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Abstract 

Equilibrium climate sensitivity (ECS) refers to the total global warming caused by an instantaneous doubling of 
CO2 from the preindustrial level. It is mainly estimated through the linear fit between the changes in global-mean 
surface temperature and top-of-atmosphere net radiative flux, due to the high costs of millennial-length simula-
tions for reaching a stable climate. However, the accuracy can be influenced by the response’s nonlinearity and the 
internal noise, especially when using a limited-length simulation. Here, we propose a new method that derives a 
new series using an exponential-interval sampling (EIS) method for the original simulation to reduce the noise and 
estimate the ECS more accurately. Utilizing the millennial-length simulations of LongRunMIP, we prove that the EIS 
method can effectively reduce the influence of internal variability, and the estimated ECS based on the first 150 years 
of simulation is closer to the final ECS in the millennial-length simulations than previous estimations with the devia-
tion rate decreased by around 1/3. The ECS in CMIP6 models estimated by the EIS method ranges from 1.93 to 
6.78 K, and suggests that the multimodel mean ECS derived from the original series with previous methods could be 
underestimated.
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Introduction
Estimating the sensitivity of the climate system to green-
house gases (GHGs) is a key problem in understanding 
GHG-induced global warming (Manabe and Stouffer 
1980; Meehl et  al. 2020; Senior and Mitchell 2000; 
Stouffer and Manabe 1999; Washington and Meehl 1989). 
When a climate model is used to simulate the climate 
response to GHGs, the equilibrium climate sensitivity 
(ECS) is one of most important metrics for evaluating its 
climate sensitivity. The ECS is defined as the total warm-
ing of the Earth’s climate system when it rebalances after 
an abrupt doubling of CO2 from the preindustrial level 

(Hansen et al. 1984; IPCC 2007). However, it is difficult 
to obtain an exact value of the ECS in a fully coupled cli-
mate model because it takes the modeled climate system 
multiple millennia to rebalance (Dai et  al. 2020; Rugen-
stein et al. 2020; Williams et al. 2008). Therefore, how to 
obtain a reliable ECS in climate models is of great con-
cern in estimating the climate sensitivity.

Early studies often estimated the ECS using slab ocean 
climate models in which the atmospheric component is 
coupled with a slab ocean model without ocean dynam-
ics, since such models respond and reach a new equilib-
rium much faster than fully coupled models (Washington 
and Meehl 1984; Wilson and Mitchell 1987). However, 
the bias in the ECS estimated using slab ocean climate 
models is unavoidable owing to the lack of dynamic 
and thermodynamic processes in the deep ocean, even 
though some studies have suggested that the bias could 
be small (e.g., Gent and Danabasoglu 2009). As a result, 
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alternative statistical methods have been developed to 
estimate the ECS using relatively short simulations in 
fully coupled models.

In the climate response to GHG forcing, the energy 
balance of the climate system can be written as 
�N = F − ��T  , in which �N  is the top-of-atmosphere 
(TOA) net radiative flux change, �T  is the change in 
global-mean surface temperature, F  is a constant rep-
resenting the radiative forcing caused by a doubling of 
CO2, and λ is a feedback parameter. An approximate lin-
ear relationship between �N  and �T  is found in a time-
varying climate response before climate models reach 
equilibrium. Thus, the feedback parameter λ can be esti-
mated as the slope of the linear regression between �N  
and �T  . Under the assumption that λ remains constant 
until climate equilibrium is reached, the �T  in the equi-
librium state can be estimated as the T-intercept in the 
linear regression of �N  and �T  (Gregory et  al. 2004). 
This method is widely used to estimate the ECS based on 
the 150-year simulation of the abrupt4xCO2 experiment 
in the phase 5 and 6 of the Coupled Model Intercompari-
son Project (CMIP5 and CMIP6) (Andrews et al. 2012).

