP6 by some predic-
tions of CMIP6–SSP were applied in computing R val-
ues in the future. The used method in our work was in 
line with a previous study by Hateffard et  al. (2021) 
who found the predicted rainfall values would definitely 
cause soil erosion rate changes. The predicted soil ero-
sion values were estimated in the study region based on 
the regional climate change that concerned 3 scenarios 
of SSPs. These results showed that the southeastern and 
northwestern parts were the most susceptive to climate 
change factors, particularly in SSP8.5 that in line with the 
pathway in enormous quantities of greenhouse gas emis-
sions. The high soil erosion values were situated majorly 
in bare areas with steep slopes, thus, it would be highly 
influenced by alterations of rainfall distributions for cli-
mate traits in tropical regions. The raising in rainfall 
intensities over the study region would induce a higher 
risk of soil erosion through runoff events from steep 
slope areas. Therefore, the estimation of future soil ero-
sion was very prominent to give authority with suitable 
tools for arranging immediate actions against distinct 
probable soil erosion scenarios. Panagos and Katsoyian-
nis (2019) highlighted the significance of mapping soil 
erosion on a distinct scale for protection action and pol-
icy arrangement. While Maurya et al. (2021) underlined 
the significance of the application of preservation plans 
according to SSP2.6 and SSP8.5 scenarios.

In light of all the factors, it was clear that soil erosion in 
the southeastern and northwestern regions that were pre-
dominated by bare areas, greater rainfall, and the steep 
slope was experiencing serious erosion and had the great-
est risk of soil erosion. Based on the geological aspects 
in the study region, we assumed that the geological had 
a prominent part in soil erosion occurrences, however, 
was majorly represented in the form of the erodibility of 
soil. The fine-grain clastic sediments which encompassed 
the northern to southern regions of the study areas were 
related to the minimal susceptibleness of K values. In the 
lower hill area, sedimentation was the primary feature 
thus soil erosion has sustained a little quantity as well. 
There were two areas of the study region obtained great 
prone, the first was in the mining regions that indicated 
enormous erosion was clear, and the second was situ-
ated in agricultural regions with steep slopes with proof 
of dispersion and gully erosion kinds. The result of this 
study can be applied to arrange control actions of valu-
able freshwater lake basin areas in the tropical regions 
and implement this area became a high priority for eco-
logical and biological conservation purposes. In addition, 
soil erosion could be minimized by preserving vegetation 

cover, and diminishing soil disruption by agricultural 
activities (Eswaran et al. 2019).

The future prediction of soil erosion (36.15  t/ha  year) 
were found high for SSP4.5 during 2060–2080. Whereas, 
the lower values (33.30  t/ha  year) was found for SSP2.6 
during 2040–2060 (Table 4). There was a reduction of soil 
erosion classes areas (classes 2–5) observed at 0.9%, 0.2%, 
0.2%, and 0.9%, respectively, compared to the baseline 
year (2019–2021). However, the increment was observed 
as 2.2% for class 1 compared to the baseline year (2019–
2021) which indicated that there was an improvement in 
soil quality in the study area (Table 4). Overall, we pre-
dicted the future soil erosion values in this area would 
decrease by around 33.9% compared to the baseline year 
(2019–2021). In addition, we assumed the future climate 
change might affect the changes in the underlying sur-
face. Based on our results, future climate might play the 
dominant role in rainfall change, compared with that of 
other RUSLE factors. The significant changes in rainfall 
were the main navigating force of soil erosion change in 
the Chini lake basin. Thus, this study suggests that rain-
fall is a prominent factor that should be more considered 
in the resulting soil erosion change, since the studied 
basin was situated in the tropical region with a high 
amount of rainfall.

Uncertainty in the model prediction was analyzed 
using three main parameters, such as internal variability, 
model uncertainty, and scenario uncertainty. Fractional 
uncertainties in the decadal annual soil erosion rate 
over the Chini catchment area are depicted in Fig. 9. The 
uncertainty of the annual soil erosion rate dominantly 
came from model and scenario uncertainties, and the 
total fractional uncertainty showed a minimum of about 
2040 related to the contributions from scenario and 
model uncertainties.

Conclusions
Soil erosion is one of the climate hazards that can dete-
riorate the economy and livelihood of a country. Based 
on the global climate index, Malaysia is ranked among 
the two hundred nations most threatened by climate 
change during 2019–2021. The integration of remote 
sensing data and climate model projection is very useful 
for studying geological phenomena and active processes, 
such as soil erosion. Our study concluded that there 
was a reduction of future soil erosion values of around 
33.9% compared with the baseline year (2019–2021). 
The rainfall erosivity factor greatly affected the changes 
in soil erosion in the study area, since this area was cat-
egorized as a tropical region. The highest future soil 
erosion values were found in SSP4.5 during 2060–2080. 
However, the lowest values were found in SSP2.6 during 
2040–2060. The finding of this study could contribute to 
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achieving the United Nations’ 2030 Agenda for Sustain-
able Development.
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