However, many studies have suggested that the 
response of the climate system is nonlinear. The net TOA 
radiative flux is found to decline sharply with surface 
temperature change in the first several decades, which is 
usually considered as the “fast response” (Andrews et al. 
2015; Armour et  al. 2013; Gregory et  al. 2004; Rugen-
stein et al. 2020). Accordingly, the dN/dT slope, i.e., the 
feedback parameter λ, shows a tendency to flatten after 
the fast response. Previous studies have ascribed this 
flattening of λ to the evolution of the ocean warming 
pattern, the oceanic heat uptake efficacy, and cloud feed-
back, among other factors (Armour et  al. 2013; Rugen-
stein et al. 2016a, b; Xie 2020). Given the decrease in λ, 
including the early response of the �N  and �T  in the 
abrupt4xCO2 simulation can underestimate the ECS 
(Meehl et al. 2020).

Therefore, increasing the simulation length in the lin-
ear regression of �N  and �T  seems necessary to improve 
the ECS estimation. Nevertheless, the �T  response to 
an abrupt quadrupling of CO2 basically follows a quasi-
exponential slow-down relative to time (Dunne et  al. 
2020). After the first few hundred years, the long-term 
warming signals become very slight, especially compared 
with the internal noise. As a result, when longer simula-
tions are included in the simple linear regression of �N  
and �T  , the �T  after the first few hundred years show 
little increase but dominate the linear regression due to 
the large number of data points. In this case, the contri-
bution of �T  in the slowly warming period is enlarged. 
Moreover, the influence of internal noise in �N  and �T  
for the dN/dT slope become more apparent as revealed 

in previous studies (Dai et  al. 2020; Dessler et  al. 2018; 
Gregory et  al. 2004; Marvel et  al. 2018; Rugenstein and 
Armour 2021). Therefore, a new method is needed that 
can retain the very slowly increased signals of global 
warming �T  and also can remove the influence of inter-
nal noise.

Dai et al. (2020) recommended an analytic method to 
evaluate the ECS in which the �N  and �T  time series are 
fitted to an analytic function based on a two-layer climate 
model and then applied the dN/dT  slope to estimate 
unrealized warming. In the fitted analytic function, the 
influence of internal variability is thoroughly removed, 
and the relative contributions of �T  in the early and late 
response are reasonably set based on the presupposed 
function. The analytic method can obtain a relatively 
accurate ECS with only 180 years of simulation, as com-
pared with the final warming in models after multiple 
millennia (~ 5000 year). However, this method requires a 
presupposed complex function for fitting.

In this study, a new method is proposed to remove the 
internal variability and further improve ECS estimation. 
We derive new series from the original ones via exponen-
tial-interval sampling (EIS) to remove most of the inter-
nal variability, considered here as noise. The EIS series 
of �N  and �T  show more accurate linear correlation. 
Based on the regular 150-year abrupt4xCO2 simulation, 
the EIS method can estimate an ECS that is closer to the 
result from using a multi-millennium simulation. The 
rest of the paper is organized as follows: “Models” section 
describes the models used, and “Methods” section intro-
duces the EIS method developed in this study. “Results” 
section evaluates the EIS method in terms of decreasing 
the internal noise, and compares the ECS estimated by 
four methods. “Summary and discussion” section dis-
cusses the results and the broader implications.

Models
The surface temperature ( �T  ) and TOA radiative flux 
( �N  ) in the abrupt4xCO2 and piControl experiments 
from nine models participating in LongRunMIP (Rugen-
stein et  al. 2019) are used to check the effectiveness of 
our method for reducing the internal noise and estimat-
ing the ECS. LongRunMIP is a model intercomparison 
project of millennial-length GCM simulations, aimed 
at obtaining the originally defined ECS. These models 
are: CESM104 (5900  years), MPIESM11 (4459  years), 
FAMOUS (3000  years), CNRMCM61 (1850  years), 
HadGEM2 (1299 years), ECHAM5MPIOM (1001 years), 
IPSLCM5A (1000  years), MPIESM12 (1000  years), and 
HadCM3L (1000 years).

In addition, the abrupt4xCO2 experiments from 32 
models participating in CMIP6 (Eyring et  al. 2016) 
are used to apply the methods to 150-year datasets. 
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The 32 models are: ACCESS-CM2, ACCESS-ESM1-5, 
BCC-CSM2-MR, BCC-ESM1, CESM2, CESM2-FV2, 
CESM2-WACCM, CESM2-WACCM-FV2, CIESM, 
CanESM5, E3SM-1-0, EC-Earth3, EC-Earth3-Veg, 
EC-Earth3-Veg-LR, FGOALS-g3, GFDL-CM4, GFDL-
ESM4, GISS-E2-1-G, GISS-E2-1-H, HadGEM3-GC31-
LL, HadGEM3-GC31-MM, INM-CM4-8, INM-CM5-0, 
IPSL-CM5A2-INCA, IPSL-CM6A-LR, KACE-1-0-G, 
MCM-UA-1-0, MIROC-ES2L, MIROC6, SAM0-UNI-
CON, TaiESM1 and UKESM1-0-LL.

Methods
Previous linear extrapolation methods for the ECS
We apply four methods to estimate the ECS, which are 
modified from the original method of Gregory et  al. 
(2004), referred to as Method 1 here. Method 1 gives the 
� = dN/dT  slope and ECS = θ × Tint through linear fit-
ting over the whole time series of the annual �T  and �N  
in the abrupt4xCO2 experiment (relative to the piControl 
run), where Tint is the T-intercept. The θ is the ratio of the 
final warming caused by 2xCO2 forcing to that by 4xCO2 
forcing, for calculating a comparable ECS when a 4xCO2 
experiment is used. We take θ = 3.8749/8.1246 = 0.4769 
according to the radiative forcing for 2xCO2 and 4xCO2 
(Byrne and Goldblatt 2014). In order to remove the influ-
ence of the fast response, previous studies have usu-
ally excluded the first 20  years of the simulation in the 
linear regression (Andrews et  al. 2015), whereas recent 
studies have tended to expand the length of exclusion to 
40–50 years (Dai et al. 2020; Dunne et al. 2020). Method 2 
follows previous studies in excluding the fast response in 
early years, but we start the linear fit from the 50th year 
for comparing the result with the EIS method. Method 
3 divides the final warming ECS into realized and unre-
alized warming to minimize the bias caused by the flat-
tening of the climate feedback in the linear method (Dai 
et  al. 2020). The realized and unrealized warming are 
represented by �Tmean and �Nmean/b , respectively. The 
�Tmean and �Nmean are averages over the last 50 years of 
the simulation, and b is the same slope as in method 2. 
Hence, ECS = θ × (�Tmean +�Nmean/b).

EIS for improving the linear extrapolation method
In this study, we introduce the new EIS method as 
Method 4 in an attempt to remove the influence of 
internal noise, which was ignored in previous methods. 
Before applying the �N   – �T  linear fit, we derive new 
�N  and �T  series from the original ones. Consider-
ing the �T  response to an abrupt quadrupling of CO2 
basically follows a quasi-exponential evolution rela-
tive to time (Dunne et  al. 2020), we cut the total time 
period into several segments whose centers and lengths 
both increase exponentially relative to time. After some 

tests, the central point in each segment is set as e0.2×t , 
to retain as much data points as possible with the inter-
nal noises effectively reduced. Setting the coefficient as 
0.25, 0.4 or so can get the similar results (not shown). 
The values composed of individual segments form the 
new series. For example, the new point T (t) , which cor-
responds to the original T (e0.2×t) , is the average over 
T [(e0.2×t−0.2 + e0.2×t)/2] ~ T [(e0.2×t + e0.2×t+0.2)/2] . The 
left-hand boundary is rounded down and the right-hand 
one is rounded up to an integer, except for the right-hand 
boundary of the first point and the left-hand boundary of 
the last point, which are both rounded down.

The new time series together with the original ones 
are shown in Fig.  1. The series are demonstrated in a 
logarithmic coordinate according to the exponential-
like response of �T  and �N  . As shown in Fig. 1, the EIS 
method can reduce most internal signals, such as inter-
annual and decadal variabilities, in contrast with the 
original series, especially in the later response stage. The 
composed values of exponentially increased segments 
enlarge the weight of the data points in the fast response 
period and decrease the weight in the very slow response 
period. Since the system’s response becomes exponen-
tially slower, the EIS method can retain more effective 
signals in the whole process compared with the run-
ning average, which either loses the signals in the first 
few decades or maintains a lot of noise in later centu-
ries, depending on the sliding window. In a logarithmic 
coordinate (Fig.  1), these sample points are evenly dis-
tributed, indicating a reasonable contribution of the data 
points in different warming stages. In method 4, � = b 
and ECS = θ × (�Tmean +�Nmean/b) , where b is solved 
from the linear fit on the new �N  and �T  series since 
the 21st point, the mean of the original points from the 
50th to the 62nd year. The �Tmean and �Nmean are rep-
resented by the last �T  and �N  value of the new series 
from the simulation.

Results
Effectiveness for decreasing noise
The new and original time series of �T  and �N  are com-
pared in Fig.  2. The scatters of �T  and �N  in the new 
series follow a much more significant linear relationship 
than those of the original series, especially during the 
quasi-steady period, with a relatively smaller �T  trend. 
As the length of segments exponentially increases, the 
new �T  and �N  scatters are more well-distributed than 
the original scatters, leading to the regression coefficient 
of �T  and �N  being more reliable for estimating their 
linear relationship. As Fig.  3a shows, the correlation 
coefficient between the �T  and �N  of the new series is 
closer to 1 than that of the original series. We also cal-
culate the �T   – �N  correlation coefficient using the 
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datasets starting from the 50th year (the 21st point in the 
new series), and the distance between the results of the 
two series is even bigger, indicating that the influence of 
internal variability is greater in the quasi-steady stage. 
The contrast indicates that the EIS method is efficient at 
reducing the internal variability and retaining the long-
term response signals with more correlated �T  and �N .

Still, we notice that the dN/dT slope of the new scat-
ters is close to its original counterpart, while the corre-
lation coefficient is greatly improved toward 1. This is 
because of the variation in the standard deviation of �T  
and �N  in calculating the slope. The slope of a linear fit 
on x and y is calculated as b = Sy/Sx · rxy , where Sy and Sx 
are the standard deviations of the x and y time series, and 
rxy is the correlation coefficient. While rxy is improved 
greatly, close to 1, in the EIS method, the ratio of Sy to Sx 
becomes smaller too, as Sy lessens more than Sx after we 
reduce the noise. Therefore, the newly estimated slope is 

more reliable after removing the two errors, although the 
value could be close to the original one.

The product of the dN/dT slope and the dT/dN slope 
should be equal to 1, if �T  and �N  are linearly cor-
related without any noise (Dai et  al. 2020). However, 
the estimated dN/dT slope using the original series is 
not equal to the inverse of the dT/dN slope, due to the 
high-weighted noise during the slow response. The prod-
uct of the estimated dN/dT and dT/dN slope is further 
calculated as a criterion for checking if the noise has 
been effectively reduced in the EIS method. In Fig.  3b, 
the product based on the new series is very close to 1, 
much larger than its counterpart of the original series. 
This indicates that the real responses of the surface tem-
perature and TOA radiation to an abrupt quadrupling 
of CO2 are well-correlated, but they can be blurred by 
internal variability noise. After the noise has been effec-
tively reduced, the linear fitting method based on the 

Fig. 1  Time series of the global-mean and annual-mean surface temperature anomaly �T  and TOA net radiative flux anomaly �N in the 
abrupt4xCO2 (relative to piControl) experiments of LongRunMIP models. The yellow and light blue solid lines are the �T  and �N of the original 
series, respectively. The orange and blue dotted lines are the �T  and �N of the new series, respectively. The upper dashed grey line is the average 
�T  of the last 300 years. The lower dashed grey line marks zero
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well-correlated dN and dT will estimate the ECS more 
accurately.

Evaluating the methods based on the LongRunMIP
The effectiveness of the EIS method is evaluated using 
the millennial-length simulations of LongRunMIP. In 
estimating the ECS, the climate feedback parameter λ 
is time-varying (Andrews et  al. 2015; Rugenstein et  al. 
2020; Senior and Mitchell 2000; Williams et al. 2008) and 
also influenced by the internal noise (Armour 2017; Dai 

et al. 2020), which is more sensitive to the method than 
the final ECS. Thus, the radiative feedback λ is used as 
a criterion for checking if the method is stable enough 
to provide an accurate ECS estimation within a limited 
simulation. The climate feedback λ is calculated as the 
slope of the linear fit in varying simulation lengths of 
LongRunMIP models following (Rugenstein et al. 2020). 
Figure 4 shows the λ of three methods. Compared with 
the two traditional methods, the λ of the EIS method 
becomes stable earlier, to a varying degree, in the models. 

Fig. 2  Scatterplots of the anomalies (relative to piControl) of the global-mean and annual-mean surface temperature �T  (x-axis) and TOA net 
radiative flux �N (y-axis) in the abrupt4xCO2 experiments of LongRunMIP models. The original scatters start from the 50th year (blue dots, blue 
line = linear fit) and the new series starts from the 21st point (average from the original year 50 to 62) (orange dots, red line = linear fit). The slopes 
of the linear fit on the original and new series are denoted as λ in the top-left corner
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This result suggests that the EIS method can use a shorter 
simulation to obtain an ECS close to the eventual ECS in 
an equilibration state.

It is expected that an efficient method can estimate 
the dN/dT and ECS using a limited simulation close to 
the dN/dT and ECS directly calculated from millennial-
length simulations. We further calculate the deviation 
rate of the ECS estimated with the first 150-year (200-
year) simulation from the ECS directly obtained from the 
millennial-length simulation. The length of 150 years is 
the suggested length of the abrupt4xCO2 simulation, and 
200 years was suggested in Dai et al. (2020) as the length 
for a reliable ECS estimation.

Figure  5 shows the deviation rate of the ECS esti-
mated by the short simulation (the first 150 or 
200  years) from the eventual ECS by the entire mil-
lennial-length simulation based on various methods. 
When the 150-year simulation and the traditional 
methods are used, the estimated ECS deviates from the 

eventual ECS by around 12%, which is consistent with 
the estimation in Dunne et al. (2020). The deviations of 
method 4 are apparently smaller than the results using 
methods 1–3 in the nine LongRunMIP models. The 
multimodel mean deviation rate of the EIS method is 
8.1%, which is decreased by around 1/3 relative to those 
of the traditional ones, as Fig. 5a shows. The deviations 
using the 200-year simulation (Fig.  5b) are noticeably 
reduced relative to those using the 150-year simula-
tion (Fig.  5a) for all methods, and the deviation rate 
of the EIS method is still the smallest among all meth-
ods. This result suggests that although the EIS method 
is effective for lowering the disagreement between the 
results using a limited simulation and the millennial-
length simulation, it is useful to obtain a more accu-
rate estimate of the ECS by extending the length of the 
abrupt4xCO2 simulation from the 150  years presently 
suggested in CMIP to 200  years as suggested in Dai 
et al. (2020) for a more accurate ECS estimation.

Fig. 3  a The correlation coefficient between the global-mean and annual-mean surface temperature anomalies �T  and TOA net radiative flux 
anomalies �N in the abrupt4xCO2 experiments (relative to the piControl run) of LongRunMIP models. b The product of dN/dT (slope of the linear fit 
between �T  and �N ) and dT/dN (slope of the linear fit between �N and �T )
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Estimating the ECS in CMIP6 simulations
The EIS method is applied to the 150-year abrupt4xCO2 
simulations of 32 CMIP6 models to estimate the ECS. 
The correlation coefficients between �T  and �N  from 
the 50th original year are shown in Fig. 6a. The �T  and 
�N  are highly correlated from the 50th year with the 
internal variability noise reduced by the EIS method. As 
shown in Fig. 6b, the ECSs estimated by method 4 are 
higher than the estimates by the other three methods, 
especially method 1, in most models. The multimodel 
mean ECS of method 4 is 4.20 K, which is around 11.5% 
larger than its counterpart using method 1 (3.76  K). 
While the result contradicts the conclusion that inter-
nal noise could lead to an overestimated ECS in an ideal 

framework (Dai and Bloecker 2019; Dai et al. 2020), it 
is the case, as expected, that the ECS is underestimated 
owing to the internal variability in the studies based on 
the simulations with known historical forcings (Dessler 
et al. 2018; Lewis and Mauritsen 2021).

Summary and discussion
A new method is introduced in this study that reduces 
the internal variability noise via EIS for estimating 
the ECS more accurately. The method is based on the 
fact that the climate system’s response to an abrupt 
quadrupling of CO2 becomes slower and slighter with 
time, behaving like exponential functions, and the 

Fig. 4  Time series of the climate feedback � (the dN/dT slope of the linear fit on the global-mean and annual-mean surface temperature anomalies 
�T  and TOA net radiative flux anomalies �N ) estimated from three methods. The light (dark) blue line is the � estimated from the linear fit from the 
1st (50th) to the plotted year in the original series. The deep pink line is the � estimated from the linear fit from point 21 to the point whose upper 
limit of the average range is around the plotted year in the new series
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noise-to-signal ratio grows with time as well (Geof-
froy et al. 2013; Gregory et al. 2004; Wilson and Mitch-
ell 1987). Applying this method to nine LongRunMIP 
models with at least 1000  years of simulation, we find 
it sufficient for reducing most noise, and the new global 
mean surface temperature �T  and net TOA radiative 
flux �N  are strongly linearly correlated from the 50th 
year. This proves that it is sufficiently accurate to esti-
mate the ECS through a linear fit of �T  and �N  with 
internal noise reduced.

We compare the climate feedback, � = dN/dT  , of the 
EIS method with three other methods and find that the 
EIS method can provide a more stable dN/dT within lim-
ited simulations. Further, we evaluate the EIS method by 
comparing the ECS estimated from 150 or 200 years and 
the whole simulation in LongRunMIP models, the long-
est of which lasts 5900  years. It turns out that the EIS 
method’s ECSs deviate much less than those of the other 
methods. While a longer simulation is suggested to be 
better for precisely estimating the ECS (Dai et  al. 2020; 

Dunne et  al. 2020), the EIS method can substantially 
reduce the bias caused by internal noise.

The EIS method is further applied to estimate the ECS 
in 32 CMIP6 models. With internal noise reduced, the 
correlation coefficient between �T  and �N  from the 
50th year in the abrupt4xCO2 simulation is much closer 
to 1. The ECSs estimated using the EIS method are larger 
than others in more than half models (18 models). This 
implies that the internal noise may lead to an underesti-
mation of the ECS through linear fitting. Dai et al. (2020) 
argued that the noise-to-signal ratio in linear fitting 
can overestimate the ECS, although the error is almost 
offset by the inclusion of early data points. In contrast, 
studies estimating the ECS from historical simulations 
have found the internal variability to be responsible for 
an underestimation bias (Dessler et  al. 2018; Lewis and 
Mauritsen 2021). The EIS method successfully reduces 
the internal variability error source, which is helpful in 
further studying the estimation of climate sensitivity in 
models.

Fig. 5  Deviation rate of the ECS estimated by four methods within limited simulations from the whole simulation in LongRunMIP models: a 
simulation time-limit of 150 years; b simulation time-limit of 200 years



Page 9 of 10Li and Huang ﻿Geoscience Letters            (2022) 9:34 	

Also noticeable is that the intermodel discrepancy 
of the ECS estimates is much larger than the differ-
ences among the estimates based on the four meth-
ods, especially in CMIP6. Besides the difference in 
final warming caused by the cloud feedback, ocean 
heat uptake and other parameters that influence the 
strength of the climate response, the various speeds 
of the response should also be considered. This paper 
proposes an approach to obtain a more stable climate 
feedback and therefore extrapolate a more accurate 
ECS within limited simulations, but further studies 
are still needed to discuss the underlying mechanisms 
and therefore further improving the accuracy of ECS 
estimation.
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